• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A new method of measuring optical turbulence of atmospheric surface layer at Antarctic Taishan Station with ultrasonic anemometer

    2015-02-06 07:16:45WUXiaoqingTIANQiguoJIANGPengCHAIBoQINGChunCAIJunJINXinmiaoZHOUHongyan
    Advances in Polar Science 2015年4期

    WU Xiaoqing, TIAN Qiguo, JIANG Peng, CHAI Bo, QING Chun,CAI Jun, JIN Xinmiao & ZHOU Hongyan,

    1 Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, Key Laboratory of Atmospheric Composition and Optical Radiation, Chinese Academy of Science, Hefei 230031, China;

    2 Polar Research Institute of China, Shanghai 200136, China;

    3 University of Science and Technology of China, Hefei 230026, China;

    4 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230031, China

    1 Introduction

    The main effects on the performance of ground-based astronomical telescopes are sky background, transmittance,and optical turbulence and so on[1-2]. Atmospheric turbulence is the major reason for the serious decline of imaging quality of the astronomical optical telescope.Random refractive index fluctuations associated mainly with temperature ぼuctuations are called optical turbulence.The sky background and transmittance limit telescope sensitivity, and optical turbulence limits resolution. Given the influence of atmospheric turbulence on astronomical parameters, seeing is not only one of the important factors in site location decision-making but is also a major measurement parameter. It is an important indicator in evaluating astronomical site quality. Turbulent intensity in the near-surface layer and its rate of decrease with height are closely related to the quality of potential sites. Quoted from Pant’s measurement result in Devasthal[3], seeing of the near-surface 6–12 m layer is 1.28′′, but it is down sharply to 0.32′′ in the 12–18 m layer. In the circumstance where boundary layer and free atmosphere turbulence at candidate astronomical sites are equivalent, as an indicator of seeing, one must compare turbulent intensity of the surface layer and rate of decrease with height to quantify which site is the best for astronomical applications.

    Continuous observation of atmospheric optical turbulence of the surface layer is usually achieved using a meteorological mast equipped with several-layer micro-thermometers. Because dust readily causes probe contamination and strong wind, insects and other factors damage the probe, the micro-thermometer probes need regular replacement and cannot be used in unattended operation in adverse environments. We have proposed measuring the refractive index structure constantCn2with a single-point temperature structure function method, involving analysis of temperature fluctuation time-series data from an ultrasonic anemometer[4-5]. This method was coded into the data acquisition system of a mobile atmospheric parameter measuring system[6-7], soCn2could be measured in real time.This instrument was installed at Antarctic Taishan Station by the 30th Chinese National Antarctic Research Expedition(CHINARE) team for astronomical site testing. Major stations that are currently used for astronomical observation in the Antarctic are Amundsen-Scott at the South Pole, Concordia at Dome C, Kunlun at Dome A, and Fuji at Dome F. At the South Pole, the mean visual seeing, measured by 15 balloon flights in 1997, was 1.86′′, of which the free atmosphere component was only 0.37′′[8]. At Dome C, the summer site testing median seeing based on a Differential Image Motion Monitor (DIMM) was 0.54′′[9]. In 2004, by combining freeatmosphereCn2values determined by the Multi-Aperture Scintillation Sensor[10]with surface boundary layer turbulence determined by Sonic Detection and Ranging, atmospheric seeing above 30 m was 0.27′′. In 2005 seeing, isoplanatic angle and coherent time above 30 m based onin situballoon measurement[11]was 0.36′′, 4.6′′, and 7.9 ms, respectively. In this paper, we analyze turbulence data obtained by a mobile atmospheric parameter acquisition system at Antarctic Taishan Station, and compare several methods of optical turbulence measurement. We found a value ofCn2derived from a structure function analysis previously proposed with a sonic anemometer was different from that of microthermometer measured. Thus, a new method to measureCn2with a temperature spectrum analysis is proposed.Cn2data derived from an ultrasonic anemometer with the new method and micro-thermometer were mainly the same in magnitude and trend.

    2 Introduction to measurement system

    The Antarctic mobile atmospheric parameter measurement system[6]includes a CR5000 data logger, CSAT3 threedimensional ultrasonic anemometer, micro-thermometer,temperature and relative humidity probe, wind monitor,485 communication module, power module, and a 3-m tower. Two levels of air temperature, relative humidity and wind speed, and one level of air pressure, surface temperature,atmospheric optical turbulence intensity and other atmospheric parameters can be measured. Taishan Station is located in Princess Elizabeth Land between the Chinese Antarctic Zhongshan and Kunlun stations, 76°58’E, 73°51’S, at altitude 2621 m. Figure 1 shows the mobile atmospheric parameter measurement system at Chinese Antarctic Taishan Station. The site testing experiments were carried out during the 30th CHINARE. Part of the data from 30 December 2013, when the system was installed, to 10 February 2014,when the expedition staff returned, were analyzed here.

    Figure 1 Mobile atmospheric parameters measurement system installed at Antarctic Taishan Station.

    3 Measurement methods of Cn2

    For Kolmogorov turbulence, the refractive index structure constant and the temperature structure constant are defined as[11]

    whereTis air temperature (K) andPis air pressure (hPa).Therefore,C2ncan be calculated through Equations (2) and(3) by measuring the square and average of the temperature difference given by two sensors separated by a known distancerin the inertial region. This is called the structure function method of temperature differences between two points.

    The relationship between temperature and wire resistance is

    Thus, the ΔRand ΔTrelationship is

    whereis the resistance at reference temperatureT0andαis the coefficient of thermal resistivity of the wires.

    The two resistance sensors are legs of a Wheatstone bridge that generates a voltage difference ΔVproportional to the temperature difference ΔT:

    Here,Cis the calibration coefficient.

    The principle of micro-thermometer measurement is the same as in the last paragraph.Cn2is deduced from a pair of horizontally separated micro-temperature probes. The frequency response range of the micro-thermometer is 0.1–30 Hz, and the standard deviation of minimum temperatureぼuctuation is < 0.002°C[13].

    The triaxial ultrasonic anemometer measures temperature from transit timest1andt2measured along a known distance path of the anemometer’ probe. The speed of sound in moist air is a function of temperature and humidity. Sonic temperatureTsand air temperatureThave the following relationship[14]:

    Here,t1andt2are the transit times in seconds for sound pulses traveling in opposite directions along acoustic path lengthd, andVnis the magnitude of the horizontal wind vector normal tod.qis specific humidity. In dry conditions,the diference ofTsandTis very small.

    For the temperature fluctuation time series data measured by the ultrasonic anemometer, Taylor’s frozen turbulence hypothesis was used to convert a time series of aぼuctuating quantity into a spatial series of ぼuctuations along the direction of the mean wind. Therefore,is deduced via Equations (9) and (3) by measuring the square and average of the temperature difference between two time points in the inertial region. This method is known as single-point temperature structure function method.

    whereτis the time interval, determined by the average wind speed and the known space length (typically 1 m).

    can be determined by the one-dimensional temperature spectrum of the turbulence inertia region. For Kolmogorov turbulence, the one-dimensional temperature wave number spectrumΨT(k) is wherekis the wave number. For the power spectrum,temporal and spatial frequencies are related byk. It is easy to show that the relationship between the temporal and spatial one-dimensional spectra is

    We can write

    This method is called the single-point temperature spectrum method.

    More generally, the form ofcan be expressed as

    Here,Ais the coefficient related to the generalized temperature structure constantandαis the spectral power law of one dimension. On a logarithmic scale,Equation. 13 is written as

    can be estimated via linear regression.

    4 Measurement results and discussion

    4.1 Comparison of Cn2 between ultrasonic anemometer with single-point temperature structure function method and micro-thermometer

    Figure 2 is an example of derived from the ultrasonic anemometer with structure function analysis and those from micro-thermometer at Taishan Station on 6 January 2014.The sampling frequency of the ultrasonic anemometer was 50 Hz and the average time for calculatingCn2was 20 s. It is seen thatvalues from the ultrasonic anemometer are several times greater than those of the micro-thermometer,sometimes even one order of magnitude greater. The characteristicdiurnal cycle with minima near sunrise(about 0900) and sunset (about 1900) is not obvious. The other time data also have similar characteristics. No matter the order of magnitude and trend ofthe data measured with the single-point temperature structure function method cannot be used to explain thecharacteristics at Taishan Station. However, although the order of magnitude ofCn2measured by the two methods had a few differences from other field experiments[4-6,16], trends were basically the same,with a correlation coefficient > 0.9.

    4.2 Comparison of Cn2 between ultrasonic anemometer with single-point temperature spectrum method and micro-thermometer

    Figure 2 Comparison of Cn2 derived from ultrasonic anemometers with structure function analysis and those from micro-thermometer.

    Using Equations (10)–(12) we measuredCn2by the single-point temperature spectrum method. Triaxial sonic anemometer sampling frequency was 50 Hz and the sampling period was 16.4 min. This yielded 49200 data points per run. A fast Fourier transform was carried out and the power spectrum of 25 Hz was obtained. The power spectrum was smoothed and combined with wind speed, and the approximate inertial range was determined. After the medianCT2of a set of values in the inertial region was calculated by the formula (12),Cn2was obtained. Figure 3 is a comparison ofCn2values derived from the ultrasonic anemometers with spectrum analysis and micro-thermometer, using Figure 2 dataset. In comparison with Figure 2,Cn2values derived from the ultrasonic anemometer with spectrum analysis are closer to those from the micro-thermometer.The former was smoother than the latter, and was only sensitive over 2×10-16m-2/3, but the micro-thermometer was sensitive about 2×10-18m-2/3. To confirm the data reliability by ultrasonic anemometer at Taishan Station in an adverse environment, and the possibility of measuringCn2from ultrasonic anemometer instead of micro-thermometer, we compared both instruments for long time. After abnormal data owing to the broken wire being eliminated, a 23-day dataset was used. Figure 4 is a comparison ofCn2values from spectrum analysis of sonic anemometer data and microthermometer data from 11 January through 2 February 2014.In this dataset, under various meteorological conditions and regardless of day or night, the comparison was satisfactory.

    Figure 3 Comparison of Cn2 derived from ultrasonic anemometers with spectrum analysis and micro-thermometer.

    Figure 4 Comparison of Cn2 derived from ultrasonic anemometers with spectrum analysis and micro-thermometer during field experiment.

    Figure 5 Comparison of Cn2 frequency distribution derived from ultrasonic anemometer with spectrum analysis and micro-thermometer during field experiment.

    Figure 5 compares aCn2frequency distribution from spectrum analysis with the sonic anemometer and microthermometer data on 30 December 2013 to 10 February 2014. Sample numbers were 3446 and 59175, respectively.Table 1 is aCn2frequency distribution from the microthermometer and anemometer in three frequency ranges.In the ?15<lg(Cn2)<?13.8 range, the frequencies of the two are both 78%. Frequencies in the lg(Cn2) > ?13.8 range are 1.7% and 6.9%, respectively, and those in the lg(Cn2) <?15 range are 20.3% and 14.8%. During the experiment, 78%optical turbulence at Taishan Station was concentrated in the range 10?15<Cn2<1.6×10?14. In this range, theCn2frequency distributions of both anemometer and micro-thermometer were consistent. Frequency statistics within the scope of strong and weak turbulence measured by the two instruments had a 6% difference. This may be attributable to smoothing,because the time for those statistics of the ultrasonic anemometer was 16.4 min whereas that for the microthermometer was only 20 s.

    At Taishan Station, the difference ofCn2measured by the single-point temperature structure function method and the sonic anemometer and micro-thermometer is very large. Thismay be related with factors such as spectral characteristics,turbulent multi-scale spatial and temporal structure, and whether the Taylor assumption is valid. A similar result was found in reference[17]. In that work, an aero thermal series from a cold wire probe mounted on an aircraft was analyzed.CT2from the structure function sometimes agreed well with spectral analysis, but sometimes the difference was very large, five times larger than the spectrum analysis results. The author believed that the large differences were in the regionsαwhere deviated from ?5/3, so the structure function estimator was only valid for ?3≤α<?1. For aero-thermal series data to be used in spectral analysis, it is speculated thatCT2must be obtained via the single-point temperature structure function method under the Taylor assumption. To discover whyCn2values from the ultrasonic anemometer were several times larger than those of the micro-thermometer at Taishan Station,it is necessary to determine the power frequency distribution of the temperature spectrum during an experiment. Figure 6 is the frequency distribution of the power law of a onedimensional spectrum. The frequency forα<?1 was 36.2%,and that forα>?1 was 63.8%. That is, there is nearly twothirds of spectral power outside the range ?3≤α<?1, so we cannot use the single-point temperature structure function method to calculateCn2. In addition, during the Taishan Station experiment, average wind speed was 7.7 m·s-1, and the maximum was 16.3 m·s-1. Average wind speed from the literature[4-6,15]was not more than 3 m·s-1, so we should consider that this speed has an impact on the single-point measurement of temperature structure function method.

    Table 1Cn2 frequency distribution derived from spectrum analysis of sonic anemometer and micro-thermometer data

    5 Conclusions

    Atmospheric parameters at Taishan Station from 30 December 2013 through 10 February 2014 were obtained by a mobile measuring system, and these data were analyzed.Cn2derived from the single-point temperature spectrum method with the sonic anemometers and micro-thermometer was compared. In the range ?15 < lg(Cn2) < ?13.8, the frequencies of both were 78%. Frequencies for lg(Cn2) >?13.8 were 1.7% and 6.9%, respectively, and for lg(Cn2) <?15 they were 20.3% and 14.8%. Compared with the microthermometer, results ofCn2measured by the ultrasonic anemometer from the spectrum analysis method were satisfactory in magnitude and trend.

    Figure 6 Frequency distribution of power law of one-dimensional spectrum.

    1 Hou J L. Site testing parameters and their measurements. Prog Astron,1994, 12(2): 126–132 (in Chinese)

    2 Wu X Q. Site testing for ground-based optical telescope. J Anhui Norm Univ (Nat Sci), 2013, 36(5): 414–418 (in Chinese)

    3 Pant P, Stanlin C S, Sagar R. Microthermal measurements of surface layer seeing at Devasthal site. Astron Astrohys Suppl Ser, 1999, 136:19–25

    4 Zhu X T, Wu X Q, Li D Y. Characteristics of ASL turbulence andC2nusing three-dimensional ultrasonic anemometer. J Atmos Environ Opt, 2012, 7(1): 6–12 (in Chinese)

    5 Wu X Q, Zhu X T, Huang H H, et al. Optical turbulence of atmospheric surface layer estimated based on the Monin-Obukhov similarity theory. Acta Opt Sinica, 2012, 32(7): 0701004-1–0701004-7(in Chinese)

    6 Tian Q G, Chai B, Wu X Q, et al. A mobile polar atmospheric parameter measurement system. I. Development and performance testing. Chin J Polar Res, 2015, 27(2): 12540–13146 (in Chinese)

    7 Tian Q G, Jiang P, Wu X Q, et al. A mobile polar atmospheric parameter measurement system: II. First atmospheric turbulence observation at Antarctic Taishan Station. Adv Polar Sci, 2015, 26:140-146, doi: 10.13679/j.advps.2015.2.00140

    8 Marks R D. Astronomical seeing from the summits of the Antarctic plateau. Astron Astrophys, 2002, 385(1): 328–336

    9 Aristidi E, Agabi A, Fossat E, et al. Site testing in summer at Dome C,Antarctica. Astron Astrophys, 2005, 444(2): 651–659

    10 Lawrence J S, Ashley M C B, Tokovinin A, et al. Exceptional astronomical seeing conditions above Dome C in Antarctica. Nature,2004, 431(7006): 278–281

    11 Agabi A, Aristidi E, Azouit M, et al. First whole atmosphere nighttime seeing measurements at Dome C, Antarctica. PASP, 2006, 118(840):344–348

    12 Beland R R. Propagation through atmospheric optical turbulence//Smith F G. The infrared and electro-optical systems handbook.Bellingham, WA: SPIE Press, 1993, 2: 161–176

    13 Wu X Q, Zeng Z Y, Rao R Z. Measurement procedure of microthermometer measuring atmospheric optical turbulence.Enterprise Standards of Hefei Institutes of Physical Science Chinese Academy of Sciences, Q/AG 05–2008(in Chinese)

    14 Kaimal J C, Gaynor J E. Another look at sonic thermometry.Boundary-Layer Meteorology, 1991, 56(4): 401-410

    15 Wu X Q, Huang Y B, Mei H P, et al. Measurement of non-Kolmogorov turbulence characteristic parameter in atmospheric surface layer. Acta Opt Sinica, 2014, 34(6): 0601001-1–0601001-6(in Chinese)

    16 Wang P, Wu X Q. Experimental study of effects of humidity fluctuation on the refractive index structure parameter for visible radiation. Acta Opt Sinica, 2014, 7, 34(4): 0401003-1–0401003-4(in Chinese)

    17 Nichols-Pagel G A, Percival D B, Reinhall P G, et al. Should structure functions be used to estimate power laws in turbulence? A comparative study. Phys D-nonlin Phenom, 2008, 237(5): 665–677

    免费在线观看成人毛片| 日本爱情动作片www.在线观看 | 国产精品福利在线免费观看| 999久久久精品免费观看国产| 日本黄色视频三级网站网址| 成人av一区二区三区在线看| 亚洲精品色激情综合| 一个人免费在线观看电影| 成人av在线播放网站| 又黄又爽又刺激的免费视频.| 波野结衣二区三区在线| 久久婷婷人人爽人人干人人爱| 99九九线精品视频在线观看视频| 很黄的视频免费| 国产欧美日韩精品一区二区| 身体一侧抽搐| 日韩精品有码人妻一区| 亚洲精品色激情综合| 淫秽高清视频在线观看| 九九热线精品视视频播放| 亚洲精品国产成人久久av| a级毛片a级免费在线| 我要搜黄色片| 深爱激情五月婷婷| 欧美在线一区亚洲| 国产亚洲精品久久久com| 精品欧美国产一区二区三| 热99re8久久精品国产| 蜜桃亚洲精品一区二区三区| 亚洲男人的天堂狠狠| 黄色欧美视频在线观看| 日韩在线高清观看一区二区三区 | 国产一区二区在线观看日韩| 久久精品国产清高在天天线| 丰满乱子伦码专区| 99热这里只有是精品在线观看| 真人做人爱边吃奶动态| 2021天堂中文幕一二区在线观| 亚洲av日韩精品久久久久久密| 男人和女人高潮做爰伦理| 久久国产精品人妻蜜桃| av在线蜜桃| 欧美黑人欧美精品刺激| 乱系列少妇在线播放| 人妻丰满熟妇av一区二区三区| 久久精品91蜜桃| 国产午夜精品久久久久久一区二区三区 | 久久久久久久久久成人| 一a级毛片在线观看| 欧美激情在线99| 国产v大片淫在线免费观看| 成人永久免费在线观看视频| eeuss影院久久| 91在线精品国自产拍蜜月| 中出人妻视频一区二区| 国产成人一区二区在线| 午夜a级毛片| 成人午夜高清在线视频| 亚洲人成网站在线播| 黄色配什么色好看| 久久久久久久久大av| www.www免费av| 一本精品99久久精品77| 免费在线观看影片大全网站| 欧美日韩中文字幕国产精品一区二区三区| 干丝袜人妻中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 国产伦精品一区二区三区视频9| 啪啪无遮挡十八禁网站| 国产成人a区在线观看| 亚洲第一区二区三区不卡| 88av欧美| 非洲黑人性xxxx精品又粗又长| 国产精品人妻久久久久久| 波多野结衣高清无吗| 日韩强制内射视频| 亚洲av电影不卡..在线观看| 九九在线视频观看精品| 深夜精品福利| 少妇人妻精品综合一区二区 | 久久精品国产亚洲网站| 亚洲欧美日韩东京热| 久久精品国产自在天天线| 日韩av在线大香蕉| 国产成人a区在线观看| 99久久久亚洲精品蜜臀av| 国产一区二区亚洲精品在线观看| 欧美丝袜亚洲另类 | 午夜福利在线观看吧| 国产久久久一区二区三区| 国产乱人伦免费视频| 99热网站在线观看| 人妻少妇偷人精品九色| 少妇熟女aⅴ在线视频| 国产不卡一卡二| 男女视频在线观看网站免费| 99精品在免费线老司机午夜| 国产男靠女视频免费网站| 校园人妻丝袜中文字幕| 国产色爽女视频免费观看| 亚洲第一区二区三区不卡| 亚洲内射少妇av| 国产精品美女特级片免费视频播放器| 欧美激情久久久久久爽电影| 美女黄网站色视频| 精品一区二区三区视频在线| 国产精品野战在线观看| 3wmmmm亚洲av在线观看| 好男人在线观看高清免费视频| 日日夜夜操网爽| 91久久精品电影网| 69人妻影院| 蜜桃久久精品国产亚洲av| 国产黄片美女视频| АⅤ资源中文在线天堂| 非洲黑人性xxxx精品又粗又长| 国产伦一二天堂av在线观看| 99久久精品热视频| 99精品久久久久人妻精品| 成人精品一区二区免费| av中文乱码字幕在线| 午夜亚洲福利在线播放| 蜜桃久久精品国产亚洲av| 久久精品91蜜桃| 国产精品日韩av在线免费观看| 久久精品国产亚洲网站| 精品不卡国产一区二区三区| 琪琪午夜伦伦电影理论片6080| 国产日本99.免费观看| 亚洲欧美日韩东京热| 国产蜜桃级精品一区二区三区| 亚洲欧美清纯卡通| 中文资源天堂在线| 色综合亚洲欧美另类图片| 亚洲av免费高清在线观看| 国产在线男女| 成人国产麻豆网| 俺也久久电影网| 欧美最黄视频在线播放免费| 亚洲欧美日韩无卡精品| 久久久色成人| 国内精品一区二区在线观看| 高清日韩中文字幕在线| 日本撒尿小便嘘嘘汇集6| 日本熟妇午夜| 久久精品国产清高在天天线| 51国产日韩欧美| 成人永久免费在线观看视频| 日韩精品有码人妻一区| 国产麻豆成人av免费视频| 国产综合懂色| 波野结衣二区三区在线| 欧美日韩中文字幕国产精品一区二区三区| 久久久久九九精品影院| 久久久精品大字幕| 欧美日韩精品成人综合77777| 一边摸一边抽搐一进一小说| 赤兔流量卡办理| 97人妻精品一区二区三区麻豆| 日本 欧美在线| 久久久精品大字幕| avwww免费| 国内精品宾馆在线| 不卡视频在线观看欧美| 色吧在线观看| 男人狂女人下面高潮的视频| 日韩中文字幕欧美一区二区| 午夜亚洲福利在线播放| 乱码一卡2卡4卡精品| 欧美+亚洲+日韩+国产| 女人十人毛片免费观看3o分钟| 男女那种视频在线观看| 亚洲欧美日韩无卡精品| 国产真实乱freesex| 亚洲,欧美,日韩| 久久久成人免费电影| 乱系列少妇在线播放| 伊人久久精品亚洲午夜| 国产黄a三级三级三级人| 美女高潮的动态| 女同久久另类99精品国产91| 亚洲性夜色夜夜综合| 内地一区二区视频在线| 嫩草影视91久久| 男女视频在线观看网站免费| 国产欧美日韩精品一区二区| 黄片wwwwww| 国产亚洲av嫩草精品影院| 18+在线观看网站| 久久婷婷人人爽人人干人人爱| 别揉我奶头~嗯~啊~动态视频| 久久久久免费精品人妻一区二区| 亚洲精品色激情综合| 色视频www国产| 亚洲人成网站在线播放欧美日韩| 俄罗斯特黄特色一大片| 国产aⅴ精品一区二区三区波| 亚洲av中文av极速乱 | 国产女主播在线喷水免费视频网站 | 亚洲av熟女| 亚洲人成网站高清观看| 欧美日本亚洲视频在线播放| 精品一区二区三区视频在线| 日韩,欧美,国产一区二区三区 | 91狼人影院| 国产精品久久久久久精品电影| 国产成人av教育| 色综合色国产| 国产精品精品国产色婷婷| 99久久成人亚洲精品观看| 亚洲 国产 在线| 精品久久久久久久末码| 国产午夜精品论理片| 91麻豆精品激情在线观看国产| 久久精品国产亚洲网站| 我的老师免费观看完整版| а√天堂www在线а√下载| 级片在线观看| 国产真实伦视频高清在线观看 | 欧美日本亚洲视频在线播放| 99精品久久久久人妻精品| 伦理电影大哥的女人| 国产精品日韩av在线免费观看| 蜜桃久久精品国产亚洲av| 久久精品人妻少妇| 在现免费观看毛片| 女同久久另类99精品国产91| 岛国在线免费视频观看| 亚洲成av人片在线播放无| www.色视频.com| xxxwww97欧美| 成人毛片a级毛片在线播放| 欧美zozozo另类| 欧美最黄视频在线播放免费| 精品一区二区免费观看| 成人亚洲精品av一区二区| 日韩一本色道免费dvd| 性插视频无遮挡在线免费观看| 波多野结衣巨乳人妻| 国产精品久久久久久精品电影| 欧美色欧美亚洲另类二区| 久久香蕉精品热| 免费观看人在逋| 淫妇啪啪啪对白视频| 亚洲成人中文字幕在线播放| xxxwww97欧美| 嫩草影视91久久| 一本久久中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 狂野欧美激情性xxxx在线观看| 99久久成人亚洲精品观看| 亚洲美女黄片视频| 国产淫片久久久久久久久| 黄色一级大片看看| 免费看美女性在线毛片视频| 看片在线看免费视频| 黄色女人牲交| 亚洲av电影不卡..在线观看| 亚洲欧美日韩无卡精品| 可以在线观看的亚洲视频| .国产精品久久| 我要搜黄色片| 韩国av一区二区三区四区| 国产成年人精品一区二区| 一卡2卡三卡四卡精品乱码亚洲| 男女啪啪激烈高潮av片| 别揉我奶头~嗯~啊~动态视频| .国产精品久久| 免费观看人在逋| 国产伦精品一区二区三区四那| 国产精品一及| 亚洲男人的天堂狠狠| av在线观看视频网站免费| 日韩亚洲欧美综合| 伦理电影大哥的女人| 听说在线观看完整版免费高清| 久久久精品大字幕| 日韩欧美三级三区| 乱码一卡2卡4卡精品| eeuss影院久久| 韩国av在线不卡| 国产极品精品免费视频能看的| 岛国在线免费视频观看| 亚洲午夜理论影院| a级毛片免费高清观看在线播放| 最近最新中文字幕大全电影3| 亚洲精品成人久久久久久| 三级毛片av免费| 一区二区三区激情视频| 少妇猛男粗大的猛烈进出视频 | 午夜免费男女啪啪视频观看 | 好男人在线观看高清免费视频| 免费av不卡在线播放| 超碰av人人做人人爽久久| 国产精品电影一区二区三区| 国产av不卡久久| 精品人妻一区二区三区麻豆 | 亚洲熟妇中文字幕五十中出| 国产高清三级在线| 97超视频在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 日本色播在线视频| 成年女人毛片免费观看观看9| 神马国产精品三级电影在线观看| 无人区码免费观看不卡| 欧美一区二区精品小视频在线| 高清毛片免费观看视频网站| 99视频精品全部免费 在线| 69av精品久久久久久| 国产精品亚洲美女久久久| a级毛片免费高清观看在线播放| 精品一区二区三区av网在线观看| 美女高潮喷水抽搐中文字幕| 国产综合懂色| 日韩欧美三级三区| 亚洲人成网站高清观看| 五月玫瑰六月丁香| 成人综合一区亚洲| 亚洲国产欧洲综合997久久,| 中文字幕久久专区| 欧美精品国产亚洲| 免费观看精品视频网站| 99在线人妻在线中文字幕| av在线老鸭窝| 亚州av有码| 国产在视频线在精品| 色噜噜av男人的天堂激情| 国产单亲对白刺激| 亚洲欧美日韩无卡精品| 99久国产av精品| 亚洲真实伦在线观看| 国产精品一区www在线观看 | 精品日产1卡2卡| 日本与韩国留学比较| 国产成人aa在线观看| 身体一侧抽搐| 成人av在线播放网站| 精品一区二区三区人妻视频| 亚洲四区av| 九九在线视频观看精品| 中国美女看黄片| 国产白丝娇喘喷水9色精品| 亚洲av熟女| 亚洲最大成人中文| 亚洲aⅴ乱码一区二区在线播放| 欧美+日韩+精品| 狂野欧美激情性xxxx在线观看| a级一级毛片免费在线观看| 99在线人妻在线中文字幕| 黄色欧美视频在线观看| 国产三级中文精品| 亚洲人与动物交配视频| 亚洲精品在线观看二区| 国产亚洲欧美98| 自拍偷自拍亚洲精品老妇| 国产日本99.免费观看| 国产精品久久久久久亚洲av鲁大| 久久久久性生活片| 日韩欧美精品v在线| 色视频www国产| 免费看a级黄色片| 两人在一起打扑克的视频| 久久欧美精品欧美久久欧美| 在线看三级毛片| 午夜免费成人在线视频| 免费看日本二区| 97人妻精品一区二区三区麻豆| 男人狂女人下面高潮的视频| 一a级毛片在线观看| 亚洲avbb在线观看| 精品一区二区免费观看| av在线老鸭窝| 国产成年人精品一区二区| 淫妇啪啪啪对白视频| 五月玫瑰六月丁香| 99久久精品一区二区三区| 99在线人妻在线中文字幕| 成人欧美大片| 国产成人福利小说| 午夜日韩欧美国产| 国产一区二区三区在线臀色熟女| av在线亚洲专区| 国产精品女同一区二区软件 | 国产成人影院久久av| 全区人妻精品视频| 亚洲国产色片| 久久热精品热| xxxwww97欧美| 少妇被粗大猛烈的视频| 久久精品国产亚洲av天美| 国产精品久久久久久精品电影| 精品久久久久久久久久久久久| 我的女老师完整版在线观看| 精品久久久噜噜| 久久精品影院6| 成人欧美大片| 深爱激情五月婷婷| 欧美不卡视频在线免费观看| 日韩欧美精品免费久久| 国产免费一级a男人的天堂| 好男人在线观看高清免费视频| 欧美一区二区精品小视频在线| 国产成人av教育| 午夜免费成人在线视频| 人妻久久中文字幕网| 午夜a级毛片| 99久久成人亚洲精品观看| 丰满人妻一区二区三区视频av| 精品久久久久久久久久免费视频| 亚洲精品粉嫩美女一区| 国产午夜精品论理片| 91在线精品国自产拍蜜月| 亚洲av五月六月丁香网| 国产精华一区二区三区| 99久久久亚洲精品蜜臀av| 51国产日韩欧美| 免费看a级黄色片| 91精品国产九色| 国产高清激情床上av| 老师上课跳d突然被开到最大视频| 久久中文看片网| 亚洲在线自拍视频| 淫秽高清视频在线观看| 看免费成人av毛片| 桃红色精品国产亚洲av| 日韩一本色道免费dvd| 99热这里只有是精品在线观看| 成人三级黄色视频| 精品久久久久久久久久久久久| 日本精品一区二区三区蜜桃| 国产激情偷乱视频一区二区| 日韩欧美免费精品| 免费无遮挡裸体视频| 欧美黑人巨大hd| 久久久久国产精品人妻aⅴ院| 我要搜黄色片| 亚洲在线观看片| 国产在线男女| 在线天堂最新版资源| 性色avwww在线观看| 在线a可以看的网站| 久久6这里有精品| 天天一区二区日本电影三级| 免费看美女性在线毛片视频| 尾随美女入室| 亚洲一级一片aⅴ在线观看| 久久精品国产亚洲av天美| 少妇被粗大猛烈的视频| 午夜激情福利司机影院| 波多野结衣高清无吗| 很黄的视频免费| 久久久午夜欧美精品| 一本一本综合久久| 亚洲av五月六月丁香网| 18禁在线播放成人免费| 国产精品野战在线观看| 久久久久久伊人网av| 成熟少妇高潮喷水视频| 亚洲自拍偷在线| 国产单亲对白刺激| 人人妻,人人澡人人爽秒播| 亚洲欧美日韩高清专用| 欧美日本视频| 国产精品日韩av在线免费观看| 淫妇啪啪啪对白视频| 少妇丰满av| 欧美xxxx性猛交bbbb| 国产乱人伦免费视频| 久久久精品欧美日韩精品| 又黄又爽又刺激的免费视频.| 全区人妻精品视频| 亚洲性夜色夜夜综合| 日韩在线高清观看一区二区三区 | 一边摸一边抽搐一进一小说| 日本免费一区二区三区高清不卡| 极品教师在线视频| 九九久久精品国产亚洲av麻豆| 成人综合一区亚洲| 少妇裸体淫交视频免费看高清| 国产乱人伦免费视频| 日韩亚洲欧美综合| 国产一区二区三区av在线 | 国产v大片淫在线免费观看| 国产私拍福利视频在线观看| 久久久久久久久中文| 91久久精品国产一区二区成人| 国产极品精品免费视频能看的| 久久久久性生活片| 日韩欧美一区二区三区在线观看| 看片在线看免费视频| 两个人视频免费观看高清| 动漫黄色视频在线观看| 桃色一区二区三区在线观看| 香蕉av资源在线| 小蜜桃在线观看免费完整版高清| 色播亚洲综合网| 免费在线观看影片大全网站| 蜜桃亚洲精品一区二区三区| 欧美黑人欧美精品刺激| 欧美激情国产日韩精品一区| 国产成人影院久久av| 欧美又色又爽又黄视频| 欧美高清性xxxxhd video| 波多野结衣高清作品| 中国美白少妇内射xxxbb| 最近最新免费中文字幕在线| 91午夜精品亚洲一区二区三区 | 久久人人爽人人爽人人片va| 伊人久久精品亚洲午夜| 久久久色成人| 国产 一区精品| 日本一本二区三区精品| 超碰av人人做人人爽久久| 九九在线视频观看精品| 麻豆精品久久久久久蜜桃| 热99在线观看视频| 真人做人爱边吃奶动态| 性插视频无遮挡在线免费观看| 欧美一区二区精品小视频在线| 婷婷丁香在线五月| 哪里可以看免费的av片| 成人国产综合亚洲| 熟女人妻精品中文字幕| 成人国产麻豆网| a级一级毛片免费在线观看| 免费人成视频x8x8入口观看| 国产爱豆传媒在线观看| 亚洲美女搞黄在线观看 | 啪啪无遮挡十八禁网站| 国产乱人视频| 国产精品久久电影中文字幕| 久久久久久久午夜电影| 欧美最新免费一区二区三区| 狂野欧美白嫩少妇大欣赏| 国产精品av视频在线免费观看| 国产在线男女| 一边摸一边抽搐一进一小说| 国产男靠女视频免费网站| 久久精品国产鲁丝片午夜精品 | 伦理电影大哥的女人| 国产真实乱freesex| 亚洲美女搞黄在线观看 | 久久久久性生活片| 国产精品久久久久久精品电影| 日韩在线高清观看一区二区三区 | 成人国产综合亚洲| 国产成人aa在线观看| 久久这里只有精品中国| 看黄色毛片网站| 久久久久国内视频| 午夜影院日韩av| 国产成人a区在线观看| 校园人妻丝袜中文字幕| 国产高潮美女av| 亚洲男人的天堂狠狠| 亚洲无线在线观看| 又紧又爽又黄一区二区| 最新在线观看一区二区三区| 亚洲自偷自拍三级| 国产中年淑女户外野战色| www.色视频.com| 欧美日本视频| 高清毛片免费观看视频网站| 少妇人妻一区二区三区视频| 中文字幕久久专区| 一个人观看的视频www高清免费观看| 久久精品人妻少妇| 老师上课跳d突然被开到最大视频| 99九九线精品视频在线观看视频| 成年女人看的毛片在线观看| 国产精品久久久久久久久免| 女生性感内裤真人,穿戴方法视频| 国产精品98久久久久久宅男小说| 久久精品国产亚洲网站| 美女高潮喷水抽搐中文字幕| 久久久久国产精品人妻aⅴ院| 日韩 亚洲 欧美在线| 亚洲综合色惰| 欧美日韩国产亚洲二区| 麻豆国产av国片精品| 日本 av在线| 亚洲国产日韩欧美精品在线观看| 一区二区三区免费毛片| 精品久久久久久,| 免费人成在线观看视频色| 欧美成人a在线观看| av中文乱码字幕在线| 成人美女网站在线观看视频| 免费人成视频x8x8入口观看| 婷婷精品国产亚洲av在线| 国产高清三级在线| 欧美zozozo另类| 日日啪夜夜撸| 亚洲在线自拍视频| 少妇猛男粗大的猛烈进出视频 | 亚洲 国产 在线| 老女人水多毛片| 91在线精品国自产拍蜜月| 亚洲 国产 在线| 国产色爽女视频免费观看| 日日干狠狠操夜夜爽| 精品人妻偷拍中文字幕| 国产综合懂色| 久久久久久久精品吃奶| 97碰自拍视频| 亚洲人成网站高清观看| 色播亚洲综合网| 亚洲美女黄片视频| 可以在线观看毛片的网站| 18禁裸乳无遮挡免费网站照片| 亚洲精品成人久久久久久| 18+在线观看网站| 亚洲欧美日韩高清专用| 黄色女人牲交| 日韩国内少妇激情av|