• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Five-year bio-monitoring of aquatic ecosystems near Artigas Antarctic Scientific Base, King George Island

    2015-02-06 07:24:12MarMorelVictoriaBraCeciliaMartnezRosaleslicaCagideSusanaCastroSowinski
    Advances in Polar Science 2015年1期

    María A. Morel, Victoria Bra?a, Cecilia Martínez-Rosales,2, Célica Cagide& Susana Castro-Sowinski,2

    1 Microbiología Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay;

    2 Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay

    1 Introduction

    Throughout evolution, microorganisms have faced environmental pressures to which they have responded by various adaptation mechanisms. Thus, in permanently cold environments such as the Antarctic, a great extremophile microbial diversity has been described[1]. Examples of cold-adapted microorganisms isolated from Antarctic environments are bacteria of the generaPseudomonasandFlavobacterium[2], among many others. Fildes Peninsula in King George Island, Antarctica is a snow-free area during summer. Currently, it has a great concentration of international facilities, which support human activities. The presences of scientific stations and tourism activities have caused an exponential increase in human presence on the continent, affecting the ecosystem. Many human activities in scientific bases located throughout Antarctica have been associated with alteration in, and negative impact on, the environment[3-6].

    The impact of anthropogenic activity is a risk for biological conservation. Invasive alien bacteria introduced in Antarctica as a consequence of the use of the continent’s natural resources have changed the abundance of autochthonous bacteria[7-8]. Native biodiversity is also affected because of the vulnerability and low competitive abilities of indigenous organisms[5]. Many introduced species have survived invading the ecosystem[3-5]. Human activities related to food management, transportation systems[3]and wastewater management[4]are among the anthropogenic activities that introduce alien microbes. In this regard, urgent measures are needed, including environmental impact assessments, longterm monitoring, and regulation from national Antarctic organizations, among others.

    Among the international scientific stations located in Fildes Peninsula, the Artigas Antarctic Scientific Base(62°11′4′′S; 58°51′7′′W) (in Spanish Base Científica Antártica Artigas, BCAA) is administrated by the Uruguayan Antarctic Institute. Many freshwater lakes and ponds can be found in the vicinity of the BCAA. One such is the Uruguay Lake (also known as Profound Lake by the UK-Antarctic Place-Names Committee), a water body located 0.4 km northwest of Jasper Point that is used as a potable water supply by the Uruguayan scientific station. Thus, continuous monitoring of this lake is important in environmental management.

    Water entering the distribution system must be microbiologically safe and should ideally also be biologically stable[9]. Biological stability means that the concentration and composition of the microbial community does not change.In this work, we assessed the biological stability of Uruguay Lake and other freshwater sources near the BCAA by analysis of heterotrophic bacterial plate counts. Heterotrophic bacteria use organic carbon sources to grow and they can be isolated on agar-based medium under conditions of defined incubation temperature and time[10]. In water (where the input of organic matter is important), heterotrophic bacteria play an important role during the decomposition of organic matter, and they are highly affected by abiotic stresses[8]. Heterotrophic bacteria are found in all sources of water, and thus they are important microbiological indicators of water quality[11]. The assessment of heterotrophic populations is a useful tool for monitoring the efficiency of water treatment processes and water quality during distribution and storage.

    Among heterotrophic bacteria, the genusPseudomonasis routinely enumerated during the control of water quality,and is considered a microbial indicator by the World Health Organization (WHO)[12-13].Pseudomonasabundance in water is required information during water analysis because these species are able to inhibit the growth of some other heterotrophic bacteria (such as fecal coliforms).Pseudomonasspp. are also considered opportunistic pathogens when found in drinking water, but there is no clinical or epidemiological evidence to support this affirmation[14].

    In the present work, we investigated the abundance of heterotrophic bacteria and fluorescentPseudomonasspp.over 5 years (2010-2014) in water samples collected near the BCAA, Fildes Peninsula, King George Island, Antarctica. We attempt to correlate bacterial abundance and anthropogenic influence.

    2 Materials and methods

    2.1 Source of samples

    Water samples were collected at various locations near the BCAA during January (austral summer) in consecutive years from 2010 to 2014 (Table 1 and Figure 1). Locations were selected based on their relative anthropogenic impact.The human impact was assessed based on the occurrence of human activities in the area. Uruguay Lake (medium to high human impact) is the water resource of the BCAA where the water pump is located and is a site of high human transit (BCAA personnel activate the pump at least twice a day). Northwest from the Uruguay Lake, three small waterponds are found (low to medium human impact) and they are subjected to low human transit (casual transit of personnel).Finally, the protected area under the Collins Glacier, where meltwater was collected, is far away from the BCAA and other operational bases (low to no human impact). At least three sites were sampled per location (separated by 100 m),and each sampling was performed in triplicate. Coordinates for each site were fixed by GPS.

    Samples were aseptically collected at 10-20 cm from the water surface in sterile tubes and kept at 4°C until processing. Some physical and chemical properties of the water samples (pH, temperature and conductivity)were measuredin situduring sampling. A LaMotte tracer measurement device for direct recording of physical properties of water was used.

    2.2 Bacterial count

    Water samples were filtered through sterile Whatman No. 1 cellulose filter paper (Millipore) and then used for microbiological analysis using a culture dependent approach. Two growth media were used: (1) Tryptic soy broth agar (TSA) plates (0.1% tryptic soy broth and 1.5%agar) for counting total aerobic heterotrophic bacteria; (2)King’s B medium (2% peptone mixture, 0.15% dipotassium phosphate, 0.15% magnesium sulfate, 1% glycerol and 1.5% agar) for fluorescentPseudomonasspp. detection(fluorescence under ultraviolet light)[15]. Colony forming units (CFU) per mL of sample were determined by spreadingserial 10-fold dilutions of samples onto the surfaces of both media (at least in triplicate). Plates were incubated at 4°C for 8 and 20 d for fluorescentPseudomonasspp. and total heterotrophic bacteria, respectively.

    Table 1 Locations of fresh water sampling. Three GPS locations per geographic location were fixed, but the coordinates of only one point are shown

    2.3 Statistical analyses

    Results are the mean of three independent replications. The data were subjected to one-way ANOVA analysis when possible, withpost hocpairwise comparisons based on Tukey’s HSD test, or Kruskal-Wallis one-way analysis of variance, using PAST software version 1.56[16]. Statistical significance was determined atp= 0.05.

    3 Results and discussion

    An overview of results using a non-parametric statistical test shows significant differences in both bacterial populations, i.e.of total heterotrophic bacteria andPseudomonas, between years and between sampled sites (Table 2). The variation in the number of heterotrophic bacteria andPseudomonasspp.in fresh water was in the order of 101(e.g., 104-105mL-1for water-pond samples collected in 2012). Bacterial counts are highly variable and depend on many factors. However,changes in the microbial component of water samples have been studied by quantifying bacterial and viral numbers before, with similar range count variations[17-18].

    Among sampled sites, and despite some statistical differences, the Uruguay Lake was the most consistent site (Table 2), suggesting that the number of heterotrophic bacteria in the lake did not change over the duration of this study. Similar results were obtained when studying the bacterial community in water samples collected inside, and in the vicinity of, the Chinese Great Wall Station, King George Island[19]. However, a comparison among samples from different years showed a remarkable change in the bacterial population of Uruguay Lake in 2013, which decreased with respect to 2011 and 2012, and then increased in 2014.Interestingly, during the summer month of January 2013, the lake was almost totally melted. Changes in physical properties of the water were also evident; in that year the lowest temperature and conductivity in this study were noted (Table 3). The variation in conductivity (24 and 130 μS?cm-1in 2013 and 2014, respectively; Table 3) may indicate a melting process that diluted the bacterial number to a minimum value in 2013, which would explain the lower levels of bacterial populations detected.

    Despite the relative invariability of bacterial population levels in Uruguay Lake, the number of bacteria in water samples collected from the water-ponds (near Uruguay Lake)and from Glacier Collins did change over the years studied(Table 2). The heterotrophic bacterial andPseudomonaspopulations gradually increased until, in 2014, reaching values even higher than those obtained for Uruguay Lake samples.

    Physico-chemical properties of the aquatic ecosystems near the BCAA were also monitored for the 5 years of this study to determine the effects of human activities. Variations in the physico-chemical parameters were observed from site to site and between years (Table 3). This was in agreement with previous work that reported the connection between human activities and physicochemical parameters of water[20].Human activities have a great influence on the pollution of water bodies, and can alter the physical, chemical andbiological nature of the receiving water[21-23]. For example,temperature affects the solubility of oxygen in water and,therefore, the organisms that live there, and biological oxygen demand has been correlated with the cleanliness of water[20].The variations in levels of most of the physico-chemical parameters tested here could be attributed to human activities in the BCAA.

    Table 2 Bacterial counting. The table shows the results from one of three independent experiments. Different superscript letters indicate significant differences among years within each sample site (p < 0.05)

    Table 3 Physical and chemical properties of freshwater in water samples over the years monitored. Values are the average of three measurements. ND means “not determined”

    The physical parameters of fresh water from Uruguay Lake and the water-ponds differed from Glacier Collins samples, which had colder and more alkaline water. The most distinct year was 2013, when a drastic decrease in temperature was registered in the three sites evaluated, and an increase in conductivity was observed in water from Collins Glacier and the water-ponds. These and other parameters (carbon and phosphorous contents, etc) might be involved in the gradual change of cultivable heterotrophic bacterial counts observed during the 5 years monitoring. Heterotrophic bacteria are also abundant in melted ice[24].

    Many Antarctic microbial communities are potentially sensitive to external impacts[25]. Thus, understanding the impact that anthropogenic activities have on these communities is of major relevance. We performed a time course analysis of the cultivable heterotrophic bacterial communities present in three water bodies subjected to different human impacts. Physical (e.g., abrasion, compaction,trampling) and chemical (e.g., eutrophication, fuel spills,waste management) impacts of human beings on Antarctic environments have been considered the most damaging factors that affect this habitat. However, human activities also significantly affect the environment by contamination with non-indigenous microorganisms such as human commensal and fecal microorganisms[25]. Global climate change also has the potential for dramatic impact on these environments(with an increase of 1.09°C per decade during winter and 0.56°C per decade annually), but during the time course of our analysis it may be unwise to assume any climate change effect. However, during the period of our analysis, the human disturbance caused by scientific station personnel may have been among the most significant environmental threats to the Fildes Peninsula, as was stated by Braun et al.[26]when monitoring human impacts on the Antarctic habitat.

    4 Conclusion

    Our results suggest that samples from Uruguay Lake (the most human transited location, where BCAA personnel drive the water pumps every day) have reached a constant heterotrophic bacterial abundance. The human impact on this lake may not have an important influence on incidence in microbial communities in the future if BCAA personnel continue applying protocols for environmental care.However, the water ponds and melt water from Glacier Collins showed an increased heterotrophic bacterial abundance during the time of our study. These areas are being subjected to increasing human influence, and this presence is probably currently shaping their microbial populations.However, these populations may have reached equilibrium,since samples from all locations monitored reached similar CFU?mL-1values in 2014.

    1 Quesada A, Vincent W F. Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. Eur J Phycol, 1997, 32(4): 335-342

    2 Martínez-Rosales C, Castro-Sowinski S. Antartic bacterial isolates that produce cold-active extracellular proteases at low temperature but are active and stable at high temperature. Polar Res, 2011, 30: 7123

    3 Frenot Y, Chown S L, Whinam J, et al. Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev, 2000, 80(1):45-72

    4 Tin T, Fleming Z L, Hughes K A. Impacts of local human activities on the Antarctic environment. Antarct Sci, 2006, 21(1): 3-33, doi:10.1017/S0954102009001722

    5 Convey P, Lebouvier M. Environmental change and human impacts on terrestrial ecosystems of the sub-Antarctic islands between their discovery and the mid-twentieth century. Pap Proc R Soc Tasmania,2009, 143(1): 33-44

    6 Cowan D A, Chown S L, Convey P, et al. Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends Microbiol, 2011, 19(11): 540-548, doi: 10.1016/j.tim.2011.07.008

    7 Vincent W F. Evolutionary origins of Antarctic microbiota: invasion,selection and endemism. Antarct Sci, 2000, 12(3): 374-385

    8 Bastardo A, Bastardo H, Rosales J. Functional diversity of the heterotrophic bacteria in the lower Orinoco river, Venezuela.Ecotropicos, 2007, 20(1): 15-23

    9 World Health Organization (WHO). Guidelines for drinking-water quality: incorporating first addendum. Vol. 1, Recommendations, third ed. Geneva, Switzerland: WHO Press, 2006

    10 Allen M J, Edberg S C, Reasoner D J. Heterotrophic plate count bacteria—what is their significance in drinking water? Int J Food Microbiol, 2004, 92(3): 265- 274

    11 Miravent M E. Abundancia, actividad y diversidad de las bacterias heterótrofas en el Golfo de Batabanó y su uso como indicadoras ambientales. Dissertation, Ministerio de Ciencia, Tecnología y Medio Ambiente, Ciudad Habana, 2003

    12 Martin Delgado M M, Hernández García A M, Felipe Hormigo A M,et al. Analisis microbiologico y fisicoquimico del agua de piscinas de la isla de Tenerife. Rev San Hig Púb, 1992, 66: 281-289

    13 Mora-Alvaradp D A. Evolución de las guías microbiológicas de la OMS para evaluar la calidad del agua para consumo humano:1984-2004. Dissertation, Instituto costarricense de acueductos y alcantarillados, 2005

    14 Marchand E O. Microorganismos indicadores de la calidad del agua de consumo humano en Lima metropolitana. Lima Perú: Universidad Nacional Mayor de San Marcos. Facultad de Ciencias Biológicas,2002

    15 Johnsen K, Nielsen P. Diversity of Pseudomonas strains isolated with King’s B and Gould’s S1 agar determined by repetitive extragenic palindromic-polymerase chain reaction, 16S rDNA sequencing and Fourier transform infrared spectroscopy characterization. FEMS Microbiol Lett, 1999, 173(1): 155-162

    16 Hammer ?, Harper D, Ryan P. PAST: paleontological statistic software package for education and data analysis. Palaeontol Electron,2001, 4: 9

    17 Ruiz G M, Rawlings T K, Dobbs F C, et al. Global spread of microorganisms by ships. Nature, 2000, 408(6808): 49-50

    18 Drake L A, Choi K H, Ruiz G M, et al. Global redistribution of bacterioplankton and virioplankton communities. Biol Invasions,2001, 3(2): 193-199

    19 Xiao X, Li M G, You Z Y, et al. Bacterial communities inside and in the vicinity of the Chinese Great Wall Station, King George Island,Antarctica. Antarct Sci, 2007, 19(1): 11-16

    20 Izonfuo L W A, Bariweni A P. The effect of urban runoff water and human activities on some physic-chemical parameters of the epie creek in the Niger Delta. J Appl Sci Environ Mgt, 2001, 5(1): 47-55

    21 Sangodoin A Y. Groundwater and surface water pollution by open refuse dump in Ibadan, Nigeria. J Discovery Innovations, 1991, 3(1):24-31

    22 Adekunle A S, Eniola I T K. Impact of industrial effluents on quality of segment of Asa River within an industrial estate in Ilorin, Nigeria.NY Sci J, 2008, 1(1): 17-21

    23 Ewa E E, Iwara A I, Adeyemi J A, et al. Impact of industrial activities on water quality of Omoku Creek. Sacha J Environ Studies, 2011,1(2): 8-16

    24 Junge K, Imhoff F, Staley T, et al. Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb Ecol, 2002, 43(3): 315-328, doi:10.1007/s00248-001-1026-4

    25 Cowan D A, Tow L A. Endangered Antarctic environments. Ann Rev Microbiol, 2004, 58: 649-690

    26 Braun C, Mustafa O, Nordt A, et al. Environmental monitoring and management proposals for the Fildes Region, King George Island,Antarctica. Polar Res, 2012, 31: 18206

    国产精品麻豆人妻色哟哟久久| 国产精品欧美亚洲77777| h日本视频在线播放| 亚洲在久久综合| 日韩电影二区| 免费少妇av软件| 狂野欧美激情性bbbbbb| 久久 成人 亚洲| 丰满迷人的少妇在线观看| 少妇的逼好多水| 亚洲怡红院男人天堂| 久久久久久久亚洲中文字幕| 99热6这里只有精品| 少妇人妻精品综合一区二区| 亚洲四区av| 久久精品久久精品一区二区三区| 美女内射精品一级片tv| 欧美xxxx性猛交bbbb| 久久久久久久国产电影| 亚洲欧美成人精品一区二区| av天堂中文字幕网| 欧美日韩在线观看h| 97超视频在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 麻豆成人午夜福利视频| 99久久人妻综合| 乱码一卡2卡4卡精品| 午夜免费男女啪啪视频观看| 精品熟女少妇av免费看| 免费观看a级毛片全部| 一级毛片 在线播放| 我要看日韩黄色一级片| 简卡轻食公司| 少妇精品久久久久久久| 三级经典国产精品| 亚洲美女黄色视频免费看| 日韩大片免费观看网站| 天天躁日日操中文字幕| 免费看av在线观看网站| 高清毛片免费看| 国产深夜福利视频在线观看| 人妻制服诱惑在线中文字幕| 日日啪夜夜撸| 久久国产乱子免费精品| 一区二区av电影网| 最近中文字幕2019免费版| 亚洲av欧美aⅴ国产| 欧美日韩精品成人综合77777| 日韩精品有码人妻一区| 免费人妻精品一区二区三区视频| 国产又色又爽无遮挡免| 婷婷色av中文字幕| 亚洲色图av天堂| 大香蕉97超碰在线| 综合色丁香网| 午夜福利在线观看免费完整高清在| 国产成人a∨麻豆精品| 亚洲欧美一区二区三区黑人 | 九九在线视频观看精品| av专区在线播放| 午夜免费观看性视频| 成人午夜精彩视频在线观看| 成人一区二区视频在线观看| av黄色大香蕉| 亚洲人成网站在线播| 熟妇人妻不卡中文字幕| 精品一品国产午夜福利视频| 成人亚洲欧美一区二区av| 国产黄频视频在线观看| 久久久国产一区二区| 久久97久久精品| 亚洲欧美中文字幕日韩二区| 观看免费一级毛片| 精品国产露脸久久av麻豆| 国产一区二区三区av在线| 自拍欧美九色日韩亚洲蝌蚪91 | av国产久精品久网站免费入址| 在线免费观看不下载黄p国产| 中文在线观看免费www的网站| 欧美激情国产日韩精品一区| freevideosex欧美| 高清av免费在线| 少妇猛男粗大的猛烈进出视频| 久久精品国产亚洲网站| 熟女av电影| 在线天堂最新版资源| 欧美精品人与动牲交sv欧美| 又粗又硬又长又爽又黄的视频| 一级毛片久久久久久久久女| 婷婷色综合www| 亚洲人与动物交配视频| 欧美一级a爱片免费观看看| 久久精品国产亚洲av涩爱| 男女免费视频国产| 菩萨蛮人人尽说江南好唐韦庄| 亚洲高清免费不卡视频| 丝袜喷水一区| 亚洲av欧美aⅴ国产| 亚洲精品国产成人久久av| 免费在线观看成人毛片| 免费大片黄手机在线观看| 精品国产乱码久久久久久小说| 美女福利国产在线 | 91久久精品电影网| 欧美性感艳星| 国产黄色视频一区二区在线观看| 水蜜桃什么品种好| 欧美xxⅹ黑人| 夜夜看夜夜爽夜夜摸| 精华霜和精华液先用哪个| 国产国拍精品亚洲av在线观看| 中文字幕av成人在线电影| 久久精品人妻少妇| 91久久精品电影网| 国产亚洲5aaaaa淫片| 欧美精品一区二区免费开放| 免费播放大片免费观看视频在线观看| 九九久久精品国产亚洲av麻豆| 亚洲av.av天堂| 身体一侧抽搐| 大话2 男鬼变身卡| 婷婷色麻豆天堂久久| 亚洲欧美日韩无卡精品| 国内揄拍国产精品人妻在线| 亚洲综合色惰| 国产国拍精品亚洲av在线观看| 久久ye,这里只有精品| 亚洲精品久久午夜乱码| 国产成人a∨麻豆精品| 毛片女人毛片| 亚洲人与动物交配视频| 纯流量卡能插随身wifi吗| 热re99久久精品国产66热6| 美女视频免费永久观看网站| a 毛片基地| 国产 精品1| 水蜜桃什么品种好| 嘟嘟电影网在线观看| 高清毛片免费看| 精品亚洲成国产av| 男女无遮挡免费网站观看| 国产伦精品一区二区三区四那| 久久久久久人妻| 国产精品一二三区在线看| 亚洲成人一二三区av| 亚洲图色成人| av线在线观看网站| 成人高潮视频无遮挡免费网站| 国产精品国产三级专区第一集| 国产精品人妻久久久影院| 婷婷色综合www| 国产高清三级在线| 国产av国产精品国产| 一级a做视频免费观看| 啦啦啦在线观看免费高清www| 亚洲国产最新在线播放| 久久午夜福利片| 久久精品久久精品一区二区三区| 日韩中字成人| 一本色道久久久久久精品综合| 最近最新中文字幕免费大全7| xxx大片免费视频| 丰满人妻一区二区三区视频av| 成人午夜精彩视频在线观看| 蜜桃在线观看..| 联通29元200g的流量卡| 亚洲三级黄色毛片| 小蜜桃在线观看免费完整版高清| 午夜福利在线观看免费完整高清在| 日日啪夜夜撸| 观看av在线不卡| 观看av在线不卡| 国产精品人妻久久久影院| 亚洲国产精品一区三区| 亚洲成人手机| 国产综合精华液| a级毛片免费高清观看在线播放| 在线观看国产h片| 欧美成人一区二区免费高清观看| 老司机影院成人| 18禁动态无遮挡网站| 又爽又黄a免费视频| 久热这里只有精品99| 欧美+日韩+精品| 夜夜看夜夜爽夜夜摸| 汤姆久久久久久久影院中文字幕| 少妇被粗大猛烈的视频| 国产男人的电影天堂91| 久久99热这里只频精品6学生| 亚洲av免费高清在线观看| 欧美3d第一页| 亚洲怡红院男人天堂| 女的被弄到高潮叫床怎么办| 一区二区三区四区激情视频| 国产免费一级a男人的天堂| 内地一区二区视频在线| a级毛色黄片| 亚洲婷婷狠狠爱综合网| 日韩一本色道免费dvd| 久久久精品免费免费高清| 97精品久久久久久久久久精品| 国产乱来视频区| 国产在线一区二区三区精| 18+在线观看网站| 国产精品.久久久| 边亲边吃奶的免费视频| 一区在线观看完整版| 一本—道久久a久久精品蜜桃钙片| 在线观看三级黄色| av在线播放精品| 插阴视频在线观看视频| 午夜福利影视在线免费观看| 午夜激情福利司机影院| 晚上一个人看的免费电影| 中文字幕免费在线视频6| 国产色爽女视频免费观看| 亚洲精品一二三| 国产精品不卡视频一区二区| 亚洲丝袜综合中文字幕| 日韩av在线免费看完整版不卡| 国产免费一级a男人的天堂| 欧美精品一区二区大全| 免费观看在线日韩| 欧美高清成人免费视频www| 99热全是精品| 亚洲四区av| 少妇精品久久久久久久| 久久久欧美国产精品| 久久精品国产亚洲av天美| 下体分泌物呈黄色| 蜜桃久久精品国产亚洲av| 国产深夜福利视频在线观看| 亚洲国产毛片av蜜桃av| 国产白丝娇喘喷水9色精品| 久久精品国产自在天天线| av在线播放精品| av不卡在线播放| 99热这里只有精品一区| 中文资源天堂在线| 大陆偷拍与自拍| 五月玫瑰六月丁香| 亚洲欧美中文字幕日韩二区| 日韩视频在线欧美| 人妻夜夜爽99麻豆av| 国国产精品蜜臀av免费| 国产中年淑女户外野战色| 国产探花极品一区二区| 亚洲欧美成人综合另类久久久| 一本久久精品| 一级毛片aaaaaa免费看小| 一区在线观看完整版| 久久99热6这里只有精品| 99精国产麻豆久久婷婷| 人人妻人人添人人爽欧美一区卜 | 欧美日韩一区二区视频在线观看视频在线| 日日摸夜夜添夜夜爱| av视频免费观看在线观看| 七月丁香在线播放| 国产91av在线免费观看| 亚洲美女黄色视频免费看| 男人爽女人下面视频在线观看| 日韩国内少妇激情av| 亚洲国产精品专区欧美| 成人漫画全彩无遮挡| 国产综合精华液| 久久精品久久精品一区二区三区| av女优亚洲男人天堂| 国产淫片久久久久久久久| 51国产日韩欧美| 免费看av在线观看网站| 国产午夜精品一二区理论片| 免费看不卡的av| 在线精品无人区一区二区三 | 精品少妇久久久久久888优播| 国产亚洲精品久久久com| 亚洲av在线观看美女高潮| 肉色欧美久久久久久久蜜桃| 国产成人精品婷婷| 少妇人妻精品综合一区二区| 熟女av电影| 日本色播在线视频| 王馨瑶露胸无遮挡在线观看| 又爽又黄a免费视频| 纵有疾风起免费观看全集完整版| 成人影院久久| 亚洲国产成人一精品久久久| 高清午夜精品一区二区三区| 有码 亚洲区| 成人二区视频| h日本视频在线播放| 成人国产av品久久久| 亚洲中文av在线| 噜噜噜噜噜久久久久久91| 精品一区二区三卡| 国产欧美另类精品又又久久亚洲欧美| 99久久人妻综合| av国产免费在线观看| 久久精品国产亚洲网站| freevideosex欧美| 久久人人爽人人片av| 午夜福利在线观看免费完整高清在| 99久久综合免费| 亚洲第一av免费看| 街头女战士在线观看网站| 亚洲精品国产成人久久av| 久久久久人妻精品一区果冻| 狂野欧美激情性xxxx在线观看| 国产成人精品婷婷| 精品久久久久久久久av| 亚洲欧洲日产国产| 国产在视频线精品| 久久精品夜色国产| 国产在线一区二区三区精| 久久亚洲国产成人精品v| 午夜福利在线观看免费完整高清在| 高清日韩中文字幕在线| 久久久久精品性色| 欧美高清成人免费视频www| 最黄视频免费看| 国产欧美亚洲国产| 精品人妻偷拍中文字幕| 国产一区二区在线观看日韩| 国产精品女同一区二区软件| 纯流量卡能插随身wifi吗| 99精国产麻豆久久婷婷| a级毛片免费高清观看在线播放| 国产91av在线免费观看| av在线蜜桃| 嫩草影院新地址| 国产亚洲av片在线观看秒播厂| 国产永久视频网站| 黄色怎么调成土黄色| 丝瓜视频免费看黄片| 亚洲激情五月婷婷啪啪| 国产精品久久久久久av不卡| 青春草视频在线免费观看| 亚洲激情五月婷婷啪啪| 国产成人免费无遮挡视频| 久久这里有精品视频免费| 免费播放大片免费观看视频在线观看| 黄色视频在线播放观看不卡| 亚洲中文av在线| 五月玫瑰六月丁香| 蜜桃久久精品国产亚洲av| 日韩中字成人| 久热久热在线精品观看| 亚洲欧美精品专区久久| 香蕉精品网在线| 国产黄频视频在线观看| 久热久热在线精品观看| 最新中文字幕久久久久| 内地一区二区视频在线| 亚洲国产精品专区欧美| 少妇精品久久久久久久| 一级片'在线观看视频| 少妇精品久久久久久久| 日韩av免费高清视频| 国产淫语在线视频| 夫妻午夜视频| 中文资源天堂在线| 亚洲精品久久午夜乱码| 国产白丝娇喘喷水9色精品| 一二三四中文在线观看免费高清| 伦理电影大哥的女人| 卡戴珊不雅视频在线播放| 大香蕉久久网| 丰满少妇做爰视频| 国产有黄有色有爽视频| 久久久色成人| 中文天堂在线官网| 久久久久性生活片| 亚洲欧美日韩无卡精品| 国产91av在线免费观看| 欧美精品一区二区免费开放| 国产精品久久久久久久久免| 搡女人真爽免费视频火全软件| 欧美高清性xxxxhd video| 亚洲美女视频黄频| 亚洲精品乱码久久久v下载方式| 日韩精品有码人妻一区| 精品亚洲成国产av| 2018国产大陆天天弄谢| 亚洲精华国产精华液的使用体验| 天美传媒精品一区二区| 精品酒店卫生间| 久久韩国三级中文字幕| 全区人妻精品视频| 中文乱码字字幕精品一区二区三区| 亚洲欧美精品自产自拍| 亚洲人与动物交配视频| 亚洲美女黄色视频免费看| 国产精品久久久久久久久免| 国产伦精品一区二区三区视频9| 国产在线一区二区三区精| 国产精品一及| 久久国产精品男人的天堂亚洲 | tube8黄色片| 777米奇影视久久| 欧美xxxx性猛交bbbb| 亚洲av二区三区四区| 啦啦啦视频在线资源免费观看| 精品酒店卫生间| 美女内射精品一级片tv| 日本黄大片高清| 人妻少妇偷人精品九色| 免费人妻精品一区二区三区视频| 欧美成人精品欧美一级黄| 免费播放大片免费观看视频在线观看| 国产 一区 欧美 日韩| 亚洲国产欧美在线一区| 成人午夜精彩视频在线观看| 亚洲av电影在线观看一区二区三区| 欧美日本视频| 国精品久久久久久国模美| 亚洲中文av在线| 亚洲国产最新在线播放| 日韩欧美 国产精品| 国产人妻一区二区三区在| 日韩一本色道免费dvd| 久久久久性生活片| 26uuu在线亚洲综合色| 免费黄网站久久成人精品| 免费播放大片免费观看视频在线观看| 免费黄频网站在线观看国产| 大片电影免费在线观看免费| 国产淫语在线视频| 一级毛片久久久久久久久女| 亚洲av二区三区四区| 夜夜骑夜夜射夜夜干| 国产免费一级a男人的天堂| 五月天丁香电影| 亚洲av国产av综合av卡| 亚洲av不卡在线观看| 久久99热这里只有精品18| 国产精品麻豆人妻色哟哟久久| 色哟哟·www| 国产成人一区二区在线| 亚洲aⅴ乱码一区二区在线播放| 亚洲成人av在线免费| 在现免费观看毛片| 只有这里有精品99| 久久精品国产亚洲av天美| 黑人高潮一二区| 赤兔流量卡办理| 黄色怎么调成土黄色| 亚洲av二区三区四区| 99久国产av精品国产电影| 交换朋友夫妻互换小说| 成人二区视频| 成人黄色视频免费在线看| 亚洲精品日本国产第一区| 成人二区视频| av专区在线播放| 99久久精品热视频| 熟妇人妻不卡中文字幕| 国产午夜精品久久久久久一区二区三区| 国产精品久久久久成人av| 一个人看视频在线观看www免费| 免费不卡的大黄色大毛片视频在线观看| 久久久久久久大尺度免费视频| av在线观看视频网站免费| 狂野欧美白嫩少妇大欣赏| 一级毛片黄色毛片免费观看视频| av网站免费在线观看视频| 18禁裸乳无遮挡免费网站照片| 两个人的视频大全免费| a级毛色黄片| 免费播放大片免费观看视频在线观看| 欧美一级a爱片免费观看看| 国产精品爽爽va在线观看网站| 伊人久久精品亚洲午夜| 我要看黄色一级片免费的| 91午夜精品亚洲一区二区三区| 国产精品久久久久久精品古装| 亚洲美女视频黄频| 欧美日韩亚洲高清精品| 1000部很黄的大片| 国产精品无大码| 激情五月婷婷亚洲| 国产成人精品一,二区| 99久久中文字幕三级久久日本| 欧美成人精品欧美一级黄| 欧美日韩在线观看h| 国产 精品1| 日本黄大片高清| 国精品久久久久久国模美| 91狼人影院| 亚洲国产精品一区三区| 亚洲在久久综合| 亚洲va在线va天堂va国产| 午夜福利高清视频| 欧美成人精品欧美一级黄| 一本色道久久久久久精品综合| 国产成人午夜福利电影在线观看| 欧美成人a在线观看| 日韩欧美 国产精品| 国产一级毛片在线| 日韩中文字幕视频在线看片 | 国产男女内射视频| www.av在线官网国产| 国产精品嫩草影院av在线观看| 国产精品福利在线免费观看| av在线app专区| 91久久精品国产一区二区三区| 久久鲁丝午夜福利片| 男人和女人高潮做爰伦理| 黄片无遮挡物在线观看| av在线老鸭窝| 超碰av人人做人人爽久久| 欧美日韩综合久久久久久| 少妇 在线观看| 搡女人真爽免费视频火全软件| 国产欧美日韩精品一区二区| 亚洲aⅴ乱码一区二区在线播放| 成人毛片60女人毛片免费| 如何舔出高潮| 高清av免费在线| 亚洲欧美日韩东京热| 国产精品嫩草影院av在线观看| 国产一区二区三区av在线| 亚洲人成网站高清观看| 天堂8中文在线网| 熟女电影av网| 欧美3d第一页| av又黄又爽大尺度在线免费看| 人人妻人人爽人人添夜夜欢视频 | 国产乱来视频区| 亚洲综合色惰| 久久亚洲国产成人精品v| 午夜老司机福利剧场| freevideosex欧美| av黄色大香蕉| 99九九线精品视频在线观看视频| 你懂的网址亚洲精品在线观看| a级毛色黄片| 日韩大片免费观看网站| 国产精品99久久久久久久久| 毛片女人毛片| 五月伊人婷婷丁香| 秋霞伦理黄片| 天天躁日日操中文字幕| 日日啪夜夜撸| 丝袜喷水一区| 日本爱情动作片www.在线观看| 国产精品一区二区性色av| 久久久久久久大尺度免费视频| 日韩av免费高清视频| 女性生殖器流出的白浆| 少妇人妻精品综合一区二区| 亚洲av男天堂| 欧美激情国产日韩精品一区| 亚洲精品日本国产第一区| 精品国产乱码久久久久久小说| 成人综合一区亚洲| 一区二区三区四区激情视频| 天堂中文最新版在线下载| 欧美成人精品欧美一级黄| 一级a做视频免费观看| 亚洲经典国产精华液单| 少妇人妻精品综合一区二区| 我的女老师完整版在线观看| 99re6热这里在线精品视频| 精品久久久精品久久久| 我的老师免费观看完整版| 97精品久久久久久久久久精品| 国产91av在线免费观看| 精品久久久久久久久亚洲| 丝瓜视频免费看黄片| 一本—道久久a久久精品蜜桃钙片| 国产成人精品一,二区| 免费不卡的大黄色大毛片视频在线观看| 久久精品熟女亚洲av麻豆精品| 女人十人毛片免费观看3o分钟| 天天躁夜夜躁狠狠久久av| 老熟女久久久| 超碰av人人做人人爽久久| 两个人的视频大全免费| av线在线观看网站| 夫妻午夜视频| 国产精品一区二区在线观看99| 日韩一区二区三区影片| 18禁裸乳无遮挡动漫免费视频| 日本黄色日本黄色录像| 狂野欧美激情性bbbbbb| 成人国产av品久久久| 97超视频在线观看视频| 亚洲国产日韩一区二区| 少妇 在线观看| 久久久久视频综合| 亚洲中文av在线| 麻豆精品久久久久久蜜桃| 国产精品人妻久久久影院| 大香蕉久久网| 亚洲精品日本国产第一区| 欧美精品一区二区免费开放| 国产日韩欧美亚洲二区| 夫妻午夜视频| 免费看光身美女| 一区二区三区免费毛片| 国产精品99久久久久久久久| 深爱激情五月婷婷| 人体艺术视频欧美日本| a 毛片基地| 街头女战士在线观看网站| 内地一区二区视频在线| 久久人人爽人人爽人人片va| 狠狠精品人妻久久久久久综合| 22中文网久久字幕| 亚洲精品国产av蜜桃| 国产亚洲午夜精品一区二区久久| 人妻一区二区av| 国产成人免费无遮挡视频| 永久免费av网站大全| 成年免费大片在线观看| 美女主播在线视频|