• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterizing proteases in an Antarctic Janthinobacterium sp. isolate: Evidence of a protease horizontal gene transfer event

    2015-02-06 07:24:11CeciliaMartinezRosalesJuanJosMarizcurrenaAndrIriarteNataliaFullanactorMustoSusanaCastroSowinski
    Advances in Polar Science 2015年1期

    Cecilia Martinez-Rosales, Juan José Marizcurrena, Andrés Iriarte,Natalia Fullana, Héctor Musto & Susana Castro-Sowinski,2*

    1 Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República (UdelaR), Igua 4225,11400, Montevideo, Uruguay;

    2 Microbiología Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE). Av Italia 3318, 11600,Montevideo, Uruguay;

    3 Dpto de Bioquímica y Genómica Microbiana and Dpto de Genómica (IIBCE);

    4 Dpto de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, UdelaR;

    5 Laboratorio de Organización y Evolución del Genoma, Facultad de Ciencias, UdelaR

    1 Introduction

    Bacteria belonging to the genusJanthinobacteriumare Gramnegative Betaproteobacteria (order Burkholderiales, family Oxalobacteraceae), commonly found in soil and water, and in a variety of foods where they cause food spoilage[1]. Two species (J. agaricidamnosumandJ. lividum) and many strains have been described.Janthinobacteriumstrains have been isolated from temperate environments, but many Arctic and Antarctic cold-tolerant isolates have also been reported[2-5].

    The production of extracellular hydrolytic enzymes by isolates of this genus has been reported,e.g. production of chitinase[6],β-agarase[7], and chitosanase[8]. However, the production of extracellular proteases byJanthinobacteriumstrains is quite rare[1], in spite of reports to the contrary by Dainty et al.[9], Bach et al.[10], and Tomova et al.[11]. Proteases are ubiquitous endo- and exo-peptidases that catalyze the hydrolytic breakdown of proteins into peptides or amino acids. They are classified into families based on significant similarity in amino acid sequence, with each family identified by a letter representing the catalytic type (A, aspartic; C,cysteine; G, glutamic; M, metallo; N, asparagine; S, serine; T,threonine; U, unknown), and subfamilies based on evidence of very ancient evolutionary divergence.

    Proteases have many industrial applications, and have been recognized as a key step in the degradation and utilization of proteinaceous polymers by bacteria[12-14].Major interest exists in finding novel proteolytic enzymes with new properties, such as high performance at lowtemperature, because of potential industrial applications.Many investigators have isolated proteolytic bacteria from extremely cold environments and the proteases have been characterized[15-17]. For an interesting review of proteases from psychrotrophs, see Kasana[14].

    We reported previously the isolation ofPseudomonasandFlavobacteriumstrains that produce extracellular coldactive proteases, from water samples collected at Fildes Peninsula (King George Island, South Shetlands, Antarctica)[17].Our current work aims to analyze the occurrence of serineproteases in the cold-tolerantJanthinobacteriumsp. AU11 isolate. Serine proteases are among the most important enzymes with industrial applications. During this work we found evidence that AU11 most likely acquired a serineprotease gene by horizontal gene transfer (HGT) from a cyanobacterium. Given this hypothesis, we discuss the relevance of a protease-HGT event in the Antarctic environment.

    2 Materials and methods

    2.1 Isolation and identification of an extracellular protease-producing bacterium

    An extracellular protease-producing bacterium was isolated from a water sample collected from Lake Uruguay (near the Uruguayan Antarctic Scientific Base; 62°11′4″S, 58°51′7″W;King George Island, South Shetlands), and identified by sequencing a 1 500 bp 16S rDNA fragment as described by Martinez-Rosales and Castro-Sowinski[17].

    2.2 Growth rate and protease production

    The ability of AU11 to grow and produce extracellular proteases at different temperatures (4°C, 18°C, and 30°C) was analyzed in Luria-Bertani (LB; 10 g?L-1tryptone, 5 g?L-1yeast extract, 10 g?L-1NaCl) and MM (5% LB and 5% skim milk) liquid medium, as described by Martinez-Rosales and Castro-Sowinski[17]. Proteolytic activity was determined in the cell-free supernatant of MM grown cells, using azocasein as a substrate[18], when clarification of the medium (milk coagulation) was evident. Cell-free supernatant was obtained after centrifugation and filtration (0.45 μm Millipore filters)of grown culture medium. One unit of enzyme activity (U)was defined as the amount of cell-free supernatant required to increase absorbance by one unit at 340 nm under the assay conditions.

    2.3 Zymography and serine protease inhibitor effects on extracellular protease activity

    Protease profiles were analyzed using zymogram gels with gelatin as the copolymerized substrate and 8% acrylamide as the resolving gel (5% for the stacking gel). Cell-free supernatant samples were obtained after clarification of the MM medium at 4°C. In parallel, zymograms were run with copolymerized gels supplemented with 2 mM phenylmethilesulfonyl fluoride (PMSF; serine protease inhibitor). Methods were as described by Martinez-Rosales and Castro-Sowinski[17].

    2.4 Extracellular protease identification via proteomics

    Cell-free supernatant of MM grown cells was used to identify the extracellular protease by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS). The cell-free supernatant was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDSPAGE) (12% acrylamide for the resolving gel and 5% for the stacking gel), and then the proteins were visualized by Coomassie staining. In-gel digestion and MALDI-ToF MS of the prominent band was done as described by Pi?eyro et al.[19]in the Analytical Biochemistry and Proteomics Unit of the Institute Pasteur (Montevideo, Uruguay). The protein was identified by database searching at NCBI (National Center for Biotechnology Information; http://www.ncbi.nlm.nih.gov[20]) with peptide m/z values (mass divided by charge)using the MASCOT software (www.matrixscience.com[21]).

    2.5 Amplification of protease genes

    Genomic DNA was extracted using the phenol-chloroform procedure described by Sambrook et al.[22]and used as template for the Polymerase Chain Reaction (PCR). For protease gene amplification the consensus-degenerate hybrid primers designed by Acevedo et al.[23](B2F: 5′GGC CAC GGC ACC CAY GTB GCS GG 3′ and B2R: 5′CGT GAG GGG TGG CCA TRS WDG T 3′) were used. Then,specific primers (PROTJF: 5′GGT TTG ATC CTG CCC ATC TTT GC 3′ and PROTJR: 5′CAG TTG CTG TTG GGC ATG GGA G 3′) were designed and used to amplify the protease gene fragment. The entire coding sequence(CDS) and genomic context was obtained by inverse PCR(iPCR) using the outward primers OUT1 (5′GC AAA GAT GGG CAG GAT CAA ACC 3′) and OUT2 (5′TCC CAT GCC CAA CAG CAA CTG 3′) (both primers are the reverse complement of specific primers PROTJF and PROTJR).Purified PCR products were cloned into the pTZ57R/T vector (InsTAclone PCR Cloning Kit; Thermo Scientific),and sequenced by Macrogen Inc. (http://www.macrogen.com/; Korea) using the dideoxy chain-termination method.DNA sequences were analyzed using BLASTx and BLASTn searches at the NCBI web site (http://www.ncbi.nlm.nih.gov/[20]) and at the peptidase database MEROPS (http://merops.sanger.ac.uk/[24]). The nucleotide sequence for the amplified serine protease was named JSP8A.

    2.6 Phylogenetic affiliation of the protease (JSP8A)from AU11

    BLASTp was used to search for protein sequences homologous to JSP8A in the NCBI and MEROPS databases.Only sequences with a minimum identity of 28% and higher were considered. Multiple sequence alignments were created with MUSCLE software[25]. The LG+G model was inferred as the most probable model by means of the “modelgenerator”program[26]. A phylogenetic tree was inferred using the maximum likelihood method with Phyml version 3.0[25],and five random starting trees. The default Shimodaira-Hasegawa-like (SH-like) test[27]was used to evaluate branch supports.

    2.7 Analysis of putative horizontal gene transfer events in Janthinobacterium

    Putative HGT events inJanthinobacteriumsp. strain Marseille(the only strain of the genus with a complete genome available at the moment) were investigated comparing the species tree (based on 16S rDNA; data not shown) and the homologous gene tree. Each gene inJanthinobacteriumsp. strain Marseille was ‘blasted’ against all completely sequenced bacterial genomes available as of this writing.Following the coverage and identity criteria described above,up to 20 homologous genes were selected for each gene. A phylogenetic tree for each set of homologous proteins and the 16S rDNA were inferred using the maximum likelihood method as implemented in Phyml version 3.0[28]. The default SH-like test was used to evaluate branch supports.Phylogenetic reconstruction was made with an amino acid LG+G model for homologous proteins and with a nucleotide GTR+G model for the 16S rDNA. Ranger-DTLsoftware[29]was used to compare the homology-based 16S and protein sequence phylogenetic trees. Results were confirmed by visual inspection.

    2.8 GenBank accession numbers

    The partial 16S rDNA and protease gene sequences of AU11 were deposited in the GenBank database and the following accession numbers were assigned: JN416568 and JN416569 for the 16S rDNA and the protease JSP8A gene, respectively.

    3 Results

    A cold-active extracellular protease producing bacterium(AU11) was isolated based on its ability to clarify MM-agar around the colonies at 4°C, indicating caseinolytic activity. AU11 was identified by sequencing of a 16S rDNA gene fragment. The isolate had 100% 16S rDNA identity,excluding gaps, with several polarJanthinobacteriumlividumstrains (KF993615 and HQ824865, among others). The isolate was designatedJanthinobacteriumsp. AU11 awaiting conclusive identification through a polyphasic approach.

    Bacterial growth at different temperatures (30°C,18°C and 4°C) was monitored in LB liquid medium. AU11 was able to grow at all the tested temperatures, showing a doubling-time of 3, 2, and 15 h at 30°C, 18°C and 4°C,respectively (data not shown). Independent of the growth temperature, the isolate always reached a similar optical density (OD) at stationary phase (0.75 ± 0.5 OD).

    Proteolytic activity was evident after reaching the stationary phase in liquid medium by coagulation of milk proteins and clarification of the milky white MM medium at 18°C and 4°C. At this point, extracellular proteolytic activity was 1.20 ± 0.02 and 1.39 ± 0.01 U?mL-1of cell-free cultures,respectively. Although growth was detected (measured by counting colony forming units CFU), coagulation and proteolytic activity were not detected in liquid cultures of AU11 at 30°C, even after two weeks of incubation.

    To analyze whether AU11 produces different extracellular proteases, zymography was performed as described above (data not shown). The analysis revealed the presence of only one band with activity (hydrolysis of gelatin). Zymograms were also created adding PMSF (an inhibitor of serine-proteases) to the polyacrylamide gels,and results showed a decrease in band intensity. The results suggested that AU11 produces a single extracellular protease,potentially inhibited by PMSF.

    The extracellular protease (ExPAU11) produced in MM medium was identified by SDS-PAGE (Figure 1a)and subsequent analysis by MALDI ToF-MS (Figure 1b).ExPAU11 is a 49 kDa protein highly similar to an alkalineprotease and a Zn-dependent metallo-serralysin like-AprX protease, both fromPseudomonas fluorescens(Acc.AAC38255 and ABY65932, respectively).

    In a second approach addressed to identify protease genes,degenerate primers designed from consensus sequences[23]were used in PCR reactions using AU11 DNA as the template. An amplification fragment of approximately 500 bp was obtained.The nucleotide sequence was analyzed using BLASTx, and revealed high identity (62%) to the subtilisin peptidase S8 family in cyanobacteria,e.g.Planktothrix agardhii(Acc.4H6W_A),Microcystis aeruginosa(Acc. WP_002792090.1),Nodularia spumigena(Acc. WP_006196081.1), andCalothrix parietina(Acc. WP_015197715.1).

    Outward specific primers were also designed and used to identify the complete CDS by iPCR. The CDS belongs to the subfamily 8A of serine proteases, with the subtilisin named Carlsberg being the model protease of the subfamily.The sequence was named JSP8A.

    JSP8A is a 620 amino acid protein similar to the S8/S53 subtilisin kexin sedolisins cyanobacterial proteases,includingCalothrixsp. PCC 6303 (50% identity, 80% query coverage; Acc YP_007137041),Cylindrospermum stagnale(48% identity, 80% query coverage; Acc YP_007146141),andGloeocapsasp. PCC 7428 (50% identity, 80% query coverage; Acc YP_007130541). BLAST analyses at MEROPS showed that JSP8A could belong to the S8/S53 subtilisin kexin sedolisin family (by PFAM search[30]), or to the cyanobactin maturation protease PatA/PatG family (by TIGRFAM search; http://www.jcvi.org/cgi-bin/tigrfams/index.cgi). The active site of the subtilisin-like clan of proteases contains a catalytic triad with the amino acid order Asp, His, Ser.

    In addition to the JSP8A gene, the flanking regions were also sequenced, eventually yielding 3 600 bp that include the protease gene flanked by intergenic regions and two Asp/Glu racemases with 69%-70% identity to many burkholderial racemases (Figure 2).

    A phylogenetic tree of the AU11 JSP8A protease along with those most closely related bacterial protein sequences is shown in Figure 3. JSP8A clusters with S8A subtilisin sequences from different cyanobacteria, and is clearly separated from S8A bacterial sequences of other phyla(including its own). This strongly suggests an HGT event of the JSP8A gene from a cyanobacterium toJanthinobacteriumsp. AU11 (Betaproteobacteria).

    A closer study of the phylogeny also suggests that an earlier HGT event may have occurred from an Alphaproteobacterium to a cyanobacterium (Figure 3).Considering the lack of a strong phylogenetic signal at some nodes, as reflected by the SH-like test values, it is premature to speculate on early HGT events; however, this phenomenon may be considered a reasonable explanation for the observed patterns. Furthermore, among all available completely sequenced genomes from the order Burkholderiales, including the closely relatedJanthinobacteriumsp. strain Marseille andHerminiimonas arsenicoxydans, no significantly similar sequences to JSP8A (with an identity > 40%) were found. This result further supports the hypothesis thatJanthinobacteriumsp. AU11 acquired JSP8A through an HGT event.

    With these results on hand, we addressed the following question: how frequent are the HGT events, in particular protease-gene transfer, inJanthinobacerium? First, we studied the distribution of protease and non-protease homologous proteins in the genome of members of the familyOxalobacteraceae. The result showed that despite obvious variations in the number of proteases per genome, the relative frequency of each family and subfamily had remained remarkably stable among all analyzed microorganisms(Supplementary Figure 1S), suggesting a similar pattern of proteases among the members ofOxalobacteraceae(high correlation among distribution of subfamilies; 0.56 <r2<0.87). This result validated the use ofJanthinobacteriumsp.Marseille as reference instead of AU11 genome. In addition,results showed that S8A subtilisins-like proteases appeared underrepresented, suggesting that the acquisition of a S8A protease might have an important impact on protease genomic composition.

    A closer analysis ofJanthinobacteriumsp. Marseille genome showed 270 putative events of HGT (8% total gene content). Interestingly, only 9 out of 270 corresponded to proteases (four genes) or non-protease homologous (five genes) genes (Supplementary Table 1s), suggesting a low frequency of protease-gene transfer in this genus. Indeed, only the gamma-glutamyltranspeptidase 2 might represent a recent gene acquisition of this species.

    4 Discussion

    We isolated a cold-adapted, extracellular-protease producingJanthinobacteriumstrain (AU11), which probably acquired a serine protease-gene by HGT from a cyanobacterium.

    Using a proteomic approach, we demonstrated that AU11 produces a single alkaline metallo-protease that is active and stable at 4°C and 30°C, when grown either at 4°C or 18°C (production was not detected at 30°C), as reported for a Zn-dependent metallo-protease inFlavobacterium psychrophilum[31]. Antarctic bacterial isolates that produce thermo-stable extracellular proteases when growing in a skim milk supplemented liquid medium have been previously identified[32-33].

    Interestingly, during the identification of AU11 protease genes by PCR, a CDS with high identity to cyanobacterial subtilisin peptidases belonging to the S8 family (subfamily S8A) was found, suggesting an event of protease-gene transfer. The genetic organization around this protease gene also suggests that an HGT event was involved in JSP8A acquisition. The presence of direct repeats in intergenic regions IR1 and IR3, and the duplication of racemase genes also reinforce the HGT hypothesis. Racemases are enzymes involved in amino acid transport and metabolism. They transform L-amino acids to D-amino acids by racemization[34].Bacterial D-amino acids serve important functions as building blocks of peptidoglycan (PG), teichoic acids, and poly-gamaglutamate biopolymers. PG is the major component of the bacterial cell wall, and D-amino acids play a major role in the alteration of PG structure and synthesis. D-amino acids also act as a modulator of bacterial growth and persistence, and their incorporation into PG is involved in bacterial adjustment to changes in environmental conditions[34]. Our bioinformatics analysis suggests that this is a rare event of protease-gene transfer inJanthinobacterium(Figure 1, Supplementary Table 1s).

    Members of the S8 family, such as JSP8A, are proteases involved in nutrition. Thus, our result opens a discussion of the relevance of lateral transfer events of nutritionally involved genes, such as hydrolytic enzymes, in extreme environments. Additionally, the subtilisin peptidase was transferred adjacent to a racemase, in an event that probably duplicated the racemase gene. This proximity, proteaseracemase, might contribute to bacterial fitness in a cold and oligotrophic environment like the Antarctic lakes. The upregulation of Asp/Glu racemase genes as part of the coldadaptation repertoire has been previously reported[35]. In a possible scenario, L-amino acids hydrolyzed by JSP8A protease (and its homologues), are then available to be racemized to D-amino acids, which can then be incorporated into PG, perhaps an overall cold-adaptation of bacterial membranes, thatJanthinobacteriumAU11 was able to acquire and retain.

    HGT events are common in the lifestyle of prokaryotes,and an important force driving genomic evolution in the microbial world[33]. Environmental conditions on the Antarctic continent are severe, and its habitats are regarded as ecosystems of low productivity because of their oligotrophy and the low temperatures to which they are exposed.Although the environment is inhospitable, it contains a highly diverse microbial population[36]. Cyanobacterial mats are a major feature of water bodies, and are a well-established endemic microbiota of Antarctica[37]. Therefore, the exchange of genetic material from cyanobacteria to other bacteria is quite feasible. Slimy substances secreted by cyanobacterial mats hold them together and create different internal chemical environments. In this situation, similar to a microbial biofilm,HGT is favored and gene-exchange between microorganisms constitutes a major factor in their genetic adaptation and evolution[38].

    Gene exchange among organisms in extremely cold environments has been reported by some authors[33,39]. In this work we present evidence that suggests a proteasegene transfer may have occurred from a cyanobacterium toJanthinobacteriumAU11 in an extreme environment. In addition to virulence factors such as toxins, transport systems,adhesins, and antibiotic-resistance factors, the dissemination of protease sequences (involved in pathogenesis) has been reported[40-41]. However, it is very likely that the acquisition of the protease gene, shown during this work, plays a role in fitness and low temperature adaptation. During the Antarctic winter, the level of energy supplies decreases dramatically, but during the summer season, when biological C- and N- fixation rates are maximal, carbon and nitrogen supplies increase.In this situation the acquisition of an important metabolic trait, such as the hydrolysis of proteins to amino acids and oligopeptides, contributes to competitiveness in a unique environment like the Antarctic. The emergence of the new phenotypic property furnishes several nutritional advantages in this low-productivity ecosystem.

    Future work will deal with AU11 genome sequencing,and the analysis of the occurrence of horizontal gene transfer events in this bacterium, among others.

    1 Gillis M, De Ley J. The generaChromobacteriumandJanthinobacterium// Dworkin M, Falkow S, Rosenberg E, et al.Prokaryotes(3rd ed). New York: Springer, 2006, 5: 737-746

    2 Liu Y, Yao T, Jiao N, et al. Culturable bacteria in glacial meltwater at 6,350 m on the East Rongbuk Glacier, Mount Everest. Extremophiles,2009, 13: 89-99

    3 Schloss P D, Allen H K, Klimowicz A K, et al. Psychrotrophic strain ofJanthinobacteriumlividumfrom a cold Alaskan soil produces prodigiosin. DNA Cell Biol, 2010, 29: 533-541

    4 Shivaji S, Kumari K, Kishore K H, et al. Vertical distribution of bacteria in a lake sediment from Antarctica by culture-independent and culture-dependent approaches. Res Microbiol, 2011, 162: 191-203

    5 Smith H, Aklyana T, Foreman C, et al. Draft genome sequence and description ofJanthinobacteriumsp. strain CG3, a psychrotolerant Antarctic supraglacial stream bacterium. Genome Announc 2013, 1,doi: 10.1128/genomeA.00960-13

    6 Molloy C, Burke B. Expression and secretion ofJanthinobacterium lividumchitinase inSaccharomyces cerevisiae. Biotechnol Lett, 1997,19: 1161-1164

    7 Shi Y L, Lu X Z, Yu W G. A newβ-agarase from marine bacteriumJanthinobacteriumsp. SY12. W J Microbiol Biotechnol, 2008, 24:2659-2664

    8 Johnsen M G, Hansen O C, Stougaard P. Isolation, characterization and heterologous expression of a novel chitosanase fromJanthinobacteriumsp. strain 4239. Microbl Cell Fact, 2010, 9: 5

    9 Dainty R H, Etherington D J, Shaw B G, et al. Studies on the production of extracellular proteinases by a non-pigmented strain ofChromobacteriumlividumisolated from abattoir effluent. J Appl Bacteriol, 1978, 45: 111-124

    10 Bach E B, Cannavan F S, Duarte F R S, et al. Characterization of feather-degrading bacteria from Brazilian soils. Int Biodet Biodeg,2011, 65: 102-107

    11 Tomova I, Gladka G, Tashyrev A, et al. Isolation, identification and hydrolytic enzymes production of aerobic heterotrophic bacteria from two Antarctic islands. Int J Environ Sc, 2014, 4: 614-625

    12 Rao M B, Tanksale A M, Ghatge M S, et al. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev, 1998, 62: 597-635

    13 Gupta R, Beg Q K, Lorenz P. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol,2002, 59: 15-32

    14 Kasana R C. Proteases from psychrotrophs: an overview. Crit Rev Microbiol, 2010, 36: 134-145

    15 Vazquez S C, Coria S H, Mac Cormack W P. Extracellular proteases from eight psychrotolerant Antarctic strains. Microbiol Res, 2004,159: 157-166

    16 Vazquez S C, Ruberto L, Mac Cormack W M. Properties of extracellular proteases from three psychrotolerantStenotrophomonas maltophiliaisolated from Antarctic soil. Pol Biol, 2005, 28: 319-325

    17 Martínez-Rosales C, Castro-Sowinski S. Antarctic bacterial isolates that produce cold-active extracellular proteases at low temperature but are active and stable at high temperature. Pol Res, 2011, 30: 7123

    18 Andrews B A, Asenjo J A. Systhesis and regulation of extracellularβ(1-3) glucanase and protease byCytophagasp. in batch and continuous culture. Biotech Bioeng, 1986, 28: 1366-1375

    19 Pi?eyro M D, Parodi-Talice A, Portela M, et al. Molecular characterization and interactome analysis ofTrypanosoma cruziTryparedoxin 1. J Proteom, 2011, 74: 1683-1692

    20 Altschul S F, Madden T L, Sch?ffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucl Acids Res, 1997, 25: 3389-3402

    21 Perkins D N, Pappin D J C, Creasy D M, et al. Probability-based protein identification by searching sequence database using mass spectrometry data. Electrophoresis, 1999, 20: 3551-3567

    22 Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual(2nd ed). Cold Spring Harbor Laboratory, NY, USA: Cold Spring Harbor, 1989

    23 Acevedo J P, Reyes F R, Parra L P, et al. Cloning of complete genes for novel hydrolytic enzymes from Antarctic sea water bacteria by use of fan improved genome walking technique. J Biotechnol, 2007, 133:277-286

    24 Rawlings N D, Waller M, Barrett A J, et al. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res, 2014, 42: D503-D509

    25 Edgar R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res, 2004, 32:1792-1797

    26 Keane T M, Creevey C J, Pentony M M, et al. Assessment of methods for amino acid matrix selection and their use on empirical data shows thatad hocassumptions for choice of matrix are not justified. BMC Evol Biol, 2006, 6: 29

    27 Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol, 1999, 16:1114-1116

    28 Guindon S, Dufayard J F, Lefort V, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol, 2010, 59: 307-321

    29 Bansal M S, Alm E J, Kellis M. Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics, 2012, 28: i283-i291

    30 Finn R D, Bateman A, Clements J, et al. Pfam: protein families database. Nucl Acids Res, 2014, 42: D222-D230

    31 Hesami S, Matcalf D S, Lumsden J S, et al. Identification of coldtemperature-regulated genes inFlavobacterium psychrophilum. Appl Environ Microbiol, 2011, 77: 1593-1600

    32 Olivera N L, Sequeiros C, Nievas M L. Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de Los Estados, Argentina. Extremophiles, 2007, 11:517-256

    33 Martínez-Rosales C, Fullana N, Musto H, et al. Antarctic DNA moving forward: genomic plasticity and biotechnological potential.FEMS Microbiol Lett, 2012, 331: 1-9

    34 Radkov A D, Moe L A. Bacterial synthesis of D-amino acids. Appl Microbiol Biotechnol, 2014, 98: 5363-5374

    35 Weinberg M V, Schut G J, Brehm S, et al. Cold shock of a hyperthermophilic archaeon:Pyrococcus furiosusexhibits multiple responses to a suboptimal growth temperature with a key role for membrane-bound glycoproteins. J Bacteriol, 2005, 187: 336-348

    36 Boto L. Horizontal gene transfer in evolution: facts and challenges.Proc R Soc B, 2010, 277: 819-827

    37 Niederberger T D, McDonald I R, Hacker A L, et al. Microbial community composition in soils of Northern Victoria Land,Antarctica. Environ Microbiol, 2008, 10: 1713-1724

    38 Laybourn-Parry J, Pearce D A. The biodiversity and ecology of Antarctic lades: models for evolution. Phil Trans R Soc B, 2007, 362:2273-2289

    39 Brigulla M, Wackernagel W. Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issue.Appl Microbiol Biotechnol, 2010, 86: 1027-1041

    40 Delorme C, Bartholini C, Bolotine A, et al. Emergence of a cell wall protease in theStreptococcus thermophiluspopulation. Appl Environ Microbiol, 2010, 76: 451-460

    41 Thornton R F, Kagawa T F, O′Toole P W, et al. The dissssemination of C10 cysteine protease genes inBacteroides fragilisby mobile genetic elements. BMC Microbiol, 2010, 10: 122

    日韩欧美精品免费久久| 亚洲人成网站高清观看| 九九久久精品国产亚洲av麻豆| 波野结衣二区三区在线| 色吧在线观看| 观看免费一级毛片| 听说在线观看完整版免费高清| 国产色婷婷99| 露出奶头的视频| ponron亚洲| 色综合亚洲欧美另类图片| 国产黄色小视频在线观看| 51国产日韩欧美| 又黄又爽又刺激的免费视频.| 国产精品1区2区在线观看.| 黄片wwwwww| av在线天堂中文字幕| 成人性生交大片免费视频hd| 天堂av国产一区二区熟女人妻| 亚洲精品一卡2卡三卡4卡5卡| 精品人妻1区二区| 热99在线观看视频| 国产精品久久久久久av不卡| 精品久久久久久成人av| 久久久久国产精品人妻aⅴ院| 日本与韩国留学比较| 欧美性猛交黑人性爽| 亚洲av免费高清在线观看| 中文字幕人妻熟人妻熟丝袜美| 欧美不卡视频在线免费观看| 国产精品av视频在线免费观看| 男女之事视频高清在线观看| 婷婷丁香在线五月| 可以在线观看毛片的网站| 内射极品少妇av片p| 欧美高清性xxxxhd video| 国产精品,欧美在线| 天堂影院成人在线观看| 美女xxoo啪啪120秒动态图| 欧美日韩国产亚洲二区| 最近最新免费中文字幕在线| 波多野结衣高清作品| 有码 亚洲区| 午夜免费激情av| 观看免费一级毛片| 欧美一区二区精品小视频在线| 亚洲国产欧洲综合997久久,| 真人一进一出gif抽搐免费| 久久国产精品人妻蜜桃| 精品不卡国产一区二区三区| 国产精品人妻久久久影院| 亚洲最大成人手机在线| 精品一区二区三区av网在线观看| 国产午夜福利久久久久久| 99久久中文字幕三级久久日本| 亚洲精华国产精华精| 亚洲久久久久久中文字幕| 亚洲国产精品合色在线| 久久久成人免费电影| 嫩草影院入口| 精品人妻一区二区三区麻豆 | 在线天堂最新版资源| 99热网站在线观看| 春色校园在线视频观看| 99久久精品一区二区三区| 日韩欧美 国产精品| 长腿黑丝高跟| 免费在线观看成人毛片| 国产av一区在线观看免费| 别揉我奶头~嗯~啊~动态视频| 国产一区二区三区视频了| 久9热在线精品视频| 一进一出好大好爽视频| netflix在线观看网站| 免费人成视频x8x8入口观看| 亚洲av日韩精品久久久久久密| 91在线精品国自产拍蜜月| 中出人妻视频一区二区| 国产老妇女一区| 国产91精品成人一区二区三区| 最后的刺客免费高清国语| 天堂影院成人在线观看| 日本免费一区二区三区高清不卡| 女生性感内裤真人,穿戴方法视频| 99精品久久久久人妻精品| 成人欧美大片| av天堂在线播放| 舔av片在线| 欧美中文日本在线观看视频| 伦理电影大哥的女人| 国产高清激情床上av| 中亚洲国语对白在线视频| 亚洲第一电影网av| 国产极品精品免费视频能看的| 亚洲18禁久久av| 久9热在线精品视频| 小蜜桃在线观看免费完整版高清| 国产男靠女视频免费网站| 嫩草影院新地址| 91麻豆av在线| 动漫黄色视频在线观看| 亚洲最大成人av| 夜夜夜夜夜久久久久| 欧美潮喷喷水| 日日夜夜操网爽| 99久久成人亚洲精品观看| 亚洲七黄色美女视频| 国产av在哪里看| 欧美+日韩+精品| 日本撒尿小便嘘嘘汇集6| 极品教师在线免费播放| 国产高清激情床上av| 黄色女人牲交| 美女高潮喷水抽搐中文字幕| 99热只有精品国产| 欧美性感艳星| 俺也久久电影网| 国产视频内射| 精品久久久久久久久久免费视频| 天堂av国产一区二区熟女人妻| 欧美最新免费一区二区三区| 老熟妇仑乱视频hdxx| eeuss影院久久| 淫秽高清视频在线观看| 日本三级黄在线观看| 亚洲人成网站在线播放欧美日韩| 欧美日韩中文字幕国产精品一区二区三区| 蜜桃亚洲精品一区二区三区| 亚洲人成网站在线播放欧美日韩| 露出奶头的视频| 国产v大片淫在线免费观看| 在线观看66精品国产| 十八禁网站免费在线| 欧美潮喷喷水| 亚洲精品日韩av片在线观看| 午夜福利视频1000在线观看| 亚洲av中文字字幕乱码综合| av天堂在线播放| 99国产精品一区二区蜜桃av| 国产探花在线观看一区二区| 日韩精品青青久久久久久| 超碰av人人做人人爽久久| 蜜桃亚洲精品一区二区三区| 国产免费一级a男人的天堂| 久久久精品欧美日韩精品| 亚洲av电影不卡..在线观看| 两个人的视频大全免费| 两个人视频免费观看高清| 色尼玛亚洲综合影院| 成年女人看的毛片在线观看| 国产精品自产拍在线观看55亚洲| 久久久久精品国产欧美久久久| 不卡视频在线观看欧美| 午夜福利欧美成人| 久久久久九九精品影院| 啦啦啦韩国在线观看视频| 精品人妻1区二区| 毛片一级片免费看久久久久 | 神马国产精品三级电影在线观看| 国产精品免费一区二区三区在线| 国产精品久久久久久av不卡| av女优亚洲男人天堂| 老司机福利观看| av在线亚洲专区| 国产午夜福利久久久久久| 国产视频一区二区在线看| 亚洲美女黄片视频| 亚洲av美国av| 亚洲熟妇中文字幕五十中出| 哪里可以看免费的av片| 欧美一区二区亚洲| 精品一区二区三区视频在线| 成年免费大片在线观看| 精品久久久久久久久久免费视频| 欧美人与善性xxx| 国产免费男女视频| 精品人妻1区二区| 有码 亚洲区| 日本a在线网址| 国产欧美日韩一区二区精品| 少妇的逼水好多| 成人国产综合亚洲| 日本黄色视频三级网站网址| 中文字幕av成人在线电影| 国产精品电影一区二区三区| 免费观看精品视频网站| 精品久久久久久久久久久久久| 女人被狂操c到高潮| 国产中年淑女户外野战色| 两个人视频免费观看高清| 九色成人免费人妻av| 欧美性猛交黑人性爽| 久久久久国内视频| 色综合婷婷激情| 久久精品久久久久久噜噜老黄 | 国产三级中文精品| 一本久久中文字幕| 国产精品国产高清国产av| 日本精品一区二区三区蜜桃| 女人被狂操c到高潮| av.在线天堂| 亚洲狠狠婷婷综合久久图片| 99热这里只有是精品50| 亚洲成人精品中文字幕电影| 欧美色视频一区免费| 亚洲最大成人中文| 久久久精品欧美日韩精品| 99久久成人亚洲精品观看| 神马国产精品三级电影在线观看| 日韩欧美精品免费久久| 日韩,欧美,国产一区二区三区 | 亚洲,欧美,日韩| 91麻豆精品激情在线观看国产| 久久久久性生活片| 久久精品91蜜桃| 99九九线精品视频在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 99国产极品粉嫩在线观看| 嫩草影院入口| 中文资源天堂在线| 久久精品影院6| 国产v大片淫在线免费观看| 国产免费一级a男人的天堂| 狠狠狠狠99中文字幕| 黄色欧美视频在线观看| 色噜噜av男人的天堂激情| 99在线视频只有这里精品首页| 国产探花极品一区二区| 噜噜噜噜噜久久久久久91| 国产 一区 欧美 日韩| 2021天堂中文幕一二区在线观| 性色avwww在线观看| 欧美日本视频| 88av欧美| 日本在线视频免费播放| 国产一区二区三区av在线 | 性插视频无遮挡在线免费观看| av专区在线播放| 精品国产三级普通话版| 蜜桃亚洲精品一区二区三区| av天堂在线播放| 久久九九热精品免费| 不卡视频在线观看欧美| av在线天堂中文字幕| 亚洲在线观看片| av国产免费在线观看| 精品一区二区三区视频在线| 一区二区三区激情视频| 亚洲av熟女| 在线国产一区二区在线| 久久人人爽人人爽人人片va| 欧美另类亚洲清纯唯美| 久久人人精品亚洲av| 久久九九热精品免费| 国产精品一区二区三区四区免费观看 | 国产精品一区二区三区四区久久| 黄色丝袜av网址大全| 国产男靠女视频免费网站| 1024手机看黄色片| 动漫黄色视频在线观看| 日韩高清综合在线| 白带黄色成豆腐渣| 国产伦人伦偷精品视频| 18+在线观看网站| 久久中文看片网| 一级av片app| 99久久久亚洲精品蜜臀av| 最近最新免费中文字幕在线| 少妇高潮的动态图| 免费观看在线日韩| 久久久久国内视频| 一个人看视频在线观看www免费| 国产蜜桃级精品一区二区三区| 日本欧美国产在线视频| 人人妻人人看人人澡| 22中文网久久字幕| 久久精品影院6| 99热6这里只有精品| 亚洲人成网站高清观看| 国产伦一二天堂av在线观看| 黄片wwwwww| 国产男人的电影天堂91| 亚洲av免费在线观看| 日韩高清综合在线| 窝窝影院91人妻| 99久久精品热视频| 欧美另类亚洲清纯唯美| 成人三级黄色视频| 男人狂女人下面高潮的视频| 村上凉子中文字幕在线| 久久久久性生活片| 国内少妇人妻偷人精品xxx网站| 一夜夜www| 午夜久久久久精精品| 亚洲人成网站在线播放欧美日韩| 亚洲18禁久久av| 干丝袜人妻中文字幕| 亚洲人成网站在线播放欧美日韩| 色综合亚洲欧美另类图片| 久久天躁狠狠躁夜夜2o2o| 久久精品国产99精品国产亚洲性色| 99久久精品一区二区三区| 在线观看免费视频日本深夜| 久久99热这里只有精品18| 欧美激情在线99| 欧美极品一区二区三区四区| 内射极品少妇av片p| 国产熟女欧美一区二区| 人人妻人人澡欧美一区二区| 亚洲狠狠婷婷综合久久图片| 色视频www国产| 91狼人影院| 日韩精品青青久久久久久| 国产一区二区在线av高清观看| 天堂影院成人在线观看| 亚洲av.av天堂| 亚洲精品乱码久久久v下载方式| 搡老岳熟女国产| 国产亚洲欧美98| 国产一级毛片七仙女欲春2| 免费观看人在逋| 91精品国产九色| 中文字幕精品亚洲无线码一区| 欧美绝顶高潮抽搐喷水| 久久精品国产清高在天天线| 桃红色精品国产亚洲av| 日韩欧美在线乱码| 精品久久久久久久久亚洲 | 黄色日韩在线| 丰满人妻一区二区三区视频av| 在线免费观看不下载黄p国产 | 国产黄a三级三级三级人| 精品一区二区三区视频在线| 国产白丝娇喘喷水9色精品| 成年女人永久免费观看视频| 国产av一区在线观看免费| 久久人人精品亚洲av| 久9热在线精品视频| 一级黄色大片毛片| 18禁在线播放成人免费| 黄色丝袜av网址大全| 搡老岳熟女国产| 亚洲欧美激情综合另类| 亚洲第一区二区三区不卡| 欧美zozozo另类| 国产精品不卡视频一区二区| 免费高清视频大片| 国产精品久久久久久久久免| 我的老师免费观看完整版| 久久亚洲真实| 亚洲成av人片在线播放无| 九九久久精品国产亚洲av麻豆| 欧美丝袜亚洲另类 | 中国美女看黄片| 亚洲三级黄色毛片| 国产午夜精品久久久久久一区二区三区 | 亚洲成人精品中文字幕电影| 99精品久久久久人妻精品| 国产精品1区2区在线观看.| 舔av片在线| 欧美一级a爱片免费观看看| 国产精品久久久久久亚洲av鲁大| 亚洲精品影视一区二区三区av| 日日夜夜操网爽| 久久这里只有精品中国| 国产精品美女特级片免费视频播放器| 欧美最新免费一区二区三区| 舔av片在线| 欧美一级a爱片免费观看看| 婷婷色综合大香蕉| 国产麻豆成人av免费视频| 又紧又爽又黄一区二区| 我要看日韩黄色一级片| 老女人水多毛片| 国产真实伦视频高清在线观看 | 欧美三级亚洲精品| 亚洲av一区综合| 精品久久久久久久久久免费视频| 五月伊人婷婷丁香| 好男人在线观看高清免费视频| 亚洲欧美日韩东京热| 精品久久国产蜜桃| 国产在视频线在精品| 18禁黄网站禁片免费观看直播| 精品欧美国产一区二区三| 婷婷亚洲欧美| 免费高清视频大片| 久久久久久久久久久丰满 | 69人妻影院| 欧美潮喷喷水| 精品一区二区免费观看| 成人鲁丝片一二三区免费| 一进一出抽搐gif免费好疼| 久久天躁狠狠躁夜夜2o2o| 国产成人一区二区在线| 国产成人福利小说| 在线播放国产精品三级| av中文乱码字幕在线| 成人性生交大片免费视频hd| 亚洲成人免费电影在线观看| 日本a在线网址| 午夜免费男女啪啪视频观看 | 最近视频中文字幕2019在线8| 久久人妻av系列| 午夜福利欧美成人| 日本撒尿小便嘘嘘汇集6| 亚洲成人免费电影在线观看| 一区二区三区四区激情视频 | 国产真实乱freesex| 欧美日韩国产亚洲二区| 国产精品日韩av在线免费观看| 蜜桃久久精品国产亚洲av| 免费看a级黄色片| 国产欧美日韩一区二区精品| 亚洲成人免费电影在线观看| 亚洲黑人精品在线| 国产女主播在线喷水免费视频网站 | av福利片在线观看| 在线观看美女被高潮喷水网站| 成人美女网站在线观看视频| 亚洲美女视频黄频| aaaaa片日本免费| 国内精品美女久久久久久| 夜夜爽天天搞| 国产精品不卡视频一区二区| 国产高清视频在线观看网站| 99久国产av精品| 亚洲专区中文字幕在线| 男插女下体视频免费在线播放| 少妇高潮的动态图| 美女xxoo啪啪120秒动态图| 欧美一级a爱片免费观看看| 午夜a级毛片| 99久国产av精品| 久久人人精品亚洲av| 国产麻豆成人av免费视频| 日韩中文字幕欧美一区二区| а√天堂www在线а√下载| 中文字幕av在线有码专区| 久久中文看片网| 直男gayav资源| 亚洲欧美日韩无卡精品| 亚洲欧美激情综合另类| 麻豆久久精品国产亚洲av| 一本久久中文字幕| 一个人看的www免费观看视频| 乱人视频在线观看| 99热精品在线国产| 亚洲精品色激情综合| 中文字幕人妻熟人妻熟丝袜美| 亚洲美女视频黄频| 欧美日韩亚洲国产一区二区在线观看| av在线观看视频网站免费| 简卡轻食公司| 亚洲中文字幕一区二区三区有码在线看| 午夜福利在线观看吧| 少妇高潮的动态图| 我要搜黄色片| 99久久精品一区二区三区| 日本精品一区二区三区蜜桃| 乱码一卡2卡4卡精品| avwww免费| 欧美成人免费av一区二区三区| 国产aⅴ精品一区二区三区波| 大型黄色视频在线免费观看| 99精品久久久久人妻精品| 亚洲电影在线观看av| 久久亚洲真实| 亚洲色图av天堂| 日本免费a在线| 美女被艹到高潮喷水动态| 亚洲熟妇中文字幕五十中出| 十八禁国产超污无遮挡网站| 他把我摸到了高潮在线观看| 欧美高清性xxxxhd video| 日韩精品有码人妻一区| 人妻久久中文字幕网| 久久国产乱子免费精品| 日本撒尿小便嘘嘘汇集6| 97碰自拍视频| 别揉我奶头~嗯~啊~动态视频| 国产一区二区三区视频了| 亚洲最大成人手机在线| 伦理电影大哥的女人| 丝袜美腿在线中文| 看免费成人av毛片| 欧美成人性av电影在线观看| 亚洲无线观看免费| 91久久精品国产一区二区三区| 日韩大尺度精品在线看网址| 亚洲18禁久久av| 久久久精品大字幕| 哪里可以看免费的av片| 国内精品久久久久精免费| 国产91精品成人一区二区三区| 国产又黄又爽又无遮挡在线| 亚洲av免费在线观看| 乱码一卡2卡4卡精品| 97超视频在线观看视频| 欧美国产日韩亚洲一区| 香蕉av资源在线| 国产综合懂色| 99久久中文字幕三级久久日本| 一本精品99久久精品77| 国产私拍福利视频在线观看| 老师上课跳d突然被开到最大视频| 国产免费av片在线观看野外av| 欧美成人免费av一区二区三区| 2021天堂中文幕一二区在线观| 日本撒尿小便嘘嘘汇集6| 又粗又爽又猛毛片免费看| 久99久视频精品免费| 男人舔奶头视频| 很黄的视频免费| 国产 一区精品| 麻豆av噜噜一区二区三区| 亚洲国产精品sss在线观看| 色av中文字幕| 久久亚洲精品不卡| 国产在视频线在精品| 日本精品一区二区三区蜜桃| 精品久久久噜噜| 九色成人免费人妻av| 看黄色毛片网站| 我要搜黄色片| 国产毛片a区久久久久| 97热精品久久久久久| 一级黄色大片毛片| 春色校园在线视频观看| 国产一区二区三区视频了| 亚洲欧美日韩高清专用| 动漫黄色视频在线观看| 亚洲最大成人手机在线| 国产高潮美女av| 午夜精品久久久久久毛片777| 国产高清视频在线播放一区| 精品无人区乱码1区二区| 村上凉子中文字幕在线| 如何舔出高潮| 国产高清激情床上av| 老女人水多毛片| 少妇的逼好多水| 国产亚洲精品综合一区在线观看| 欧美日韩乱码在线| 免费无遮挡裸体视频| 久久亚洲真实| 亚洲中文字幕日韩| 日韩亚洲欧美综合| 男女啪啪激烈高潮av片| 久久久久性生活片| 深夜a级毛片| 人妻久久中文字幕网| 国产伦精品一区二区三区视频9| 一本精品99久久精品77| 99在线人妻在线中文字幕| 色综合婷婷激情| 欧美成人性av电影在线观看| 变态另类成人亚洲欧美熟女| 免费观看的影片在线观看| 久久热精品热| 欧美丝袜亚洲另类 | 精品久久久久久成人av| 亚洲av.av天堂| 国产伦精品一区二区三区四那| 国产精品精品国产色婷婷| 亚洲最大成人中文| 日韩欧美精品免费久久| 两个人的视频大全免费| 韩国av在线不卡| 国内揄拍国产精品人妻在线| 亚洲人成网站高清观看| 色综合站精品国产| 国产免费男女视频| 中亚洲国语对白在线视频| 12—13女人毛片做爰片一| 麻豆精品久久久久久蜜桃| 男女下面进入的视频免费午夜| 国内久久婷婷六月综合欲色啪| 免费av毛片视频| 天堂av国产一区二区熟女人妻| 一夜夜www| 夜夜看夜夜爽夜夜摸| 18禁黄网站禁片午夜丰满| 一级a爱片免费观看的视频| av黄色大香蕉| 国产精品三级大全| 老司机深夜福利视频在线观看| 啪啪无遮挡十八禁网站| 成年版毛片免费区| 亚洲av免费高清在线观看| 精品人妻1区二区| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久久黄片| 精品国内亚洲2022精品成人| 我要搜黄色片| 亚洲人成网站在线播放欧美日韩| 国产精品美女特级片免费视频播放器| 精品久久久久久,| 亚洲乱码一区二区免费版| 特大巨黑吊av在线直播| 香蕉av资源在线| 国产在线男女| 99国产精品一区二区蜜桃av| 日本黄色视频三级网站网址| 在线看三级毛片| 精品一区二区免费观看| 看片在线看免费视频| 岛国在线免费视频观看| 欧美三级亚洲精品| 两人在一起打扑克的视频| 国产精品av视频在线免费观看| 可以在线观看毛片的网站| 亚洲欧美日韩卡通动漫| 国产精品一区二区性色av| 男人狂女人下面高潮的视频|