宋星桔,胡丹丹,楊光友
動(dòng)物棘球蚴病防控面臨的問(wèn)題與挑戰(zhàn)
宋星桔,胡丹丹,楊光友
棘球蚴病是一種世界性分布的人獸共患寄生蟲(chóng)病,嚴(yán)重危害人和動(dòng)物健康,給動(dòng)物養(yǎng)殖業(yè)造成巨大的經(jīng)濟(jì)損失。經(jīng)過(guò)幾十年的努力,動(dòng)物棘球蚴病防控工作取得了一定成效,但仍存在諸多挑戰(zhàn)。為進(jìn)一步推動(dòng)我國(guó)動(dòng)物棘球蚴病的防控研究工作,本文通過(guò)查閱近年來(lái)動(dòng)物棘球蚴病的相關(guān)文獻(xiàn),對(duì)該病在防控研究中仍存在的一些問(wèn)題進(jìn)行了總結(jié)與分析,提出在今后的動(dòng)物棘球蚴病防控中應(yīng)更加注重犬驅(qū)蟲(chóng)及管理模式的探索、動(dòng)物的強(qiáng)制性免疫措施以及該病的系統(tǒng)監(jiān)測(cè)方法等方面的研究。
動(dòng)物棘球蚴病;診斷;監(jiān)測(cè);疫苗;防控;挑戰(zhàn)
棘球蚴病(包蟲(chóng)病)是由帶科棘球?qū)俳{蟲(chóng)(Echinococcus)的中絳期幼蟲(chóng)引起的一種人獸共患病。本病呈世界性分布,我國(guó)是高發(fā)地區(qū)之一,主要存在細(xì)粒棘球蚴病(囊型)和多房棘球蚴病(泡型)[1],目前國(guó)內(nèi)23個(gè)省、市、自治區(qū)有原發(fā)性棘球蚴病的報(bào)道,發(fā)病地區(qū)面積占我國(guó)總面積的86.9%,其中高發(fā)面積占44.0%[2]。棘球蚴病是我國(guó)西部地區(qū)農(nóng)牧民群眾“因病致貧”和“因病返貧”的重要原因,該病已被列為我國(guó)《國(guó)家中長(zhǎng)期動(dòng)物疫病防治規(guī)劃》(2012—2020年)優(yōu)先防治和重點(diǎn)防范的動(dòng)物疫病。
近年來(lái),我國(guó)在動(dòng)物棘球蚴病的流行病學(xué)調(diào)查和防控等方面,取得了一定的成績(jī),但在動(dòng)物棘球蚴病的診斷與防控技術(shù)等環(huán)節(jié)中仍面臨嚴(yán)峻的挑戰(zhàn)。
1.1 中間宿主——家畜缺乏生前標(biāo)準(zhǔn)診斷方法 對(duì)動(dòng)物棘球蚴病的診斷與監(jiān)測(cè)是防控該病的重要措施之一。ELISA法是目前診斷與監(jiān)測(cè)動(dòng)物棘球蚴病最常用的方法,但是由于包囊寄生部位以及宿主的不同,使檢測(cè)的敏感性與特異性存在很大波動(dòng)[3-4],因此該法只能用于初步評(píng)估牧場(chǎng)中棘球蚴病的流行情況,不能用于動(dòng)物個(gè)體確診。
新西蘭Wallaceville動(dòng)物研究中心用HIS-1EG95重組蛋白為抗原,研制出羊包蟲(chóng)抗體間接ELISA檢測(cè)試劑盒,但由于該重組融合蛋白的表達(dá)量偏低,且為包涵體,使其應(yīng)用受到限制[5]。為進(jìn)一步優(yōu)化上述檢測(cè)方法,賈紅等(2011)[6]用生物信息學(xué)方法篩選出EG95蛋白序列中高度親水的優(yōu)勢(shì)表位區(qū)EG95s,表達(dá)出可溶性好、產(chǎn)量高、純化簡(jiǎn)便的重組融合蛋白GST-1EG95s和HIS-1EG95s,并以此建立了羊細(xì)粒棘球蚴病抗體間接ELISA檢測(cè)方法。經(jīng)試驗(yàn)驗(yàn)證,該方法與新西蘭Wallaceville動(dòng)物研究中心提供的間接ELISA方法的符合率為100%,但并未進(jìn)行交叉反應(yīng)試驗(yàn),因此,該方法特異性還有待進(jìn)一步研究。隨后,劉紅霞等(2012)[7]擴(kuò)增出EG95全長(zhǎng)cDNA片段,并將其連接到PET28a載體上進(jìn)行原核表達(dá),用重組表達(dá)產(chǎn)物檢測(cè)帶科不同屬的綿羊血清樣本,發(fā)現(xiàn)抗體水平均較高,交叉反應(yīng)比較嚴(yán)重,因此rEG95蛋白不能用作棘球蚴病診斷抗原,只能作為綿羊帶絳蟲(chóng)蚴病共同保護(hù)性抗原和診斷抗原而加以應(yīng)用。此外,也有研究者用細(xì)粒棘球蚴CE18重組蛋白檢測(cè)綿羊棘球蚴病,陽(yáng)性檢測(cè)率高達(dá)100%,但與其他帶科絳蟲(chóng)(特別是細(xì)頸囊尾蚴)存在交叉反應(yīng)[8],不能準(zhǔn)確診斷棘球蚴病。可見(jiàn),棘球蚴病的免疫學(xué)診斷在敏感性與特異性上存在缺陷,因此,候選重組抗原的篩選以及特異、靈敏、穩(wěn)定的免疫學(xué)診斷方法的建立是今后的重點(diǎn)研究方向之一[9-10]。
除重組抗原外,棘球蚴囊液抗原也是診斷動(dòng)物棘球蚴病的重要候選抗原。Golassa等(2011)[3]用血凝試驗(yàn)評(píng)估囊液粗抗原對(duì)牛棘球蚴病的診斷價(jià)值,發(fā)現(xiàn)其假陽(yáng)性與假陰性可分別高達(dá)12.7%和19.1%,錯(cuò)誤率較高,難以確診該病。Jeyathilakan等(2011,2014)[11-12]用對(duì)流免疫電泳試驗(yàn)(CIEP),乳膠凝集試驗(yàn)(LAT),酶聯(lián)免疫電轉(zhuǎn)印跡法(EITB)和膠體染料免疫滲濾法(CDIFA)等多種方法評(píng)價(jià)從棘球蚴囊液中純化出的8 kDa抗原B對(duì)綿羊囊型棘球蚴病的診斷效果,發(fā)現(xiàn)EITB與CDIFA的診斷靈敏性與特異性均在90%以上,提示該蛋白可作為動(dòng)物棘球蚴病診斷的優(yōu)選蛋白,但是目前并沒(méi)有一種標(biāo)準(zhǔn)的制備技術(shù)和操作流程可以快速簡(jiǎn)便地制備出大量8 kD抗原B標(biāo)準(zhǔn)品,制約了其應(yīng)用。
Hussein等(2014)[13]用超聲波診斷綿羊的肝囊型棘球蚴病,發(fā)現(xiàn)其敏感性可達(dá)80%,然而該方法很難檢測(cè)出羊肺棘球蚴病[14],并且需要昂貴的儀器與專業(yè)的技術(shù)人員,因此很難廣泛運(yùn)用于家畜的診斷。
1.2 家畜的宰后監(jiān)測(cè)數(shù)據(jù)不可靠 目前多采用記錄屠宰場(chǎng)宰后動(dòng)物感染情況的方式對(duì)家畜棘球蚴病進(jìn)行監(jiān)測(cè)[15],然而,屠宰場(chǎng)通常只靠肉眼觀察的方式進(jìn)行判斷,并不經(jīng)過(guò)組織學(xué)鑒定,判斷錯(cuò)誤率可高達(dá)15.4%[4]。此外,一些地區(qū)(尤其是青藏高原民族地區(qū))由于風(fēng)俗習(xí)慣、交通不便以及經(jīng)濟(jì)落后等因素,沒(méi)有規(guī)范的屠宰場(chǎng),家宰和私宰現(xiàn)象仍然存在,導(dǎo)致無(wú)法監(jiān)測(cè)與統(tǒng)計(jì)這些地區(qū)的動(dòng)物感染情況[15]。因此,僅僅憑調(diào)查與監(jiān)測(cè)屠宰場(chǎng)屠宰動(dòng)物的感染情況所獲得的數(shù)據(jù)是不可靠的。
1.3 終末宿主的商業(yè)化診斷試劑盒質(zhì)量有待提高 在犬科動(dòng)物棘球絳蟲(chóng)病診斷中,糞便沉淀和計(jì)數(shù)法(SCT)一直被認(rèn)為是最精準(zhǔn)的方法,但是在采用該法診斷的時(shí)候,如果不采取嚴(yán)格的防護(hù)措施很容易造成人員感染以及環(huán)境污染。檳榔堿瀉下法是比較傳統(tǒng)的方法,此法特異性高達(dá)100%,但有報(bào)道證明該法對(duì)細(xì)粒棘球絳蟲(chóng)和多房棘球絳蟲(chóng)的檢測(cè)敏感性分別低至39%和21%[16],并且檳榔堿對(duì)犬有強(qiáng)烈的副作用。
近年來(lái),一些國(guó)家與地區(qū)開(kāi)始用糞抗原ELISA(Copro-ELISA)方法檢測(cè)犬棘球絳蟲(chóng)病[17-19],阿根廷還將其作為防控計(jì)劃中監(jiān)測(cè)系統(tǒng)的一部分進(jìn)行評(píng)估[20-21]。目前國(guó)內(nèi)外已經(jīng)研制出不少犬棘球絳蟲(chóng)糞抗原ELISA檢測(cè)試劑盒,但由于多數(shù)運(yùn)用粗抗原,導(dǎo)致抗體質(zhì)量有較大差異,有時(shí)很難達(dá)到檢測(cè)預(yù)期的效果[22]。國(guó)內(nèi)比較成熟的犬棘球絳蟲(chóng)糞抗原檢測(cè)試劑盒有天康試劑盒(新疆天康畜牧有限公司)、海泰試劑盒(珠海海泰生物制品有限公司)以及康百得試劑盒(深圳康百得生物技術(shù)有限公司)。Huang等(2014)[23-24]用上述3種商業(yè)化試劑盒以及一種實(shí)驗(yàn)室試劑盒對(duì)犬糞樣進(jìn)行檢測(cè),結(jié)果三種商業(yè)化試劑盒的檢測(cè)靈敏度差異較大。其中,海泰、康百得試劑盒檢測(cè)靈敏度較低,分別為11%和53%,天康試劑盒檢測(cè)靈敏度較高(84%),假陽(yáng)性率較低(7%),但其保質(zhì)期只有6個(gè)月,且要在-20℃下儲(chǔ)存,使其應(yīng)用受到限制。
同樣的,國(guó)外所建立的一些糞抗原ELISA檢測(cè)方法也存在這類問(wèn)題,Varcasia等(2011)[25]用3種不同的糞抗原ELISA檢測(cè)方法對(duì)意大利撒丁島上犬棘球絳蟲(chóng)患病情況進(jìn)行調(diào)查,分別是一種商業(yè)化診斷試劑盒Checkit Echinotest(德國(guó))和兩種實(shí)驗(yàn)室診斷方法[26-28],結(jié)果顯示3種方法的檢出率有一定差異,其中利用單克隆抗體建立的檢測(cè)方法更可靠,但仍與泡狀帶絳蟲(chóng)存在交叉反應(yīng)[27]。隨后,Morel等(2013)[29]應(yīng)用單克隆抗體ELISA試劑盒對(duì)犬的糞便進(jìn)行檢測(cè),發(fā)現(xiàn)其敏感性(92.2%)較高,即使是蟲(chóng)體感染量很低的犬也能被檢測(cè)出來(lái),但與其他蠕蟲(chóng)存在交叉反應(yīng),因此,該試劑盒的實(shí)際診斷性能是不確定的??梢?jiàn),目前犬棘球絳蟲(chóng)糞抗原ELISA檢測(cè)試劑盒質(zhì)量仍需進(jìn)一步提高,篩選免疫性強(qiáng)、特異性高的單克隆抗體將是今后的熱點(diǎn)研究方向。
糞便PCR方法是檢測(cè)終末宿主棘球絳蟲(chóng)病的另一種重要技術(shù)[30-31],但該方法不僅價(jià)格昂貴費(fèi)時(shí)費(fèi)力,還須有專門的技術(shù)人員,因此難以廣泛用于常規(guī)的診斷與檢疫[32]。為克服這一問(wèn)題,一種新的核酸擴(kuò)增技術(shù)-環(huán)介導(dǎo)等溫?cái)U(kuò)增技術(shù)(LAMP)已逐漸用于犬棘球絳蟲(chóng)檢測(cè)[33-34]。Ni等(2014)[35-36]以LAMP法分別檢測(cè)犬細(xì)粒棘球絳蟲(chóng)病與犬多房棘球絳蟲(chóng)病,結(jié)果顯示,與其他檢測(cè)方法相比,LAMP法具有較高的敏感性,但對(duì)犬細(xì)粒棘球絳蟲(chóng)病檢測(cè)的特異性(88%)有待提高。LAMP檢測(cè)方法不需要昂貴的儀器設(shè)備,肉眼即可觀察檢測(cè)結(jié)果,具有快速、簡(jiǎn)便、靈敏等特點(diǎn),適用于基層大規(guī)模檢測(cè)犬棘球絳蟲(chóng)病,具有良好的應(yīng)用潛力[17,37]。
1.4 野生動(dòng)物的監(jiān)測(cè)難度大 由于野生動(dòng)物也是家畜棘球蚴病的持續(xù)傳染源,因此,對(duì)野生動(dòng)物棘球絳蟲(chóng)感染情況的監(jiān)測(cè)是防控家畜棘球蚴病的關(guān)鍵環(huán)節(jié)之一。多房棘球絳蟲(chóng)(Echinococcusmultilocularis)的生活史以野生動(dòng)物環(huán)為主,特別是野生狐貍與小型哺乳動(dòng)物是其傳播的關(guān)鍵[38]。我國(guó)境內(nèi)分布的多房棘球絳蟲(chóng)的野生中間宿主主要以嚙齒類動(dòng)物為主,至少涉及6科14種[39];野生終末宿主主要有野犬、狼、赤狐、沙狐和藏狐,其中藏狐是我國(guó)多房棘球蚴病傳播的主要終末宿主[40],廣泛分布于我國(guó)的青藏高原地區(qū),據(jù)統(tǒng)計(jì)1989年西藏全區(qū)藏狐數(shù)量達(dá)到4萬(wàn)余只[41]。在我國(guó)一些地區(qū)感染多房棘球絳蟲(chóng)的野生狐貍數(shù)量明顯高于家犬,最高可達(dá)44%[30,42-44]。因此,非常有必要從野生狐屬物種入手,研究該病在野生動(dòng)物中的流行病學(xué)特性。
細(xì)粒棘球絳蟲(chóng)的野生動(dòng)物宿主范圍也很廣泛。在澳大利亞,已知的袋鼠科宿主就有42種[45],因此,很難全面監(jiān)測(cè)細(xì)粒棘球絳蟲(chóng)在該地區(qū)野生動(dòng)物間的傳播。在我國(guó),已經(jīng)檢測(cè)到的能感染細(xì)粒棘球蚴的野生中間宿主主要為巖羊、藏原羚和馬鹿等,感染率分別為6.4%、6.6%和15.0%[46-47],野生終末宿主主要是赤狐和灰狼,其中在青海部分地區(qū)灰狼的感染率高達(dá)75%,赤狐感染率為36%[47]。
目前,檢測(cè)野生動(dòng)物棘球絳蟲(chóng)的方法有剖檢法,糞便DNA-PCR和糞抗原-ELISA法,但剖解法需要剖殺野生動(dòng)物,而敏感、特異的糞便DNA-PCR和糞抗原-ELISA檢測(cè)試劑盒還有待進(jìn)一步研究和開(kāi)發(fā)[48]。
2.1 免疫中間宿主的疫苗 細(xì)粒棘球絳蟲(chóng)Eg95重組疫苗是一個(gè)全世界公認(rèn)的成功疫苗,在我國(guó),從2011年開(kāi)始已經(jīng)商業(yè)化生產(chǎn),但是我國(guó)牧區(qū)綿羊數(shù)量巨大,初次免疫羔羊需注射2次,以后每年還要加強(qiáng)免疫1次,如此多的免疫次數(shù),很難實(shí)現(xiàn)高密度和高頻度免疫。即使所有動(dòng)物均獲得了免疫接種,也有潛在因素會(huì)影響疫苗的效果。如免疫接種時(shí)動(dòng)物的營(yíng)養(yǎng)水平會(huì)影響免疫應(yīng)答反應(yīng);疫苗只能保護(hù)未被感染的動(dòng)物,而已經(jīng)感染了棘球蚴病的動(dòng)物接種疫苗是沒(méi)有效果的[15]。此外,隨著動(dòng)物棘球蚴病免疫措施的實(shí)施,患病的動(dòng)物數(shù)量會(huì)逐漸減少,部分畜主會(huì)降低對(duì)該病的防范,有的甚至停止使用疫苗,從而造成在一個(gè)短暫的時(shí)間段內(nèi)該病得到控制,之后又會(huì)逐漸流行起來(lái),如此反復(fù)循環(huán)。另一方面,目前該疫苗并未納入國(guó)家動(dòng)物疫病強(qiáng)制免疫的計(jì)劃當(dāng)中,并且畜間棘球蚴病防控并沒(méi)有專項(xiàng)資金。對(duì)牧區(qū)家畜進(jìn)行高頻度和高密度的免疫,還需要大量的人員和資金投入。
2.2 缺乏免疫終末宿主的商業(yè)化疫苗 犬和野生犬科動(dòng)物是棘球絳蟲(chóng)的終末宿主和傳染源,免疫終末宿主是控制棘球蚴病流行的重要措施之一。EgA31蛋白是預(yù)防犬細(xì)粒棘球絳蟲(chóng)病的一種重要疫苗候選分子,用重組EgA31抗原對(duì)犬進(jìn)行皮內(nèi)免疫,能引起犬體內(nèi)CD3+,CD4+,CD8+和 CD5+型T細(xì)胞增加,增強(qiáng)其細(xì)胞免疫反應(yīng)[49-50]。以EgM4,EgM9和EgM123等重組蛋白免疫犬后,發(fā)現(xiàn)其不僅能有效抑制蟲(chóng)體的生長(zhǎng)發(fā)育,還能使其減卵率高達(dá)97%~100%[51-52],這對(duì)犬的疫苗開(kāi)發(fā)有重要意義。Chabalgoity等(2000)[53]將細(xì)粒棘球絳蟲(chóng)pTECH-EgDf1重組質(zhì)粒導(dǎo)入減毒傷寒沙門氏桿菌,構(gòu)建了減毒傷寒沙門氏桿菌疫苗,將該疫苗灌胃免疫小鼠可產(chǎn)生高水平的IgG1,IgG2a和IgA,顯示其可作為犬細(xì)粒棘球絳蟲(chóng)候選疫苗。將細(xì)粒棘球絳蟲(chóng)成蟲(chóng)的兩個(gè)重組蛋白EgTrp與EgA31制成重組傷寒沙門氏桿菌疫苗,口服免疫犬,使犬體內(nèi)蟲(chóng)體減少了70%~80%[54]。
在棘球蚴病流行的地區(qū),犬的數(shù)量遠(yuǎn)遠(yuǎn)小于家畜數(shù)量,對(duì)犬實(shí)施疫苗預(yù)防更經(jīng)濟(jì),更有利于實(shí)施。然而,目前尚無(wú)針對(duì)犬的商業(yè)化疫苗,篩選對(duì)犬以及其他野生犬科動(dòng)物具有高效保護(hù)作用的疫苗是棘球蚴病防控面臨的重大課題。
家畜棘球蚴病由于治療費(fèi)用高,特別是一些感染率較高的地區(qū),進(jìn)行大群治療會(huì)大大降低經(jīng)濟(jì)效益,因此家畜患病后一般不治療,通常采取直接宰殺的辦法。目前國(guó)內(nèi)外對(duì)犬棘球絳蟲(chóng)的驅(qū)蟲(chóng)首選藥物為吡喹酮,采用的驅(qū)蟲(chóng)方法為“月月驅(qū)蟲(chóng),犬犬用藥”。Zhang等(2009)[55]在新疆的兩個(gè)地區(qū)進(jìn)行了棘球蚴病防控的試點(diǎn)研究,用吡喹酮對(duì)所有登記在冊(cè)的的犬以及流浪犬進(jìn)行驅(qū)蟲(chóng),這對(duì)農(nóng)村社區(qū)是一項(xiàng)高效的、切實(shí)可行的防控措施,能有效的降低棘球蚴病的流行。然而我國(guó)西部牧區(qū)地域遼闊、交通不便,要做到定時(shí)定量地給所有犬投藥是很困難的,驅(qū)蟲(chóng)效果并不理想[56-57]。并且對(duì)于流浪犬以及野生犬科動(dòng)物的投藥驅(qū)蟲(chóng)更加困難。因此,進(jìn)行驅(qū)蟲(chóng)程序的改進(jìn)以及吡喹酮新劑型的研發(fā)是非常必要的[58-59]。
為更有效地防控棘球蚴病,已有多種模型用于該病流行病學(xué)的預(yù)測(cè)。研究人員構(gòu)建了細(xì)粒棘球絳蟲(chóng)在人畜之間傳播的數(shù)學(xué)模型,發(fā)現(xiàn)對(duì)綿羊使用疫苗免疫能提高控制效率,從而減少防控計(jì)劃中對(duì)犬的驅(qū)蟲(chóng)頻率[60]。Huang等(2011)[56]建立了一個(gè)基于agent的模型(Agent-based model , ABM)來(lái)模擬和評(píng)估各種單一或者組合的細(xì)粒棘球絳蟲(chóng)控制措施,結(jié)果顯示以中間宿主與終末宿主接種疫苗為基礎(chǔ),再結(jié)合其他措施(包括犬的驅(qū)蟲(chóng)、屠宰場(chǎng)的管理控制、宰殺失去生產(chǎn)力的老年家畜、控制犬的數(shù)量)可以實(shí)現(xiàn)棘球蚴病的高效控制。然而,在實(shí)際生產(chǎn)中很多措施的實(shí)施都存在一些問(wèn)題,特別是缺少商業(yè)化生產(chǎn)的終末宿主疫苗,這在很大程度上降低了棘球蚴病的控制效率。
4.1 宣傳教育不到位,控制措施實(shí)際執(zhí)行力低 目前,雖然一些地區(qū)對(duì)棘球蚴病的控制取得了不同程度的進(jìn)步,但很多地區(qū)防控計(jì)劃仍以失敗告終,其中之一就是意大利撒丁島控制計(jì)劃,究其原因主要是對(duì)犬只的管理不到位。通過(guò)對(duì)撒丁島牧場(chǎng)畜主的問(wèn)卷調(diào)查,發(fā)現(xiàn)只有15%的畜主將動(dòng)物內(nèi)臟深埋,37%的畜主把動(dòng)物內(nèi)臟煮熟后喂犬,其他的則直接將內(nèi)臟喂犬或丟棄。此外,雖然69%的畜主宣稱對(duì)犬使用驅(qū)蟲(chóng)藥,實(shí)際上只有10%的畜主付諸于行動(dòng)[25]。對(duì)埃塞俄比亞?wèn)|北部牧民的調(diào)查結(jié)果顯示,只有4.29%的牧民意識(shí)到棘球蚴病的危害,沒(méi)有人了解其來(lái)源與傳播。該地區(qū)有85.7%的牧民飼養(yǎng)犬,但他們并未對(duì)犬進(jìn)行驅(qū)蟲(chóng),有80%的牧民用明顯病變的動(dòng)物內(nèi)臟喂犬,并且由于該地區(qū)缺水,90.71%的調(diào)查對(duì)象不清洗蔬菜就直接生食,82.9%的牧民在接觸了土壤或者犬的排泄物后并不洗手[61]。此外,對(duì)坦桑尼亞、約旦以及烏干達(dá)等地的問(wèn)卷調(diào)查也發(fā)現(xiàn)很少有牧民了解棘球蚴病[62-64]。可見(jiàn),要想高效徹底的防控棘球蚴病,還需要加大宣傳健康教育力度,改進(jìn)宣傳方法,使用人們樂(lè)意接受的宣傳教育方式[65-66],讓牧民從根本上認(rèn)識(shí)到該病的危害,自覺(jué)自發(fā)地支持配合政府的工作。此外,每月對(duì)犬進(jìn)行驅(qū)蟲(chóng)的實(shí)施難度比較大,難以保證人人配合。政府、獸醫(yī)相關(guān)人員、以及其他各部門應(yīng)當(dāng)密切合作、合理分工,才能保證驅(qū)蟲(chóng)工作嚴(yán)格按照計(jì)劃進(jìn)行。
4.2 難以完全控制犬以及老齡家畜數(shù)量 消除老齡、無(wú)生產(chǎn)價(jià)值的家畜以及流浪犬是控制棘球蚴病的有效措施之一[67-68],然而在一些有特殊宗教信仰以及風(fēng)俗習(xí)慣的地區(qū),該措施的實(shí)施難度很大,如部分地區(qū)的牧民(如藏族和蒙古族)把牲畜的數(shù)量看成財(cái)富多少與社會(huì)地位高低的象征,導(dǎo)致老齡、無(wú)生產(chǎn)價(jià)值的家畜滯留;此外,我國(guó)藏族地區(qū)信仰佛教,忌殺生,導(dǎo)致犬只大量無(wú)序繁殖,為了避免宗教與文化沖突,只能采用犬的驅(qū)蟲(chóng)以及家畜疫苗接種相結(jié)合的方法對(duì)棘球蚴病進(jìn)行防控[43,65,69]。然而,這些地區(qū)的犬只數(shù)量較多,難以馴服,要做到定時(shí)定量地給所有犬投藥是很困難的,例如在寧夏南部地區(qū),犬的數(shù)量幾乎接近人口數(shù)量[70]。在四川藏區(qū)開(kāi)展的對(duì)流浪犬的規(guī)范化收容管理是一個(gè)很好的措施,既尊重了藏民族的習(xí)慣,又減少了犬糞對(duì)環(huán)境的污染,但大量流浪犬的收容管理需要有穩(wěn)定的專項(xiàng)經(jīng)費(fèi)投入。此外,對(duì)犬進(jìn)行絕育也是一項(xiàng)很好的控制措施,但一些偏遠(yuǎn)農(nóng)村地區(qū)很難實(shí)行手術(shù)絕育,有研究證明可以對(duì)犬實(shí)施免疫避孕[71],但該方法并不成熟,還需進(jìn)行諸多臨床研究。
4.3 基因型多樣性與宿主多樣性增加防控難度 細(xì)粒棘球絳蟲(chóng)存在10個(gè)具遺傳差異的基因型,造成該蟲(chóng)在傳播動(dòng)力學(xué)、致病性以及對(duì)藥物的敏感性等方面的差異[1],從而對(duì)細(xì)粒棘球蚴病的診斷監(jiān)測(cè)、疫苗研制以及藥物開(kāi)發(fā)造成直接的影響。多房棘球絳蟲(chóng)存在宿主多樣性的特點(diǎn),并且宿主多為野生動(dòng)物,其傳播流行會(huì)受到地理環(huán)境、氣象條件等自然因素影響[72],因此,監(jiān)測(cè)和預(yù)防野生動(dòng)物感染是控制多房棘球蚴病傳播的重要措施。目前多通過(guò)地理信息系統(tǒng)(GIS)與其他技術(shù)相結(jié)合的方法對(duì)多房棘球絳蟲(chóng)的分布以及宿主感染率進(jìn)行預(yù)測(cè)[73],但該系統(tǒng)的使用在隱私保護(hù)與授權(quán)上還存在一些問(wèn)題[74]。
4.4 環(huán)境變化與人為活動(dòng)增加傳播風(fēng)險(xiǎn) 氣候變化以及人為因素會(huì)改變棘球蚴宿主的種群結(jié)構(gòu)以及提高蟲(chóng)卵的存活率,從而增加棘球蚴病的監(jiān)測(cè)難度與傳播風(fēng)險(xiǎn)[75-76]。自1970年到2000之間,由于砍伐森林和過(guò)度放牧,我國(guó)寧夏回族自治區(qū)南部地區(qū)地理環(huán)境發(fā)生很大變化,野生動(dòng)物的多樣性被破壞,野生狐貍、狼和小型哺乳動(dòng)物成為該地區(qū)的優(yōu)勢(shì)物種[70]。2000年以后,政府開(kāi)始實(shí)行退耕還林政策,恢復(fù)區(qū)域的自然條件更有利于小型哺乳動(dòng)物以及野生犬科動(dòng)物的生長(zhǎng)繁殖,其種群密度顯著增加[77-78],再加上2002年立法規(guī)定禁止濫用滅鼠藥,這更增加了小型哺乳動(dòng)物的種群數(shù)量[77],進(jìn)一步加大了棘球蚴病的傳播風(fēng)險(xiǎn)與監(jiān)測(cè)難度。此外,退耕還林后,森林生態(tài)系統(tǒng)圍繞附近的村莊形成,使野生動(dòng)物與家畜的接觸增加[75],特別是該地區(qū)的家犬常常由于缺乏食物而外出覓食,導(dǎo)致附近的小型哺乳動(dòng)物易被家犬捕食,從而加大了該地區(qū)人畜感染風(fēng)險(xiǎn)[70]。
4.5 其他 一些地區(qū)由于人口分散、政治動(dòng)亂等因素也會(huì)增加棘球蚴病防控的難度,從而導(dǎo)致防控計(jì)劃失敗[79-80]。因此,防控措施的可行性、可持續(xù)性要與當(dāng)?shù)氐纳鐣?huì)經(jīng)濟(jì)狀況相適應(yīng),一旦開(kāi)始實(shí)行,則需要長(zhǎng)期花費(fèi)大量的資金、人力以及物力來(lái)運(yùn)行。然而目前我國(guó)畜間棘球蚴病防控并沒(méi)有大量專項(xiàng)資金的投入,這無(wú)疑增加了棘球蚴病的防控難度。
目前,棘球蚴病防控仍然是一個(gè)世界性的問(wèn)題,要想徹底消除該病還存在諸多挑戰(zhàn),現(xiàn)有的防控措施只對(duì)部分地區(qū)或國(guó)家有效,新的防控策略需更加注重以下幾方面:(1)犬驅(qū)蟲(chóng)模式及流浪犬管理模式的探索;(2)將Eg95疫苗應(yīng)用于棘球蚴病的防控計(jì)劃中,對(duì)棘球蚴病高發(fā)地區(qū)草食家畜進(jìn)行強(qiáng)制免疫;(3)研制出安全高效的針對(duì)終末宿主的疫苗;(4)研究出快速簡(jiǎn)便、高效廉價(jià)的終末宿主和中間宿主診斷與監(jiān)測(cè)方法,制定出相應(yīng)的國(guó)際化診斷標(biāo)準(zhǔn),并以此為基礎(chǔ)研究出棘球蚴病流行水平、患病情況和防治效果的系統(tǒng)監(jiān)測(cè)方法;(5)針對(duì)各個(gè)地區(qū)的民族風(fēng)俗習(xí)慣研究制定行之有效的畜牧從業(yè)人員健康教育手段和計(jì)劃。
[1]Hu HH, Wu WP. Factors affecting the endemic intensity of echinococcosis[J]. Chin J Parasitol Parasit Dis, 2010, 28(1): 58-61. (in Chinese) 胡歡歡, 伍衛(wèi)平. 影響棘球蚴病流行程度的因素[J]. 中國(guó)寄生蟲(chóng)學(xué)與寄生蟲(chóng)病雜志, 2010, 28(1): 58-61.
[2]Xu XP, Wang GL. The harm and prevention and control strategies of hydatid disease[J]. Xinjiang Farm Res Sci Tech, 2013, 9: 52-55. (in Chinese) 徐雪萍, 王光雷. 棘球蚴病流行危害及防控策略[J]. 新疆農(nóng)墾科技, 2013, 9: 52-55.
[3]Golassa L, Abebe T, Hailu A. Evaluation of crude hydatid cyst fluid antigens for the serological diagnosis of hydatidosis in cattle[J]. J Helminthol, 2011, 85(1): 100-108. DOI: 10.1017/S0022149X10000349
[4]Gatti A, Alvarez AR, Araya D, et al. Ovine echinococcosis: I. Immunological diagnosis by enzyme immunoassay[J]. Vet Parasitol, 2007, 143(2): 112-121. DOI: 10.1016/j.vetpar.2006.08.022
[5]Lightowlers M, Lawrence S, Gauci C, et al. Vaccination against hydatidosis using a defined recombinant antigen[J]. Parasite Immunol, 1996, 18(9): 457-462. DOI: 10.1111/j.1365-3024
[6]Jia H, Liu D, Hou SH, et al. Development of an indirect ELISA for detection of sheep antibodies againstEchinococcosisgranulosa[J]. Chin J Anim Vet Sci, 2011, 42(1): 65-70. (in Chinese) 賈紅, 劉丹, 侯紹華, 等. 羊細(xì)粒棘球蚴病抗體間接ELISA檢測(cè)方法的建立[J]. 畜牧獸醫(yī)學(xué)報(bào), 2011, 42(1): 65-70.
[7]Liu HX, Zhang DZ, Yan HB, et al. Application of recombinant EG95 antigen (rEG95) of Echinococcus granulosus for the detection of serum antibodies in sheep against infections of larval stage of taeniids[J]. Chin J Vet Sci, 2012, 42(9): 911-915. (in Chinese) 劉紅霞, 張德禎, 閆鴻斌, 等. 細(xì)粒棘球絳蟲(chóng)重組EG95抗原在綿羊絳蟲(chóng)蚴病血清抗體檢測(cè)中的應(yīng)用[J]. 中國(guó)獸醫(yī)科學(xué), 2012, 42(9): 911-915.
[8]Liu HX, Cai XP, Zhang SH, et al. Application of recombinant CE18 protein for diagnosis of ovine metacestodiasis[J]. Sci Agric Sin, 2009, 42(8): 2997-3002. (in Chinese) 劉紅霞, 才學(xué)鵬, 張少華, 等. 重組CE18蛋白在綿羊絳蟲(chóng)蚴病診斷上的應(yīng)用[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2009, 42(8): 2997-3002.
[9]Brunetti E, Kern P, Vuitton DA. Expert consensus for the diagnosis and treatment of cystic and alveolar echinococcosis in humans[J]. Acta Trop, 2010, 114(1): 1-16. DOI: 10.1016/j.actatropica.2009.11.001
[10]McManus DP, Gray DJ, Zhang W, et al. Diagnosis, treatment, and management of echinococcosis[J]. BMJ, 2012, 344: e3866. DOI: 10.1136/bmj.e3866
[11]Jeyathilakan N, Abdul Basith S, John L, et al. Development and evaluation of flow through technique for diagnosis of cystic echinococcosis in sheep[J]. Vet Parasitol, 2011, 180(3): 250-255. DOI: 10.1016/j.vetpar.2011.03.030
[12]Jeyathilakan N, Abdul Basith S, John L, et al. Evaluation of native 8 kDa antigen based three immunoassays for diagnosis of cystic echinococcosis in sheep[J]. Small Ruminant Res, 2014, 116(2): 199-205. DOI: 10.1016/j.smallrumres
[13]Hussein HA, Elrashidy M. Ultrasonographic features of the liver with cystic echinococcosis in sheep[J]. Vet Rec Open, 2014, 1(1): e000004. DOI: 10.1136/vropen-2013-000004
[14]Lahmar S, Chehida FB, Petavy A, et al. Ultrasonographic screening for cystic echinococcosis in sheep in Tunisia[J]. Vet Parasitol, 2007, 143(1): 42-49. DOI: 10.1016/j.vetpar.2006.08.001
[15]Barnes T, Deplazes P, Gottstein B, et al. Challenges for diagnosis and control of cystic hydatid disease[J]. Acta Trop, 2012, 123(1): 1-7. DOI: 10.1016/j.actatropica.2012.02.066
[16]Ziadinov I, Mathis A, Trachsel D, et al. Canine echinococcosis in Kyrgyzstan: using prevalence data adjusted for measurement error to develop transmission dynamics models[J]. Int J Parasitol, 2008, 38(10): 1179-1190. DOI: 10.1016/j.ijpara.2008.01.009
[17]Buishi I, Njoroge E, Bouamra O, et al. Canine echinococcosis in northwest Libya: assessment of coproantigen ELISA, and a survey of infection with analysis of risk-factors[J]. Vet Parasitol, 2005, 130(3): 223-232. DOI: 10.1016/j.vetpar.2005.03.004
[18]Acosta-Jamett G, Cleaveland S, Bronsvoort BM, et al. Echinococcus granulosus infection in domestic dogs in urban and rural areas of the Coquimbo region, north-central Chile[J]. Vet Parasitol, 2010, 169(1): 117-122. DOI: 10.1016/j.vetpar.2009.12.005
[19]Zhang X, Gulnur T, Mi XY, et al. Establishment of an antibody sandwich ELISA for detection of Echinococcus granulosus antigen in canine feces[J]. Prog Vet Med, 2012, 33(3): 19-23. (in Chinese) 張旭, 古努爾·吐?tīng)栠d, 米曉云, 等. 犬細(xì)粒棘球絳蟲(chóng)糞抗原夾心ELISA檢測(cè)方法的建立[J]. 動(dòng)物醫(yī)學(xué)進(jìn)展, 2012, 33(3): 19-23.
[20]Perez A, Costa MT, Gustavo C, et al. Vigilancia epidemiologica de la equinococcosis quistica en perros, establecimientos ganaderos y poblaciones humanas en la Provincia de Rio Negro[J]. Medicina-Buenos Aires, 2006, 66(3): 193-200.
[21]Pierangeli N, Soriano S, Roccia I, et al. Usefulness and validation of a coproantigen test for dog echinococcosis screening in the consolidation phase of hydatid control in Neuquen, Argentina[J]. Parasitol Int, 2010, 59(3): 394-399. DOI: 10.1016/j.parint.2010.05.004
[22]Chen J, Wulamu M. Progress and prospects of Echinococcus granulosus infection diagnosis of canine[J]. J Xinjiang Med Univ, 2011, 3: 006. (in Chinese) 陳潔, 吾拉木·馬木提. 犬感染細(xì)粒棘球絳蟲(chóng)的診斷研究進(jìn)展及展望[J]. 新疆醫(yī)科大學(xué)學(xué)報(bào), 2011, 3: 006.
[23]Huang Y, Yi D, Liu L, et al. Echinococcus infections in Chinese dogs: a comparison of coproantigen kits[J]. J Helminthol, 2014, 88(2): 189-195. DOI: 10.1017/S0022149X12000922
[24]Huang Y, Yang W, Qiu J, et al. A modified coproantigen test used for surveillance ofEchinococcusspp. in Tibetan dogs[J]. Vet Parasitol, 2007, 149(3): 229-238. DOI: 10.1016/j.vetpar.2007.08.026
[25]Varcasia A, Tanda B, Giobbe M, et al. Cystic echinococcosis in Sardinia: farmers' knowledge and dog infection in sheep farms[J]. Vet Parasitol, 2011, 181(2): 335-340. DOI: 10.1016/j.vetpar.2011.05.006
[26]Eckert J, Deplazes P, Craig P, et al. Manual on echinococcosis in humans and animals: a public health problem of global concern[M]. Pairs: WHO/OIE, 2001.
[27]Casaravilla C, Malgor R, Rossi A, et al. Production and characterization of monoclonal antibodies against excretory/secretory products of adult Echinococcus granulosus, and their application to coproantigen detection[J]. Parasitol Int, 2005, 54(1): 43-49. DOI: 10.1016/j.parint.2004.08.006
[28]Malgor R, Nonaka N, Basmadjian I, et al. Coproantigen detection in dogs experimentally and naturally infected with Echinococcus granulosus by a monoclonal antibody-based enzyme-linked immunosorbent assay[J]. Int J Parasitol, 1997, 27(12): 1605-1612. DOI: 10.1016/S0020-7519(97)00127-6
[29]Morel N, Lassabe G, Elola S, et al. A monoclonal antibody-based copro-ELISA kit for canine echinococcosis to support the PAHO effort for hydatid disease control in South America[J]. PLoS Neglect Trop D, 2013, 7(1): e1967. DOI: 10.1371/journal.pntd.0001967
[30]Jiang W, Liu N, Zhang G, et al. Specific detection ofEchinococcusspp. from the Tibetan fox (Vulpes ferrilata) and the red fox (V. vulpes) using copro-DNA PCR analysis[J]. Parasitol Res, 2012, 111(4): 1531-1539. DOI: 10.1007/s00436-012-2993-8
[31]Borji H, Naghibi A, Jahangiri F. Copro-DNA test for diagnosis of canine echinococcosis[J]. Comp Clin Pathol, 2013, 22(5): 909-912. DOI: 10.1007/s00580-012-1498-2
[32]Jia WZ, Yan HB, Wang YC, et al. Progress on the detection methods of canine Echinococcus infection[J]. Chin J Zoonoses, 2010, 26(2): 179-182. (in Chinese) 賈萬(wàn)忠, 閆鴻斌, 王玉朝, 等. 犬科動(dòng)物棘球絳蟲(chóng)感染檢測(cè)方法研究進(jìn)展[J]. 中國(guó)人獸共患病學(xué)報(bào), 2010, 26(2): 179-182.
[33]Salant H, Abbasi I, Hamburger J. The development of a loop-mediated isothermal amplification method (LAMP) for Echinococcus granulosis coprodetection[J]. Am J Trop Med Hyg, 2012, 87(5): 883-887. DOI: 10.4269/ajtmh.2012.12-0184
[34]Wassermann M, Mackenstedt U, Romig T. A loop-mediated isothermal amplification (LAMP) method for the identification of species within the Echinococcus granulosus complex[J]. Vet Parasitol, 2014, 200(1): 97-103. DOI: 10.1016/j.vetpar.2013.12.012
[35]Ni X, McManus DP, Yan H, et al. Loop-mediated isothermal amplification (LAMP) assay for the identification ofEchinococcusmultilocularisinfections in canine definitive hosts[J]. Parasite Vector, 2014, 7(1): 254. DOI: 10.1186/1756-3305-7-254
[36]Ni X, McManus DP, Lou Z, et al. A comparison of loop-mediated isothermal amplification (LAMP) with other surveillance tools for Echinococcus granulosus diagnosis in canine definitive hosts[J]. PLoS One, 2014, 9(7): e100877. DOI: 10.1371/journal.pone.0100877
[37]Chen L, Wulamu M, Zhang DT, et al. Loop-mediated isothermal amplification for rapid detection of dogs infected with Echinococcus species based on coproDNAⅡ[J]. Chin J Zoonoses, 2014, 30(7): 718-722. (in Chinese) 陳璐, 吾拉木·馬木提, 等. 環(huán)介導(dǎo)等溫?cái)U(kuò)增技術(shù)(LAMP)檢測(cè)棘球絳蟲(chóng)感染犬糞DNA的研究[J]. 中國(guó)人獸共患病學(xué)報(bào), 2014, 30(7): 718-722.
[39]Giraudoux P, Raoul F, Afonso E, et al. Transmission ecosystems ofEchinococcusmultilocularisin China and Central Asia[J]. Parasitology, 2013, 140(13): 1655-1666. DOI: 10.1017/S0031182013000644
[39]Lin YG, Lu MK, Hong LX. A review of the current status of Echinococcus and hydatid disease, with notes on some informative achievements in China[J]. Chin J Zoonoses, 2012, 28(6): 616-627. (in Chinese) 林宇光, 盧明科, 洪凌仙. 我國(guó)棘球絳蟲(chóng)及棘球蚴病研究進(jìn)展[J]. 中國(guó)人獸共患病學(xué)報(bào), 2012, 28(6): 616-627.
[40]Vuitton D, Zhou H, Bresson-Hadni S, et al. Epidemiology of alveolar echinococcosis with particular reference to China and Europe[J]. Parasitology, 2003, 127(S1): S87-S107. DOI: 10.1017/S0031182003004153
[41]Piao RZ. Sureying the abundance of Tibetan sand sox in Tibet[J]. Chin Wildlife, 1989, 52(6): 22-26. (in Chinese) 樸仁珠. 藏狐種群數(shù)量調(diào)查[J]. 野生動(dòng)物, 1989, 52(6): 22-26.
[42]He JG, Liu FJ. Epidemiological survey on hydatidosis in Tibitan region of western SichuanⅡ.infection situation among domestic and wild animals[J]. Chin J Zoonoses, 2000, 16(5): 62-65. (in Chinese) 何金戈, 劉鳳潔. 四川西部藏區(qū)包蟲(chóng)病流行病學(xué)研究: Ⅱ. 牲畜及野生動(dòng)物兩型包蟲(chóng)病感染狀況調(diào)查[J]. 中國(guó)人獸共患病雜志, 2000, 16(5): 62-65.
[43]Li W, Xu KJ, Xu GR, et al. Current status on prevalence and control of echinococcosis in Ganzi Tibetan Autonomous Prefecture[J]. Int J Med Parasitic Dis, 2011, 38(5): 315-317. (in Chinese) 李偉, 徐克均, 許光榮, 等. 甘孜藏族自治州棘球蚴病的流行和防控現(xiàn)狀[J]. 國(guó)際醫(yī)學(xué)寄生蟲(chóng)病雜志, 2011, 38(5): 315-317.
[44]Qiu JM, Liu DL. Epidemiological study on alveolar hydatid disease in Qinghai-Xizang plateau[J]. J Pract Parasitic Dis, 1995, 3(3): 106-109. (in Chinese) 邱加閩, 劉大倫. 青藏高原泡球蚴病流行病學(xué)研究[J]. 實(shí)用寄生蟲(chóng)病雜志, 1995, 3(3): 106-109.
[45]Van Dyke S, Strahan R. The mammals of Australia[M]. Sydney: New Holland, 2008.
[46]Zhenghuan W, Xiaoming W, Xiaoqing L. Echinococcosis in China, a review of the epidemiology ofEchinococcusspp[J]. Ecohealth, 2008, 5(2): 115-126. DOI: 10.1007/s10393-008-0174-0
[47]Wang H, Zhang JX. Epidemiologic survey and analysis on echinococcosis in humans and animals from 1995 to 2005 in Qinghai province[J]. Chin J Zoonoses, 2007, 22(12): 1129-1134. (in Chinese) 王虎, 張靜宵. 1995-2005年青海省棘球蚴病流行病學(xué)調(diào)查分析[J]. 中國(guó)人獸共患病學(xué)報(bào), 2007, 22(12): 1129-1134.
[48]Ni XW, Yan HB, Lou ZZ, et al. Progress in the detection methods of wild animals infected with Echinococcus species[J]. Chin J Vet Sci, 2012, 42(1): 100-106. (in Chinese) 倪興維, 閆鴻斌, 婁忠子, 等. 野生動(dòng)物棘球絳蟲(chóng)感染檢測(cè)方法的研究進(jìn)展[J]. 中國(guó)獸醫(yī)科學(xué), 2012, 42(1): 100-106.
[49]Fu Y, Martinez C, Chalar C, et al. A new potent antigen from Echinococcus granulosus associated with muscles and tegument[J]. Mol Biochem Parasit, 1999, 102(1): 43-52. DOI: 10.1016/S0166-6851(99)00084-5
[50]Fu Y, Saint-Andre Marchal I, Marchal T, et al. Cellular immune response of lymph nodes from dogs following the intradermal injection of a recombinant antigen corresponding to a 66 kDa protein of Echinococcus granulosus[J]. Vet Immunol Immunop, 2000, 74(3): 195-208. DOI: 10.1016/S0165-2427(00)00171-9
[51]Zhang W, Li J, You H, et al. A gene family from Echinococcus granulosus differentially expressed in mature adult worms[J]. Mol Biochem Parasit, 2003, 126(1): 25-33. DOI: 10.1016/S0166-6851(02)00241-4
[52]Zhang W, Zhang Z, Shi B, et al. Vaccination of dogs against Echinococcus granulosus the cause of cystic hydatid disease in humans[J]. J Infect Dis, 2006, 194(7): 966-974. DOI: 10.1086/506622
[53]Chabalgoity JA, Moreno MA, Carol H, et al. Salmonella typhimurium as a basis for a live oral Echinococcus granulosus vaccine[J]. Vaccine, 2000, 19(4): 460-469. DOI: 10.1016/S0264-410X(00)00197-3
[54]Petavy AF, Hormaeche C, Lahmar S, et al. An oral recombinant vaccine in dogs against Echinococcus granulosus, the causative agent of human hydatid disease: a pilot study[J]. PLoS Neglect Trop D, 2008, 2(1): e125. DOI: 10.1371/journal.pntd.0000125
[55]Zhang W, Zhang Z, Yimit T, et al. A pilot study for control of hyperendemic cystic hydatid disease in China[J]. PLoS Neglect Trop D, 2009, 3(10): e534. DOI: 10.1371/journal.pntd.0000534
[56]Huang L, Huang Y, Wang Q, et al. An agent-based model for control strategies of Echinococcus granulosus[J]. Vet Parasitol, 2011, 179(1): 84-91. DOI: 10.1016/j.vetpar.2011.01.047
[57]Zhang W, Zhang Z, Wu W, et al. Epidemiology and control of echinococcosis in Central Asia, with particular reference to the People's Republic of China[J]. Acta Trop, 2014, DOI: org/10.1016/j.actatropica.2014.03.014 (In press).
[58]Cheng L, Guo S, Wu W. Characterization and in vitro release of praziquantel from poly (□-caprolactone) implants[J]. Int J Pharm, 2009, 377(1): 112-119. DOI: 10.1016/j.ijpharm.2009.05.007
[59]Cheng L, Lei L, Guo S. In vitro and in vivo evaluation of praziquantel loaded implants based on PEG/PCL blends[J]. Int J Pharm, 2010, 387(1): 129-138. DOI: 10.1016/j.ijpharm.2009.12.010
[60]Torgerson PR. Mathematical models for the control of cystic echinococcosis[J]. Parasitol Int, 2006, 55(suppl): S253-S258. DOI: 10.1016/j.parint.2005.11.037
[61]Gebremichael D, Feleke A, Tesfamaryam G, et al. Knowledge, attitude and practices of hydatidosis in Pastoral community with relation to public health risks in Ayssaita, northeastern of Ethiopia[J]. Global Veterinaria, 2013, 11(3): 272-279. DOI: 10.5829/idosi.gv.2013.11.3.7570
[62]Qaqish A, Nasrieh M, Al-Qaoud K, et al. The seroprevalences of cystic echinococcosis, and the associated risk factors, in rural-agricultural, bedouin and semi-bedouin communities in Jordan[J]. Ann Trop Med Parasit, 2003, 97(5): 511-520. DOI: org/10.1179/000349803225001436
[63]Luke N, Francis E, Micheal LO, et al. A survey of potential risk factors associated with cystic echinococcosis in pastoral communities in Kasese distract, Uganda[J]. Adv Trop Med Pub Health Int, 2013, 3(1): 10-24.
[64]Ernest E, Nonga H, Kassuku A, et al. Hydatidosis of slaughtered animals in Ngorongoro district of Arusha region, Tanzania[J]. Trop Anim Health Pro, 2009, 41(7): 1179-1185. DOI: 10.1007/s11250-008-9298-z
[65]Wang Q, Huang Y, Huang L, et al. Review of risk factors for human echinococcosis prevalence on the Qinghai-Tibet Plateau, China: a prospective for control options[J]. Infect Dis Poverty, 2014, 3(1): 3.
[66]Xiao N, Yao J, Ding W, et al. Priorities for research and control of cestode zoonoses in Asia[J]. Infect Dis Poverty, 2013, 2(1): 16.
[67]Torgerson P, Ziadinov I, Aknazarov D, et al. Modelling the age variation of larval protoscoleces of Echinococcus granulosus in sheep[J]. Int J Parasitol, 2009, 39(9): 1031-1035. DOI: 10.1016/j.ijpara.2009.01.004
[68]Kachani M, Heath D. Dog population management for the control of human echinococcosis[J]. Acta Trop, 2014, 139: 99-108. DOI: 10.1016/j.actatropica.2014.05.011
[69]Yang YR, McManus DP, Huang Y, et al. Echinococcus granulosus infection and options for control of cystic echinococcosis in Tibetan communities of Western Sichuan province, China[J]. PLoS Neglect Trop D, 2009, 3(4): e426. DOI: 10.1371/journal.pntd.0000426
[70]Yang YR, Clements AC, Gray DJ, et al. Impact of anthropogenic and natural environmental changes on Echinococcus transmission in Ningxia Hui Autonomous Region, the People's Republic of China[J]. Parasite Vector, 2012, 5(1): 1-9. DOI: 10.1186/1756-3305-5-146
[71]Fontaine E, Fontbonne A. Clinical use of GnRH agonists in canine and feline species[J]. Reprod Domest Anim, 2011, 46(2): 344-353. DOI: 10.1111/j.1439-0531.2010.01705.x
[72]Yu SH. Global progress of echinococcosis control and an insight to the national control program[J]. Chin J Parasitol Parasit Dis, 2008, 26(4): 241-244. (in Chinese) 余森海. 棘球蚴病防治研究的國(guó)際現(xiàn)狀和對(duì)我們的啟示[J]. 中國(guó)寄生蟲(chóng)學(xué)與寄生蟲(chóng)病雜志, 2008, 26(4): 241-244.
[73]Li J. Application of the model in predicting the epidemic of hydatid disease[J]. Chin J Zoonoses, 2012, 28(5): 492-495. (in Chinese) 李俊. 模型在棘球蚴病流行預(yù)測(cè)中的應(yīng)用[J]. 中國(guó)人獸共患病學(xué)報(bào), 2012, 28(5): 492-495.
[74]Sullivan D. Geographical information science: critical GIS[J]. Prog Hum Geogr, 2006, 30(6): 783. DOI: 10.1177/0309132506071528
[75]Atkinson JAM, Gray DJ, Clements AC, et al. Environmental changes impacting Echinococcus transmission: research to support predictive surveillance and control[J]. Global Change Biol, 2013, 19(3): 677-688. DOI: 10.1111/gcb.12088
[76]Giraudoux P, Raoul F, Pleydell D, et al. Drivers ofEchinococcusmultilocularistransmission in China: small mammal diversity, landscape or climate?[J]. PLoS Neglect Trop D, 2013, 7(3): e2045. DOI: 10.1371/journal.pntd.0002045
[77]Yang YR, Liu T, Bai X, et al. Natural infection of the ground squirrel (Spermophilus spp.) with Echinococcus granulosus in China[J]. PLoS Neglect Trop D, 2009, 3(9): e518. DOI: 10.1371/journal.pntd.0000518
[78]Giraudoux P, Pleydell D, Raoul F, et al. Transmission ecology ofEchinococcusmultilocularis: what are the ranges of parasite stability among various host communities in China?[J]. Parasitol Int, 2006, 55: S237-S246. DOI: 10.1016/j.parint.2005.11.036
[79]Craig PS, McManus DP, Lightowlers MW, et al. Prevention and control of cystic echinococcosis[J]. Lancet Infect Dis, 2007, 7(6): 385-394. DOI: 10.1016/S1473-3099(07)70134-2
[80]Craig PS, Larrieu E. Control of cystic echinococcosis/hydatidosis: 1863-2002[J]. Adv Parasit, 2006, 61: 443-508. DOI: 10.1016/S0065-308X(05)61011-1
Problems and challenges in prevention and control of animal hydatid disease
SONG Xing-ju,HU Dan-dan,YANG Guang-you
(CollegeofVeterinaryMedicine,SichuanAgriculturalUniversity,Ya’an625014,China)
Hydatid disease does seriously harm to human and livestock, and causes huge economic losses to the livestock industry. Despite the fact that people have made some success in prevention and control of animal hydatid disease after making great efforts during the past few decades, however, there still remain many problems and challenges. In order to facilitate the research in animal hydatid disease in China, here we reviewed the problems and challenges in the prevention and control of this disease and put forward several proposals on the treatment and management of dogs, immunization, diagnose, surveillance, etc.
animal hydatid disease; diagnose; surveillance; vaccine; prevention and control; challenges
Yang Guang-you; Email: guangyou1963@aliyun.com
10.3969/cjz.j.issn.1002-2694.2015.03.017
四川農(nóng)業(yè)大學(xué)學(xué)科建設(shè)雙支計(jì)劃項(xiàng)目(Sc-0357)
楊光友,Email:guangyou1963@aliyun.com
四川農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院,雅安 625014
R383.3
A
1002-2694(2015)03-0264-08
Funded by the Sichuan Agricultural University Discipline Construction of Double Supporting Project (No. Sc-0357)
2014-09-19;
2014-12-01