黃秋綺,張慶國,徐世元
(南方醫(yī)科大學珠江醫(yī)院 麻醉科,廣東 廣州 510280)
?
糖尿病患者局麻藥敏感性的研究進展
黃秋綺,張慶國,徐世元Δ
(南方醫(yī)科大學珠江醫(yī)院 麻醉科,廣東 廣州 510280)
局麻藥具有神經(jīng)毒性作用,可導致患者出現(xiàn)暫時性甚至是永久性的感覺和運動功能障礙,而區(qū)域神經(jīng)阻滯是糖尿病患者四肢及下腹部手術時常用的麻醉方法,局麻藥在其身上廣泛應用。但是糖尿病患者對局麻藥的敏感性尚未明確。本文將就此問題進行探討,展開綜述。
局麻藥;糖尿??;神經(jīng)毒性;蛛網(wǎng)膜下腔阻滯
隨著患病率的逐年上升,糖尿病人群日漸龐大。而相對于非糖尿病患者,糖尿病患者面對著更高的手術比率[1],更大的手術風險。為了避免全身麻醉可能帶來的心肺相關并發(fā)癥以及胰島素抵抗作用[2],減少血糖波動,麻醉醫(yī)生更多地選擇了區(qū)域神經(jīng)阻滯作為糖尿病患者四肢及下腹部手術的麻醉方法。然而,盡管局麻藥的臨床應用已有一百多年的歷史,但對于其在糖尿病患者的應用,還認識不足。所有局麻藥在高濃度時均具有神經(jīng)毒性[3],甚至臨床常規(guī)濃度時也有潛在毒性[4],但糖尿病患者對局麻藥的神經(jīng)毒性是否更敏感仍不能確定。
1.1 臨床研究 在臨床上,椎管內(nèi)阻滯引起的嚴重神經(jīng)系統(tǒng)并發(fā)癥很少見。Moen等[4]報道,151,000例椎管內(nèi)麻醉后出現(xiàn)嚴重神經(jīng)系統(tǒng)并發(fā)癥127例(0.008%)。Brull等[5]對32個研究進行統(tǒng)計分析,蛛網(wǎng)膜下腔阻滯和硬膜外阻滯后神經(jīng)并發(fā)癥的發(fā)生率分別為0.04%和0.002%。然而,Hebl等[6]回顧性調(diào)查發(fā)現(xiàn),合并周圍感覺運動神經(jīng)病變或糖尿病性神經(jīng)病的患者接受椎管內(nèi)麻醉或鎮(zhèn)痛后發(fā)生嚴重神經(jīng)功能障礙的風險為0.4%,遠高于普通人群。而近年來,也有個案[7-12]報道術前合并糖尿病神經(jīng)病變的患者應用常規(guī)劑量的局麻藥區(qū)域神經(jīng)阻滯后,神經(jīng)系統(tǒng)功能惡化。這提示,術前已存在的神經(jīng)系統(tǒng)疾病,尤其是糖尿病周圍神經(jīng)病變,可能是術后神經(jīng)損傷的重要危險因素[13]。
有學者[14]回顧發(fā)現(xiàn),以感覺異常為標志,糖尿病患者鎖骨上臂叢神經(jīng)阻滯的成功率高于非糖尿病患者。另外,Echevarria等[15]對糖尿病患者予0.5%等比重布比卡因行蛛網(wǎng)膜下腔阻滯,發(fā)現(xiàn)感覺、運動起效時間較非糖尿病患者縮短,持續(xù)時間相對延長。Cuvillon等[16]的前瞻性研究發(fā)現(xiàn),2型糖尿病患者與非糖尿病患者相比,坐骨神經(jīng)阻滯的感覺、運動阻滯持續(xù)時間均顯著延長。而Sertoz等[17]則發(fā)現(xiàn)相比控制良好的糖尿病患者,血糖控制不佳的糖尿病患者坐骨神經(jīng)阻滯的阻滯持續(xù)時間有所延長。不過,以上研究都觀察到糖尿病患者局麻藥的神經(jīng)阻滯時效延長,但并沒有觀察到局麻藥的神經(jīng)毒性損傷癥狀。
1.2 相關的動物實驗研究 最早在1992年,Kalichmann和Calcutt[18]就曾報道,長時間或高濃度的普魯卡因和利多卡因?qū)μ悄虿∈蟮淖巧窠?jīng)有強毒性,可以導致神經(jīng)纖維水腫、軸索變性和脫髓鞘,糖尿病鼠局麻藥的神經(jīng)毒性和隨后神經(jīng)損傷的風險增加。2010年,Kroin等[19]予糖尿病鼠0.5%羅哌卡因坐骨神經(jīng)阻滯后其坐骨神經(jīng)產(chǎn)生軸索變性及髓鞘改變。而2年后,Kroin[20]發(fā)現(xiàn),鞘內(nèi)注射0.75%布比卡因或者2%利多卡因(加或不加腎上腺素)后,阻滯持續(xù)時間較非糖尿病鼠延長,但是并沒有在脊髓、神經(jīng)根及背根神經(jīng)節(jié)發(fā)現(xiàn)組織病理上較非糖尿病模型更有意義的損傷。同一年,他們又發(fā)現(xiàn),持續(xù)控制血糖的糖尿病鼠坐骨神經(jīng)阻滯的持續(xù)時間與非糖尿病鼠相似,較無控制血糖的糖尿病鼠縮短,但急性的血糖控制并不能縮短阻滯時間。這與Sertoz等[17]的臨床研究結(jié)果相一致,提示糖尿病患者局麻藥阻滯時間的延長與長時間的高血糖狀態(tài)相關。Lirk等[22]則發(fā)現(xiàn)2%利多卡因坐骨神經(jīng)阻滯(體內(nèi))后,阻滯前存在的亞臨床神經(jīng)病變導致阻滯持續(xù)時間的延長,但未能觀察到毒性損傷顯著的增加。
無論是否伴有神經(jīng)損傷癥狀,以上研究都發(fā)現(xiàn)糖尿病患者、動物區(qū)域神經(jīng)阻滯后,較非糖尿病患者、動物的阻滯時間延長。有學者將此歸因于糖尿病動物及患者的神經(jīng)細胞可能對局麻藥有更高的敏感性。其原因可能有以下幾點。
2.1 雙重擠壓效應假說 雙重擠壓效應[6](double-crush phenomenon,DCH),即已存在神經(jīng)損傷的患者,在另一點暴露于二次刺激時可能更易感。二次刺激包括各種毒性(如局麻藥神經(jīng)毒性),機械性(如穿刺針或?qū)Ч芤鸬膭?chuàng)傷),缺血性(如腎上腺素導致的血管收縮)危險因素,而這些往往與區(qū)域神經(jīng)阻滯相關。糖尿病患者的神經(jīng)細胞本已處于慢性缺血、缺氧環(huán)境中[18],神經(jīng)損傷可能已存在或潛在,其對局麻藥神經(jīng)毒性的耐受力顯著下降。糖尿病患者早中期已存在脊髓及周圍神經(jīng)的微循環(huán)障礙,而局麻藥可使血管發(fā)生持續(xù)性收縮,導致神經(jīng)缺血而發(fā)生損傷。與非糖尿病患者相比,糖尿病患者的神經(jīng)細胞對缺血更易感[23],更易受損。而且糖尿病所致的神經(jīng)細胞軸索變性與神經(jīng)細胞對局麻藥的敏感性的改變密切相關[24]。糖尿病神經(jīng)病變的程度越重,其對局麻藥的敏感性可能就越大。持續(xù)的高血糖狀態(tài)會加重糖尿病患者神經(jīng)的損傷,而感覺神經(jīng)傳導的改善跟糖化血紅蛋白水平的下降有關[25]。據(jù)Sertoz等[17]發(fā)現(xiàn),相比控制良好的糖尿病患者,血糖控制不佳的糖尿病患者坐骨神經(jīng)阻滯的持續(xù)時間延長,這可能與血糖控制不佳導致神經(jīng)纖維脫髓鞘,感覺、運動傳導速度下降有關。不過,也有學者[9,26]對DCH假說持懷疑態(tài)度,認為其未能得到更多的研究證實,而且糖尿病周圍神經(jīng)病變相關的循環(huán)、代謝機制非常復雜,不能僅以DCH這一假說解釋糖尿病患者對局麻藥的敏感性增加。這個假說仍需要更多的實驗及臨床研究來證實。
2.2 異常的局麻藥吸收 糖尿病患者本身存在微血管功能障礙[27],一方面其毛細血管基底膜增厚、血管內(nèi)皮細胞增生等可以減少局麻藥的吸收;另一方面糖尿病中后期微循環(huán)障礙時微血管內(nèi)血流減緩可減緩局麻藥的吸收;這2方面可導致一段時間內(nèi)局部組織保持相對更高的局麻藥濃度。Egleton等[28]發(fā)現(xiàn)鏈脲霉素誘導的高血糖小鼠的腦脊液代謝產(chǎn)物較普通小鼠減少,可能是糖尿病動物腰段椎管內(nèi)腦脊液容量或者清除率的下降,相對增加了局部組織局麻藥的濃度。而局麻藥毒性對神經(jīng)的損傷呈濃度依賴性,藥物濃度越高,損傷程度越重。
2.3 其他機制 有學者認為糖尿病患者神經(jīng)細胞離子平衡的破壞也是其對局麻藥敏感性增加的一個原因[16]。高血糖環(huán)境中,肌醇的攝取受到抑制,胞內(nèi)肌醇減少,從而導致Na+-K+-ATP酶活性下降[29],使神經(jīng)細胞膜內(nèi)外Na+梯度下降,導致了神經(jīng)傳導速度的降低[30-31]。另外,還有學者[15]認為糖尿病患者阻滯時效的延長可能跟術前其腦脊液的成份如葡萄糖等有關,通過改變了局麻藥在鞘內(nèi)的比重而增強阻滯作用。
綜上所述,糖尿病患者對局麻藥的敏感性增強這一理論仍有待更多的調(diào)查與研究。其可能是多途徑共同作用的結(jié)果,也可能還有其他的機制需要進一步的發(fā)現(xiàn)探討。
糖尿病周圍神經(jīng)病變和局麻藥神經(jīng)毒性的發(fā)生機制在氧化應激、細胞內(nèi)鈣離子超載、細胞內(nèi)信號轉(zhuǎn)導等方面有相似之處。這也可能是糖尿病患者對局麻藥神經(jīng)毒性的敏感性增強的分子機制。
3.1 氧化應激 高糖環(huán)境[32]和局麻藥[33]都可使活性氧族(reactive oxygen species,ROS)增加,引起線粒體功能障礙與內(nèi)質(zhì)網(wǎng)應激(endoplasmic reticulum stress,ERS),最終導致細胞的調(diào)亡[32-35]。
3.2 細胞內(nèi)鈣超載 高血糖可使N型Ca2+通道持續(xù)激活,Ca2+進入突觸前神經(jīng)末梢,Ca2+持續(xù)失衡及線粒體功能障礙誘導軸突變性,細胞興奮性增加,神經(jīng)元自發(fā)傳遞神經(jīng)沖動引起致痛性神經(jīng)遞質(zhì)釋放,從而導致糖尿病多發(fā)神經(jīng)病及痛性神經(jīng)病變的發(fā)生[36]。同樣,Gold等[37]發(fā)現(xiàn)局麻藥可引起細胞內(nèi)鈣離子濃度升高,且與神經(jīng)毒性作用相關,而在細胞外液中加入鈣選擇性螯合劑BAPTA使細胞外液鈣離子減少,則損傷的程度可明顯減輕。
3.3 細胞分裂素活化蛋白激酶系統(tǒng) 細胞分裂素活化蛋白激酶(p38 mitogen-activated protein kinases,p38 MAPKs)系統(tǒng)的激活,也是糖尿病神經(jīng)病變及局麻藥神經(jīng)毒性損傷的一條共同通路[13]。Lirk等[38]研究發(fā)現(xiàn),臨床常規(guī)濃度的利多卡因能誘導p38MAPK 通路的活化,通過激活p38 MAPK系統(tǒng)啟動了細胞凋亡,而聯(lián)合應用p38MAPK拮抗劑SB203580能明顯減輕這種作用。而研究發(fā)現(xiàn)高糖環(huán)境可激活MAPK家族中的c-Jun N-末端激酶(c-Jun N terminal kinases /stress activated protein kinases,JNKs/SAPKs)和p38,p38抑制物可抑制小鼠背跟神經(jīng)節(jié)中p38的激活和核轉(zhuǎn)錄[39],并可以觀察到糖尿病早期的神經(jīng)功能障礙的進展被減慢。
糖尿病患者應用局麻藥后神經(jīng)損傷風險較常人增大這一觀點已得到一定的認可,但由于缺乏大規(guī)模、多中心的研究,仍需要進一步證實。而這一現(xiàn)象的機制,需要更多研究去發(fā)現(xiàn)、探討。未來可針對糖尿病患者建立局麻藥的劑量與效應關系,分析風險獲益比以找到其最安全、適合的用法。有學者[40]以較低劑量的局麻藥(0.25%布比卡因)給糖尿病腎病患者行神經(jīng)阻滯,可達到足夠手術要求的麻醉效果。那么,糖尿病患者應用相對更低劑量或濃度的局麻藥即可達到預想的麻醉效果,也可減少出現(xiàn)神經(jīng)損傷或加重神經(jīng)病變的風險。還有,可通過聯(lián)合使用輔助用藥以減少局麻藥的用量,從而降低其局麻藥神經(jīng)毒性損傷的風險。另一方面,基礎研究發(fā)現(xiàn)p38 MAPK抑制劑的應用可以減弱糖尿病神經(jīng)病變[39]及局麻藥神經(jīng)毒性損傷[38]的程度。找到抑制其通路而起保護作用的藥物是值得研究的方向和期待的前景。
據(jù)目前的研究數(shù)據(jù),糖尿病患者發(fā)生局麻藥相關神經(jīng)并發(fā)癥的風險較小。但是,糖尿病患者對局麻藥的敏感性可能較非糖尿病患者增強。盡管這一觀點仍存在爭議,但提醒麻醉醫(yī)生對糖尿病患者實施區(qū)域阻滯麻醉前,要評估其神經(jīng)系統(tǒng)功能,權衡利弊,不能忽視糖尿病對局麻藥阻滯時效的影響以及神經(jīng)損傷的風險,并盡量避免使用加重局麻藥毒性的配伍及輔助用藥。期待更多的臨床證據(jù)能為本研究提供糖尿病患者安全的局麻藥使用標準,以及神經(jīng)毒性損傷的預防措施,給患者提供完善而安全的阻滯效果。
[1] Goldmann DR.Surgery in patients with endocrine dysfunction[J].Med Clin North Am,1987,71(3): 499-509.
[2] Williams BA,Murinson BB.Diabetes mellitus and subclinical neuropathy: a call for new paths in peripheral nerve block research[J].Anesthesiology,2008,109(3): 361-362.
[3] Williams BA,Tsui BYK,Hough K,et al.In Vitro Cytotoxicity Evaluation of Ropivacaine+Clonidine-Buprenorphine-Dexamethasone-Midazolam[C].American Society of Anesthesiologists Annual Meeting,San Diego,2010.
[4] Moen V,Dahlgren N,Irestedt L.Severe neurological complications after central neuraxial blockades in Sweden 1990-1999[J].Anesthesiology,2004,101(4): 950-959.
[5] Brull R.McCartney CJ.Chan VW.et al.Neurological complications after regional anesthesia: contemporary estimates of risk[J].Anesth Analg,2007,104(4): 965-974.
[6] Hebl JR,Kopp SL,Schroeder DR,et al.Neurologic complications after neuraxialanesthesia or analgesia in patients with preexisting peripheral sensorimotor neuropathy or diabetic polyneuropathy[J].Anesth Analg,2006,103(5): 1294-1299.
[7] Blumenthal S,Borgeat A,Maurer K,et al.Preexisting subclinical neuropathy as a risk factor for nerve injury after continuous ropivacaine administration through a femoral nerve catheter[J].Anesthesiology,2006,105(5): 1053-1056.
[8] Horlocker TT,O’Driscoll SW,Dinapoli RP.Recurring brachial plexus neuropathy in a diabetic patient after shoulder surgery and continuous interscalene block[J].Anesth Analg,2000,91(3): 688-690.
[9] Al-Nasser B.Toxic effects of epidural analgesia with ropivacaine 0.2% in a diabetic patient[J].J Clin Anesth,2004,16(3): 220-223.
[10] Lena P,Teboul J,Mercier B,et al.Motor deficit of the lower limbs and urinary incontinence following peridural anesthesia[J].Ann Fr Anesth Reanim,1998,17(9): 1144-1147.
[11] Waters JH,Watson TB,Ward MG.Conus medullaris injury following both tetracaine and lidocaine spinal anesthesia[J].J Clin Anesth,1996,8(8): 656-658.
[12] Angadi DS,Garde A.Subclinical neuropathy in diabetic patients: a risk factor for bilateral lower limb neurological deficit following spinal anesthesia?[J].J Anesth,2012,26(1): 107-110.
[13] Lirk P,Birmingham B,Hogan Q.Regional anesthesia in patients with preexisting neuropathy[J].Int Anesthesiol Clin,2011,49(4): 144-165.
[14] Gebhard RE,Nielsen KC,Pietrobon R,et al.Diabetes mellitus,independent of body mass index,is associated with a ‘higher success’ rate for supraclavicular brachial plexus blocks[J].Reg Anesth Pain Med,2009,34(5): 404-407.
[15] Echevarria M,Hachero A,Martinez A,et al.Spinal anaesthesia with 0.5% isobaric bupivacaine in patientswith diabetes mellitus: the influence of CSF composition on sensory and motor block[J].Eur J Anaesthesiol, 2008,25(12): 1014-1019.
[16] Cuvillon P,Reubrecht V,Zoric L,et al.Comparison of subgluteal sciatic nerve block duration in type 2 diabetic and non-diabetic patients[J].Br J Anaesth,2013,110(5): 823-830.
[17] Sertoz N,Deniz MN,Ayanoglu HO.Relationship between glycosylated hemoglobin level and sciatic nerve block performance in diabetic patients[J].Foot Ankle Int,2013,34(1): 85-90.
[18] Kalichman MW,Calcutt NA.Local anesthetic-induced conduction block and nerve fiber injury in streptozotocin-diabetic rats[J].Anesthesiology, 1992,77(5): 941-947.
[19] Kroin JS,Buvanendran A,Williams DK,et al.Local anesthetic sciatic nerve block and nerve fiber damage in diabetic rats[J].Reg Anesth Pain Med,2010,35(4): 343-350.
[20] Kroin JS,Buvanendran A,Tuman KJ,et al.Safety of Local Anesthetics Administered Intrathecally in Diabetic Rats[J].Pain Med,2012,13(6): 802-807.
[21] Kroin JS,Buvanendran A,Tuman KJ,Kerns JM.Effect of acute versus continuous glycemic control on duration of local anesthetic sciatic nerve block in diabetic rats[J].Reg Anesth Pain Med,2012,37(6): 595-600.
[22] Lirk P,Flatz M,Haller I,et al.In Zucker Diabetic Fatty rats,subclinical diabetic neuropathy increases in vivo lidocaine block duration but not in vitro neurotoxicity[J].Reg Anesth Pain Med,2012,37(6): 601-606.
[23] Nukada H,McMorran PD,Baba M,et al.Increased susceptibility to ischemia and macrophage activation in STZ-diabetic rat nerve[J].Brain Res,2011,1373: 172-182.
[24] Hong S,Morrow TJ,Paulson PE,et al.Early painful diabetic neuropathy is associated with differential changes in tetrodotoxin-sensitive and -resistant sodium channels in dorsal root ganglion neurons in the rat[J].J Biol Chem,2004,279(28): 29341-29350.
[25] Perkins BA,Dholasania A,Buchanan RA,et al.Short-term metabolic change is associated with improvement in measures of diabetic neuropathy: a 1-year placebo cohort analysis[J].Diabetic Med,2010,27(11): 1271-1279.
[26] Shibuya R,Kawai H,Yamamoto K.Neurophysiological study to assess the severity of each site through the motor neuron fiber in entrapment neuropathy[J].J Brachial Plex Peripher Nerve Inj,2009,17: 4-7.
[27] Shimizu F,Sano Y,Haruki H,et al.Advanced glycation end-products induce basement membrane hypertrophy in endoneurial microvessels and disrupt the blood-nerve barrier by stimulating the release of TGF-beta and vascular endothelial growth factor(VEGF) by pericytes[J].Diabetologia,2011,54(6): 1517-1526.
[28] Egleton RD,Campos CC,Huber JD,et al.Differential effects of diabetes on rat choroid plexus ion transporter expression[J].Diabetes,2003,52(6): 1496-1501.
[29] Callaghan BC,Cheng HT,Stables CL,et al.Diabetic neuropathy: clinical manifestations and current treatments[J].The Lancet Neurology,2012,11(6): 521-534.
[30] Zherebitskaya E,Schapansky J,Akude E,et al.Sensory neurons derived from diabetic rats have diminished internal Ca2+ stores linked to impaired reuptake by the endoplasmic reticulum[J].ASN Neuro,2012,4(1).DOI:10.1042/AN 20110038.
[31] Jolivalt CG,Fineman M,Deacon CF,et al.GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice[J].Diabetes Obes Metab,2011,13(11): 990-1000.
[32] Cameron NE.Role of endoplasmic reticulum stress in diabetic neuropathy[J].Diabetes,2013,62(3):696-697.
[33] Cela O,Piccoli C,Scrima R,et al.Bupivacaine uncouples the mitochondrial oxidative phosphorylation,inhibits respiratory chain complexes I and III and enhances ROS production: results of a study on cell cultures[J].Mitochondrion,2010,10(5): 487-496.
[34] Takahashi S,Izawa Y,Suzuki N.Astroglial pentose phosphate pathway rates inresponse to high-glucose environments[J].ASN Neuro,2012,4(2).DOI:10.1042/AN 20120002.
[35] Devarajan A,Grijalva VR,Bourquard N,et al.Macrophage paraoxonase 2 regulates calcium homeostasis and cell survival under endoplasmic reticulum stress conditions and is sufficient to prevent the development of aggravated atherosclerosis in paraoxonase 2 deficiency/apoE-/- mice on a Western diet[J].Mol Genet Metab,2012,107(3): 416-427.
[37] Gold MS,Reichling DB,Hampl KF,et al.Lidocaine toxicity in primary afferent neurons from the rat[J].J Pharmacol Exp Ther,1998,285(2): 413- 421.
[38] Lirk P,Haller I,Myers RR,et al.Mitigation of direct neurotoxic effects of lidocaine and amitriptyline by inhibition of p38 mitogen-activated protein kinase in vitro and in vivo[J].Anesthesiology,2006,104(6): 1266-1273.
[39] Stavniichuk R,Obrosov AA,Drel VR,et al.12/15-Lipoxygenase inhibition counteracts MAPK phosphorylation in mouse and cell culture models of diabetic peripheral neuropathy.[J].J Diabetes Mellitus,2013,3(3).doi: 10.4236/jdm.2013.33015.
[40] Kocum A,Turkoz A,Bozdogan N,et al.Femoral and sciatic nerve block with 0.25% bupivacaine for surgical management of diabetic foot syndrome: an anesthetic technique for high-risk patients with diabetic nephropathy[J].J Clin Anesth,2010,22(5): 363-366..
(編校:王冬梅)
Review of sensitivity of diabetics to local anesthetics
HUANG Qiu-qi, ZHANG Qing-guo, XU Shi-yuanΔ
(Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China)
Local anesthetics have neurotoxicity, which can lead to temporary or permanent sensory and motor dysfunction.And regional anesthesia is commonly used in diabetics undergoing limbs or lower abdominal surgery, so that local anesthetics were widely used in them. However local anesthetics sensitivity in patients with diabetics is not yet clear.In this paper, we will discuss the problem and make a summary.
local anesthetics; diabetes; neurotoxicity; spinal anesthesia
廣東省科技計劃項目(2012B031800264)
黃秋綺,女,博士在讀,研究方向:局麻藥神經(jīng)毒性,E-mail:terence0417@qq.com;徐世元,通訊作者,男,博士,主任醫(yī)師,博士生導師,研究方向:局麻藥神經(jīng)毒性,E-mail:xushiyuan355@163.com。
R587.1
A
1005-1678(2015)06-0165-04