• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Seepage and stress analysis of anti-seepage structures constructed with different concrete materials in an RCC gravity dam

    2015-01-16 01:21:19MingchoLiXinyuGuoJonthnShiZeioZhu
    Water Science and Engineering 2015年4期

    Ming-cho Li*,Xin-yu GuoJonthn Shi,Ze-io Zhu

    aState Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin 300072,PR China

    bCollege of Engineering,Louisiana State University,Baton Rouge,LA 70803,USA

    Seepage and stress analysis of anti-seepage structures constructed with different concrete materials in an RCC gravity dam

    Ming-chao Lia,*,Xin-yu Guoa,Jonathan Shib,Ze-biao Zhua

    aState Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin 300072,PR China

    bCollege of Engineering,Louisiana State University,Baton Rouge,LA 70803,USA

    This study used the fnite element method(FEM)to analyze the stress feld and seepage feld of a roller-compacted concrete(RCC)dam,with an upstream impervious layer constructed with different types of concrete materials,including three-graded RCC,two-graded RCC,conventional vibrated concrete(CVC),and grout-enriched vibrated RCC(GEVR),corresponding to the design schemes S1 through S4.It also evaluated the anti-seepage performance of the imperious layer in the four design schemes under the normal water level and food-check level.Stress feld analysis of a retaining section and discharge section shows that the maximum tensile stress occurs near the dam heel,the maximum compressive stress occurs near the dam toe,and the stress distributions in the four schemes can satisfy the stress control criteria.Seepage feld analysis shows that the uplift pressure heads in schemes S3 and S4 descend rapidly in the anti-seepage region,and that the calculated results of daily seepage fow under the steady seepage condition in these two schemes are about 30%-50%lower than those in the other two schemes,demonstrating that CVC and GEVR show better anti-seepage performance.The results provide essential parameters such as the uplift pressure head and seepage fow for physical model tests and anti-seepage structure selection in RCC dams. ?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    RCC gravity dam;Concrete partition;Impervious layer;FEM;Seepage feld;Stress feld

    1.Introduction

    A roller-compacted concrete(RCC)dam is constructed with the roller-compacted placement method in thin layers of dry lean concrete,composed of mixed sand aggregate and cement(USACE,1992).Its construction process is much simpler and faster than that of a conventional concrete dam (Yang and Shi,2010).At present,450 RCC dams over 30 m are operating in over 30 countries(Hansen,1997;Nagayama and Jikan,2003;Jia,2007).However,some RCC dams haveshown serious seepage problems,such as the Willow Creek RCC Gravity Dam,with a height of 56 m,which was built in 1982 in the USA(HWSTI,1987),and the Xibing RCC Gravity Dam,with a height of 63.5 m,which was built in 1985 in China(Ye et al.,2005).

    Although the permeability of RCC is very low and comparable to conventional concrete,the seepage features of an RCC dam is different from those of a conventional concrete dam(Banthia et al.,1992;Chai et al.,2005).Rolling and compacting dry lean concrete layer by layer causes the permeability of construction interfaces and joints to be relatively high,and seepage channels may even form in the dam body.In order to overcome this problem,an upstream impervious structure must be properly designed and constructed(Hong et al.,2014).Avariety of impervious structures have been used in RCC dams around the world.For example, some RCC dams were constructed with waterproofmembranes in the USA(Hansen,1997).In Japan,a layer of conventional vibrated concrete(CVC),used as an impervious layer,with a thickness of 2-3 m,has typically been poured on the upstream face of an RCC dam(Nagayama and Jikan, 2003).Polyvinyl chloride flms were used in the Trigomil Dam in Mexico and in the Copperfeld Dam in Australia (Jansen,1989).Grout-enriched vibrated RCC(GEVR)has been widely used in anti-seepage structures in RCC dams in China(Sun et al.,2004).

    Based on design functions,such as seepage control,crack resistance,and frost resistance,a gravity dam body can be partitioned into different parts(Zhou and Dang,2011),as shown in Fig.1.

    The fnite element method(FEM)is currently used to simulate complex geometrical shapes and boundary conditions,and two-dimensional(2D)or three-dimensional(3D) models are used to analyze the thermal stress and cracks in concrete dams.Luna and Wu(2000)developed a 3D fnite element program to simulate the temperature and stress changes in the construction process of an RCC gravity dam. Chen et al.(2003)conducted a 3D thermal stress analysis of a high RCC dam and predicted the internal temperature distribution of the dam body.Bayagoob et al.(2010)performed a thermal stress analysis of an RCC arch dam by taking into account the construction sequence,environmental temperature change,and wind speed.Gaspar et al.(2014)modeled the temperature feld of an RCC gravity dam based on FEM simulation.Some studies have been performed focusing on cracking analysis.Cervera et al.(2000)assessed the risk of tensile cracking through numerical simulation of the construction process of an RCC dam.Li et al.(2010)used a nonlinear FEM to obtain the crack length of the foundation surface of a gravity dam.Cao et al.(2012)simulated thermal cracks in a concrete overfow dam using the 3D FEM.Zhang et al.(2013)conducted a seismic cracking analysis of a concrete gravity dam based on an extended FEM.However, research on numerical analysis of the impervious layer in an RCC dam is limited.Chai et al.(2005)proposed a mathematical model for analysis of coupled seepage and stress felds in RCC dams.Xie and Chen(2005)used a 3D fnite element relocating mesh method to simulate the temperature feld of impervious layers of different thicknesses,constructed with different materials,in an RCC dam.

    In practice,there are some limitations in the design scheme of an upstream impervious layer determined by model experiments or analogies.The numerical simulation analysis method can help contrast and evaluate design schemes.The purpose of this research is to compute and evaluate the stress and seepage felds of different anti-seepage designs in an RCC dam.It covers the following issues:(1)analysis of concrete materials used in four different anti-seepage design schemes, (2)stress feld analysis of the four schemes,and(3)evaluation of the anti-seepage effect of the four schemes.

    2.Anti-seepage design schemes of RCC dam

    The Huangdeng RCC Gravity Dam,currently under construction and located on the Lancang River in Southwest China,was selected as a case study.Its maximum height is 203 m,and the crest length is 464 m.The dam body is divided into 20 sections,as shown in Fig.2,of which sections 1 through 7 and sections 12 through 15 are the retaining sections;sections 8 and 11 are designed for food discharge,with an outlet at the bottom in each section;sections 9 and 10 are also discharge sections;and sections 16 through 20 are the water intake sections.

    Four anti-seepage design schemes were studied for the project,as shown in Table 1.The concrete materials used in parts I,IV,V,and VI,were the same for each of the schemes, with the main difference lying in the concrete materials used in parts II and III.There was no special design for the impervious layer in scheme S1,and three-graded RCC were used in parts II and III.The impervious layer was specially designed in schemes S2,S3,and S4,in which two-gradedRCC,CVC,and GEVR were used,respectively.The parameters of different materials are listed in Table 2.

    Fig.1.Typical parts in RCC gravity dam body.

    Fig.2.Huangdeng RCC Gravity Dam.

    Table 1 Four anti-seepage design schemes using different concrete materials

    Table 2 Parameters of different concrete materials

    In order to evaluate the anti-seepage performance of the impervious layer in these design schemes,a typical retaining section(section 5)with a maximum height of 110 m and a discharge section(section 8)with a maximum height of 200 m were selected for stress and seepage analyses with FEM.

    3.Finite element simulation method

    3.1.Simulation of dam stress feld

    A gravity dam maintains its stability relying on its body weight,with a balance reached between the compressive stress induced by its weight and the tensile stress induced by the water pressure at the heel.It is important that the tensile stress meets the following requirements:(1)the distribution area of the frst principal tensile stress σ1in the foundation does not exceed the center line of the curtain;or(2)the total length of the tensile stress zone at the dam heel and toe does not exceed 10%of the bottom width of the dam(Zhou and Dang,2011; Zhou and Chang,2002).

    FEM is used under three basic assumptions(Rombach, 2011):(1)cracking may occur in thex,y,andzdirections; (2)if cracking occurs,the smeared crack model,a plastic concrete model,will be used;and(3)concrete is initially isotropic.

    The stress constitutive equation is constructed as a multilinear kinematic hardening plasticity model:

    where σcand εcare the compressive stress and strain of an element,respectively;fcis the peak pressure;and ε0and εcuare the peak strain and ultimate compressive strain, respectively.

    The displacement equation of an element is obtained through the generalized Hooke law and the virtual work principle as follows:

    where ueis the elementary displacement vector,N is the shape function matrix,and δ is the nodal displacement matrix.

    Any node of an element is subject to two forces:the internal load induced by element deformation and the external load.They are balanced if the composite force is zero. Therefore,the total equilibrium equation can be formulated as follows:

    where K is the global stiffness matrix,and P is the global nodal force matrix.

    Eq.(3)can be solved with the matrix inversion method,and the nodal displacement matrix is K-1P.The strain and stress at each element can be obtained by

    where B is the elementary strain matrix,D is the elementary elasticity modulus matrix,F is the elementary force matrix,k is the elementary stiffness matrix,and σ and ε are the elementary stress and strain vectors,respectively.

    3.2.Simulation of dam seepage feld

    Seepage fow can be simulated using ANSYS(ANSYS Inc.,2009).The goal is to determine the free surface of a seepage feld and a seepage channel by solving the water head function.Seepage analysis of RCC materials is based on Darcy's law(Freeze,1994):

    wherevis the average velocity,QSis the seepage fow,Ais the cross-sectional area,ksis the permeability coeffcient,his the piezometric head,lis the seepage path length,andJis the seepage gradient.

    The differential equation of a steady seepage feld is whereksx,ksy,andkszare the permeability coeffcients in thex,y,andzdirections.

    The boundary conditions are as follows:

    where Γ1and Γ2are the initially known boundaries for water head and fow analysis,respectively;f1(x,y,z)is the initial water head boundary condition at boundary Γ1;ksnis the permeability coeffcient in the normal direction of boundary Γ2;andf2(x,y,z)is the initial fow boundary condition at boundary Γ2.

    The computation is performed using the birth-death element technology and the self-adaptive mesh technique in ANSYS.The water head of a free surface is equal to the atmospheric pressure.Thus,the elements below the free surface are killed,and the elements above the free surface are activated.The birth or death features of elements are adjusted and recalculated until the expected accuracy is satisfed.

    4.Results and discussion

    4.1.Finite element model under loading condition

    The 3D fnite element model of the dam is shown in Fig.3. The meshes of the dam foundation were generated through uniform mapping.The meshes were divided using the sweeping method in the regular parts of the dam body,and free meshing was used in the irregular dam parts,including the non-overfow dam section with high varying rates of curvature. In addition,sparse meshes were used in the parts with low stress,such as the upper part of the dam and the part near the dam foundation,in order to reduce the computation time. However,at the bottom of the dam,especially at the toe and heel,the compressive and tensile stresses were high.Thus,the meshes there were refned to improve the accuracy.

    Fig.3.Three-dimensional mesh model.

    The main loads of the dam under two different conditions are as follows:for the condition at the normal water level,the loads include the gravity,hydrostatic pressure,uplift pressure, silt pressure,wave pressure,and temperature load;for the condition at the food-check level,hydrodynamic pressureoccurs in addition to the loads described above.The meshes of sections 5 and 8 are shown in Fig.4,where different colors refer to different materials,and lines with arrows show the direction and distribution of the hydrostatic pressure and uplift pressure.The hydrostatic pressure and uplift pressure are linearly distributed along the edge of the dam,as indicated in Fig.4.The degrees of freedom at the bottom are determined by the normal constraint condition.The mechanical parameters of the concrete materials are obtained from feld tests and analyses(Gu et al.,2010).

    4.2.Stress feld analysis

    Fig.4.Finite element models of retaining section 5 and discharge section 8 under loading condition.

    Fig.5.Stress distributions in retaining section 5 under different water levels in scheme S4.

    Fig.6.Stress distributions in discharge section 8 under different water levels in scheme S4.

    Figs.5 and 6 show the stress distributions in sections 5 and 8 under the normal water level and food-check level in scheme S4,where σ1and σ3are the frst and third principal stresses,respectively.It can be found that the maximum tensile stress occurs near the dam heel,as shown in Figs.5(a) and(b),and the maximum compressive stress occurs near the dam toe,as shown in Figs.5(c)and(d).The stress results of retaining section 5 and discharge section 8 in the four schemes under the normal water level and food-check level are listed in Tables 3 and 4,respectively,where σ1tpand σ3tpare the maximum values of the frst and third principal tensile stresses,respectively,σ1cpand σ3cpare maximum values of the frst and third principal compressive stresses,respectively, and the width ratio is the ratio of the total length of the tensile stress zone to the bottom width of the dam.From Tables 3 and 4,we can see that the maximum values in differentschemes are almost the same for the same water level,and these maximum values spread across a reasonable range according to engineering practice.Compared with the results under the normal water level,the stress distributions under the food-check level are similar but with higher values,as expected due to higher loads induced by higher water levels. The width ratios in Tables 3 and 4 show that the stress distributions in the four schemes can meet the stress control criteria given in Section 3.1.The stress results provide a basis for seepage analysis.

    Table 3 Stress results of retaining section 5 in different schemes.

    Table 4 Stress results of discharge section 8 in different schemes.

    4.3.Seepage feld analysis

    Since the results under the normal water level and foodcheck level are similar,the following analysis focuses on the results under the normal water level.The water head distributions in retaining section 5 and discharge section 8 under the steady seepage condition are shown in Figs.7 and 8,respectively.The uplift pressure head variations in two typical cutting planes in the four schemes are compared,as shown in Fig.9, where the horizontal axis means the distance from the upstream side along the transverse direction of the dam foundation.

    Without a special design of the impervious layer in scheme S1,the attenuation of water head along the transverse direction of the dam foundation is slow and linear,as shown in Figs.7(a)and 9.With seepage fow penetrating in the direction perpendicular to the equipotential line,water permeates the dam body,which may cause hydraulic fractures.Figs.7 and 8 show that the water head distributions in schemes S3 and S4 are almost the same,and the water head descends rapidly in the impervious layer in schemes S2 through S4.Compared with the impervious layer in scheme S1,the specially designed impervious layers in schemes S2 through S4 can experience higher water pressure,while the dam body suffers lower water head.In addition,the water head contour trend from S1 to S4 indicates that the direction of seepage fow will change from the direction parallel to the dam foundation to that perpendicular to the dam foundation,which is benefcial to dam safety.Considering that potential seepage channels occur when two-graded RCC is used in the impervious layer,CVC orGEVR ismore suitable forupstream anti-seepage structures.

    The computed daily seepage fows through retaining section 5 and discharge section 8 in the four schemes under the normal water level are listed in Table 5.The rate of seepage fow in scheme S1 is greater than those in the other three schemes,and the values in schemes S3 and S4 are very close and even lower than that in section S2,indicating that schemes S3 and S4 are more suitable for the upstream anti-seepage structure.

    Fig.7.Water head distributions in retaining section 5 under normal water level in different schemes.

    Fig.8.Water head distributions in discharge section 8 under normal water level in different schemes.

    Fig.9.Comparison of uplift pressure head curves in four schemes for retaining section 5 and discharge section 8.

    Table 5 Comparison of seepage fows through retaining section 5 and discharge section 8 under normal water level in four schemes.

    5.Conclusions

    Based on the concrete partitioning of a gravity dam,four schemes for the impervious layer in an RCC dam were designed using different concrete materials,which are threegraded RCC and two-graded RCC,CVC,and GEVR, respectively.

    Three-dimensional FEM was used to compute the stress and seepage felds of two typical dam sections under complex conditions,including one retaining section and one discharge section.The results of the stress feld analysis under the normal water level and food-check level show that the maximum tensile stress occurs near the dam heel,the maximum compressive stress occurs near the dam toe,and the stress distributions in the four design schemes can meet the stress control criteria of an RCC dam.However,according to the results of the water head distributions and seepage fows under the steady seepage condition,the imperviouslayer built with three-graded RCC shows a poor seepage control effect.The two-graded RCC layer can improve the anti-seepage performance but seepage channels may develop. The CVC and GEVR impervious layers show a better performance with rapidly descending water heads in the antiseepage region and lower rates of seepage fow.They are suitable for the upstream anti-seepage structure in an RCC dam.The results can provide useful information for selecting anti-seepage structures in RCC dams and for calibrating results from physical models.

    ANSYS Inc.,2009.ANSYS User's Guide,Release 12.1.ANSYS Inc., Canonsburg.

    Banthia,N.,Pigeon,M.,Marchand,J.,Boisvert,J.,1992.Permeability of roller compacted concrete.J.Mater.Civ.Eng.4(1),27-40.http:// dx.doi.org/10.1061/(ASCE)0899-1561(1992)4:1(27).

    Bayagoob,K.H.,Noorzaei,J.,Abdulrazeg,A.A.,Al-Karni,A.A.,Jaafar,M.S., 2010.Coupled thermal and structural analysis of roller compacted concrete arch dam by three-dimensional fnite element method.Struct.Eng.Mech. 36(4),401-419.http://dx.doi.org/10.12989/sem.2010.36.4.401.

    Cao,F.J.,Fang,G.H.,Ma,X.G.,Hu,Z.N.,2012.Simulation analysis of crack cause of concrete overfow dam for Hadashan Hydro Project by 3-D FEM. Syst.Eng.Procedia 2(3),48-54.http://dx.doi.org/10.1016/j.sepro.2011. 11.007.

    Cervera,M.,Oliver,J.,Prato,T.,2000.Simulation of construction of RCC dams,II:stress and damage.J.Struct.Eng.126(9),1062-1069.http:// dx.doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1062).

    Chai,J.R.,Li,K.H.,Wu,Y.Q.,Li,S.Y.,2005.Coupled seepage and stress felds in roller compacted concrete dam.Commun.Numer.Methods Eng. 21(1),13-21.http://dx.doi.org/10.1002/cn m.722.

    Chen,Y.L.,Wang,C.J.,Li,S.Y.,Chen,L.J.,2003.The effect of construction designs on temperature feld of a roller compacted concrete dam:A simulation analysis by a fnite element method.Can.J.Civ.Eng.30(6), 1153-1156.http://dx.doi.org/10.1139/l03-076.

    Freeze,R.A.,1994.Henry Darcy and the fountains of Dijon.Ground Water 32(1),23-30.http://dx.doi.org/10.1111/j.1745-6584.1994.tb00606.x.

    Gaspar,A.,Lopez-Caballero,F.,Modaressi-Farahmand-Razavi,A.,Gomes-Correia,A.,2014.Methodology for a probabilistic analysis of an RCC gravity dam construction:Modelling of temperature,hydration degree and ageing degree felds.Eng.Struct.65,99-110.http://dx.doi.org/10.1016/ j.engstruct.2014.02.002.

    Gu,C.S.,Li,B.,Xu,G.L.,Yu,H.,2010.Back analysis of mechanical parameters of roller compacted concrete dam.Sci.China Technol.Sci.53(3), 848-853.http://dx.doi.org/10.1007/s11431-010-0053-0.

    Hansen,K.D.,1997.Current RCC dam activity in the USA.Hydropower Dams 4(5),62-65.

    Hong,Y.W.,Du,C.B.,Jiang,S.Y.,2014.Design Theory and Practice of High RCC Gravity Dam under Complex Conditions.Science Press,Beijing(in Chinese).

    HWS Technologies Inc.(HWSTI),1987.Annual Safety Inspection Report for Willow Creek Dam.HWS Technologies Inc.,Lincoln.

    Jansen,R.B.,1989.Advanced Dam Engineering for Design,Construction,and Rehabilitation.Springer,US,New York.

    Jia,J.S.,2007.New Progress on Roller Compacted Concrete Dams.China Water and Power Press,Beijing(in Chinese).

    Li,T.C.,Li,D.D.,Wang,Z.Q.,2010.Tensile reliability analysis for gravity dam foundation surface based on FEM and response surface method. Water Sci.Eng.3(2),233-240.http://dx.doi.org/10.3882/j.issn.1674-2370.2010.02.011.

    Luna,R.,Wu,Y.,2000.Simulation of temperature and stress felds during RCC dam construction.J.Constr.Eng.Manag.126(5),381-388.http:// dx.doi.org/10.1061/(ASCE)0733-9364(2000)126:5(381).

    Nagayama,I.,Jikan,S.,2003.30 years'history of roller-compacted concrete dams in Japan.In:Proceedings of 4th International Symposium on Roller Compacted Concrete.Madrid,pp.27-38.

    Rombach,G.A.,2011.Finite-element Design of Concrete Structures,second ed.ICE Publishing,London.

    Sun,G.Y.,Wang,S.Y.,Feng,S.R.,2004.High Roller Compacted Concrete Dams.China Electric Power Press,Beijing(in Chinese).

    U.S.Army Corps of Engineers(USACE),1992.Roller-compacted Concrete, Engineering Manual,No.1110-2-2006.U.S.Army Corps of Engineers, Washington,D.C.

    Xie,H.W.,Chen,Y.L.,2005.Determination of the type and thickness for impervious layer in RCC dam.Adv.Eng.Softw.36(8),561-566.http:// dx.doi.org/10.1016/j.advengsoft.2005.01.001.

    Yang,L.,Shi,J.J.,2010.Experimental study on the impact of rainfall on RCC construction.J.Constr.Eng.Manag.136(5),477-483.http://dx.doi.org/ 10.1061/(ASCE)CO.1943-7862.0000156.

    Ye,Y.X.,Liu,G.T.,Li,P.H.,Chen,F.Q.,2005.Dealing with leakage of Xibing roller compacted concrete thin arch dam.Adv.Sci.Technol.Water Resour. 25(3),27-31.http://dx.doi.org/10.3880/j.issn.1006-7647.2005.03.009(in Chinese).

    Zhang,S.R.,Wang,G.H.,Yu,X.R.,2013.Seismic cracking analysis of concrete gravity dams with initial cracks using the extended fnite element method. Eng. Struct. 56, 528-543. http://dx.doi.org/10.1016/ j.engstruct.2013.05.037.

    Zhou,J.P.,Dang,L.C.,2011.Handbook of Hydraulic Structure Design: Concrete Dams,second ed.China Water and Power Press,Beijing(in Chinese).

    Zhou,W.,Chang,X.L.,2002.Research on optimization of the whole confguration of RCC gravity dam based on FEM.J.Hydroelectr.Eng.76, 3-9.http://dx.doi.org/10.3969/j.issn.100-1243.2002.01.002(in Chinese).

    Received 9 December 2014;accepted 8 August 2015

    Available online 10 November 2015

    This work was supported by the National Basic Research Program of China(Grant No.2013CB035903)and the National Natural Science Foundation of China(Grants No.51321065 and 51209159).

    *Corresponding author.

    E-mail address:lmc@tju.edu.cn(Ming-chao Li).

    Peer review under responsibility of Hohai University.

    http://dx.doi.org/10.1016/j.wse.2015.10.001

    1674-2370/?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    99热全是精品| 亚洲欧美精品综合久久99| 国产精品永久免费网站| 伦精品一区二区三区| 欧美一区二区精品小视频在线| 国产精品,欧美在线| а√天堂www在线а√下载| 午夜激情福利司机影院| 国产精品野战在线观看| 亚洲av中文av极速乱| 亚洲熟妇中文字幕五十中出| 国产精华一区二区三区| 亚洲人成网站高清观看| 亚洲人成网站在线播放欧美日韩| 国产私拍福利视频在线观看| 午夜福利视频1000在线观看| 啦啦啦观看免费观看视频高清| 婷婷精品国产亚洲av| 欧美日韩在线观看h| 国产一区二区三区在线臀色熟女| 久99久视频精品免费| 久久久久久久亚洲中文字幕| 1000部很黄的大片| 深夜精品福利| 亚洲国产色片| 久久久久久久久中文| 欧美一区二区精品小视频在线| 亚洲熟妇中文字幕五十中出| 熟女人妻精品中文字幕| 可以在线观看毛片的网站| 寂寞人妻少妇视频99o| 丰满的人妻完整版| 欧美成人一区二区免费高清观看| 最近最新中文字幕大全电影3| 一个人看的www免费观看视频| 97人妻精品一区二区三区麻豆| or卡值多少钱| 国产v大片淫在线免费观看| 欧美日韩国产亚洲二区| 日本与韩国留学比较| 亚洲最大成人av| 在线免费十八禁| 99热这里只有是精品50| 12—13女人毛片做爰片一| 亚洲国产欧洲综合997久久,| 精品人妻熟女av久视频| 中文字幕av在线有码专区| 精品人妻偷拍中文字幕| 久久综合国产亚洲精品| 一卡2卡三卡四卡精品乱码亚洲| 内射极品少妇av片p| 欧美日本亚洲视频在线播放| 免费大片18禁| 亚洲人成网站在线播| 国产成人freesex在线| 国产一区二区三区av在线 | 日韩在线高清观看一区二区三区| 大型黄色视频在线免费观看| 欧美一区二区亚洲| 99热这里只有精品一区| 国产精品久久久久久久电影| 爱豆传媒免费全集在线观看| 1024手机看黄色片| 欧美一级a爱片免费观看看| 欧美三级亚洲精品| 国产精品日韩av在线免费观看| 成人性生交大片免费视频hd| 国产伦理片在线播放av一区 | 亚洲精品国产av成人精品| 老女人水多毛片| 老熟妇乱子伦视频在线观看| 波多野结衣高清无吗| 久久婷婷人人爽人人干人人爱| 熟妇人妻久久中文字幕3abv| 日本免费a在线| 精品久久久久久久末码| 麻豆乱淫一区二区| 午夜精品一区二区三区免费看| 尾随美女入室| 成年版毛片免费区| 欧美+亚洲+日韩+国产| 97超视频在线观看视频| 99国产精品一区二区蜜桃av| 亚洲人与动物交配视频| 中文字幕久久专区| 成人特级黄色片久久久久久久| 精品国产三级普通话版| 免费看光身美女| 三级经典国产精品| 国产高潮美女av| 最好的美女福利视频网| 国产一区二区在线观看日韩| 亚洲18禁久久av| 最近视频中文字幕2019在线8| 免费人成视频x8x8入口观看| 禁无遮挡网站| 国产黄色视频一区二区在线观看 | 性欧美人与动物交配| 久久精品国产鲁丝片午夜精品| 看片在线看免费视频| 少妇高潮的动态图| 成人毛片a级毛片在线播放| 深夜a级毛片| 成人特级av手机在线观看| 国产精品一二三区在线看| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日本亚洲视频在线播放| 亚洲精品粉嫩美女一区| 白带黄色成豆腐渣| 亚洲四区av| 乱系列少妇在线播放| 三级毛片av免费| 中出人妻视频一区二区| av在线老鸭窝| 成人欧美大片| 亚洲国产日韩欧美精品在线观看| 成人亚洲欧美一区二区av| 日韩人妻高清精品专区| 亚洲国产精品sss在线观看| 村上凉子中文字幕在线| 99热只有精品国产| 中文字幕熟女人妻在线| 欧美xxxx黑人xx丫x性爽| 99热6这里只有精品| 国产大屁股一区二区在线视频| 欧美+日韩+精品| 蜜臀久久99精品久久宅男| 日本av手机在线免费观看| 99热这里只有精品一区| 悠悠久久av| 黄色视频,在线免费观看| 中文字幕免费在线视频6| 在线a可以看的网站| 又粗又硬又长又爽又黄的视频 | 欧美变态另类bdsm刘玥| 亚洲成人精品中文字幕电影| 亚洲va在线va天堂va国产| 免费观看精品视频网站| 国产 一区精品| 六月丁香七月| 国产午夜精品一二区理论片| 3wmmmm亚洲av在线观看| 亚洲国产色片| 亚洲色图av天堂| 亚洲精品色激情综合| 欧美xxxx性猛交bbbb| 中文字幕av在线有码专区| 18禁黄网站禁片免费观看直播| 欧美成人一区二区免费高清观看| 亚洲精华国产精华液的使用体验 | 亚洲人成网站高清观看| 免费看a级黄色片| 免费搜索国产男女视频| 看片在线看免费视频| av国产免费在线观看| 久久久久九九精品影院| 国产午夜精品论理片| 国产伦精品一区二区三区视频9| 国产亚洲av嫩草精品影院| 天堂av国产一区二区熟女人妻| 亚洲欧美精品专区久久| 精品久久久久久久末码| 日日摸夜夜添夜夜添av毛片| 日韩中字成人| 最近2019中文字幕mv第一页| 欧美最新免费一区二区三区| 成人特级av手机在线观看| 欧美极品一区二区三区四区| 日韩av不卡免费在线播放| 舔av片在线| 精品日产1卡2卡| 亚洲中文字幕日韩| 少妇裸体淫交视频免费看高清| 国产av一区在线观看免费| 日本免费一区二区三区高清不卡| 国产精品久久久久久av不卡| 久久亚洲国产成人精品v| 男女做爰动态图高潮gif福利片| 一本一本综合久久| 伦理电影大哥的女人| 亚洲av免费在线观看| 人妻系列 视频| 亚洲经典国产精华液单| 成人漫画全彩无遮挡| 日本三级黄在线观看| 国产免费一级a男人的天堂| 青青草视频在线视频观看| 亚洲第一电影网av| 久久99蜜桃精品久久| 亚洲精品久久国产高清桃花| 国产精品99久久久久久久久| 美女黄网站色视频| 久久精品国产99精品国产亚洲性色| 国产精品久久久久久久电影| 国产高清有码在线观看视频| 欧美变态另类bdsm刘玥| 久久久久久久久久黄片| 国产v大片淫在线免费观看| 永久网站在线| 少妇裸体淫交视频免费看高清| 真实男女啪啪啪动态图| avwww免费| 国产人妻一区二区三区在| 亚洲欧美日韩东京热| 波多野结衣高清作品| 免费看av在线观看网站| 国产午夜福利久久久久久| 99九九线精品视频在线观看视频| 亚洲人成网站高清观看| 18禁黄网站禁片免费观看直播| 久久久色成人| 婷婷精品国产亚洲av| 久久久精品94久久精品| 国产亚洲av片在线观看秒播厂 | 91狼人影院| 国产精品免费一区二区三区在线| 校园春色视频在线观看| 国产av在哪里看| 美女cb高潮喷水在线观看| 国产伦一二天堂av在线观看| 欧美色视频一区免费| 成人欧美大片| 亚洲精品色激情综合| 少妇熟女欧美另类| 91久久精品电影网| 日日摸夜夜添夜夜爱| 欧美潮喷喷水| 亚洲精品色激情综合| 中出人妻视频一区二区| 日本五十路高清| 97热精品久久久久久| 18+在线观看网站| 色综合亚洲欧美另类图片| 人妻系列 视频| 九九在线视频观看精品| 99国产精品一区二区蜜桃av| 亚洲无线观看免费| 精品久久国产蜜桃| 精品久久久久久久久久免费视频| 菩萨蛮人人尽说江南好唐韦庄 | 色尼玛亚洲综合影院| 神马国产精品三级电影在线观看| 成人无遮挡网站| 欧美激情国产日韩精品一区| or卡值多少钱| 99久久精品一区二区三区| 婷婷六月久久综合丁香| 极品教师在线视频| 久久99精品国语久久久| 熟女人妻精品中文字幕| 国内精品美女久久久久久| 亚洲av熟女| 中文字幕av在线有码专区| 国产精品免费一区二区三区在线| 99久久人妻综合| 最好的美女福利视频网| 国产中年淑女户外野战色| 人体艺术视频欧美日本| 男女视频在线观看网站免费| 亚洲国产日韩欧美精品在线观看| 97在线视频观看| 天堂影院成人在线观看| 婷婷色综合大香蕉| 久久99热6这里只有精品| 亚洲中文字幕一区二区三区有码在线看| 亚洲七黄色美女视频| 少妇的逼水好多| 99热只有精品国产| 乱码一卡2卡4卡精品| 国产 一区精品| 最近2019中文字幕mv第一页| 一区二区三区高清视频在线| 亚洲精品国产av成人精品| 伊人久久精品亚洲午夜| 深爱激情五月婷婷| 91精品一卡2卡3卡4卡| 亚州av有码| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利在线在线| 熟女人妻精品中文字幕| 一区二区三区高清视频在线| 国产精品嫩草影院av在线观看| 免费无遮挡裸体视频| 免费大片18禁| 久久久久免费精品人妻一区二区| 一级毛片电影观看 | 亚洲国产日韩欧美精品在线观看| 亚洲av成人av| 十八禁国产超污无遮挡网站| www.色视频.com| 嘟嘟电影网在线观看| 久久精品人妻少妇| 乱系列少妇在线播放| 欧美三级亚洲精品| 午夜福利视频1000在线观看| 亚洲人成网站在线播放欧美日韩| 在线观看午夜福利视频| 在线a可以看的网站| 一区二区三区四区激情视频 | 美女内射精品一级片tv| 婷婷亚洲欧美| 免费人成视频x8x8入口观看| 少妇高潮的动态图| 国产高清有码在线观看视频| 日韩,欧美,国产一区二区三区 | 亚洲一区高清亚洲精品| 久久99蜜桃精品久久| 欧美xxxx性猛交bbbb| 我的老师免费观看完整版| 99riav亚洲国产免费| 白带黄色成豆腐渣| 男女视频在线观看网站免费| 一个人看的www免费观看视频| 最近中文字幕高清免费大全6| 国产亚洲精品av在线| 国产一区二区激情短视频| 十八禁国产超污无遮挡网站| 亚州av有码| av黄色大香蕉| 搡女人真爽免费视频火全软件| 久久久国产成人精品二区| 又粗又爽又猛毛片免费看| 在现免费观看毛片| 成人毛片60女人毛片免费| 一本久久中文字幕| 成年女人看的毛片在线观看| 成人无遮挡网站| 国产黄片美女视频| 男女视频在线观看网站免费| 黄色日韩在线| 一区二区三区免费毛片| 国产精品.久久久| 91在线精品国自产拍蜜月| 成人永久免费在线观看视频| 少妇裸体淫交视频免费看高清| 国产亚洲精品av在线| 久久久久久大精品| 日韩在线高清观看一区二区三区| 欧美性猛交╳xxx乱大交人| 久久这里有精品视频免费| 国产av不卡久久| 精品久久久久久久久久免费视频| 亚洲熟妇中文字幕五十中出| 欧美潮喷喷水| 淫秽高清视频在线观看| 日韩在线高清观看一区二区三区| 欧美性感艳星| 国产成人一区二区在线| 日本av手机在线免费观看| 国产成人一区二区在线| 亚洲av第一区精品v没综合| 91狼人影院| av在线天堂中文字幕| 日韩欧美在线乱码| 深爱激情五月婷婷| av在线亚洲专区| 哪里可以看免费的av片| 欧美色视频一区免费| 变态另类丝袜制服| 18禁裸乳无遮挡免费网站照片| 国产大屁股一区二区在线视频| 12—13女人毛片做爰片一| 好男人视频免费观看在线| 国产伦一二天堂av在线观看| 中文精品一卡2卡3卡4更新| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久久久亚洲av鲁大| 能在线免费看毛片的网站| 成人永久免费在线观看视频| 菩萨蛮人人尽说江南好唐韦庄 | 日本色播在线视频| 久久韩国三级中文字幕| 极品教师在线视频| 亚洲一区二区三区色噜噜| 亚洲熟妇中文字幕五十中出| 99热全是精品| 特级一级黄色大片| 久久中文看片网| 在线免费十八禁| 一个人看视频在线观看www免费| 热99在线观看视频| 国产麻豆成人av免费视频| 看十八女毛片水多多多| 色哟哟·www| 欧美丝袜亚洲另类| 欧美人与善性xxx| 黄色视频,在线免费观看| 日韩成人伦理影院| 午夜亚洲福利在线播放| 亚洲色图av天堂| 国产精品久久视频播放| 久久久久性生活片| av天堂在线播放| 亚洲成a人片在线一区二区| 国产三级在线视频| 校园春色视频在线观看| 99热网站在线观看| 联通29元200g的流量卡| 国产精品爽爽va在线观看网站| 亚洲精华国产精华液的使用体验 | 欧美日韩综合久久久久久| 毛片一级片免费看久久久久| 黄色日韩在线| 一本一本综合久久| 此物有八面人人有两片| 蜜桃亚洲精品一区二区三区| 国产伦精品一区二区三区视频9| 又爽又黄a免费视频| 99久久中文字幕三级久久日本| 国产在线精品亚洲第一网站| 男女边吃奶边做爰视频| 欧美日本视频| 日韩av在线大香蕉| 久久精品91蜜桃| 在线免费十八禁| 波多野结衣高清无吗| 人妻系列 视频| 美女大奶头视频| 成人亚洲精品av一区二区| 婷婷六月久久综合丁香| 亚洲欧美日韩高清在线视频| 国产精品三级大全| 在线播放无遮挡| 偷拍熟女少妇极品色| 天天一区二区日本电影三级| 毛片一级片免费看久久久久| 亚洲欧美精品自产自拍| 99热全是精品| 26uuu在线亚洲综合色| 高清在线视频一区二区三区 | 日本免费a在线| 老熟妇乱子伦视频在线观看| 久久国内精品自在自线图片| 久久久久久九九精品二区国产| 国产日本99.免费观看| 日本色播在线视频| 国产在视频线在精品| 亚洲18禁久久av| 波多野结衣巨乳人妻| 免费看美女性在线毛片视频| 国产精品一区二区在线观看99 | 国产精品三级大全| 内射极品少妇av片p| av卡一久久| 欧美三级亚洲精品| 免费在线观看成人毛片| 麻豆国产av国片精品| 最近最新中文字幕大全电影3| 国内精品久久久久精免费| 99久久精品热视频| 国产精品蜜桃在线观看 | 国产精品人妻久久久影院| 乱码一卡2卡4卡精品| 18禁黄网站禁片免费观看直播| 国产精品伦人一区二区| 亚洲欧美日韩无卡精品| 国产亚洲欧美98| 欧美日韩在线观看h| 美女 人体艺术 gogo| 国产极品精品免费视频能看的| 91久久精品国产一区二区成人| 黄色配什么色好看| 国产成人精品婷婷| 又爽又黄无遮挡网站| 国产午夜福利久久久久久| 偷拍熟女少妇极品色| 18+在线观看网站| 色综合亚洲欧美另类图片| 亚洲不卡免费看| 色噜噜av男人的天堂激情| 特大巨黑吊av在线直播| 18禁黄网站禁片免费观看直播| 国产精品一二三区在线看| 国产成人精品久久久久久| 能在线免费看毛片的网站| 成人亚洲欧美一区二区av| 好男人视频免费观看在线| 亚洲色图av天堂| 夜夜爽天天搞| 一级黄色大片毛片| 亚洲高清免费不卡视频| 国产精品一区二区在线观看99 | 九草在线视频观看| 综合色丁香网| 日日摸夜夜添夜夜添av毛片| 舔av片在线| 在线播放无遮挡| 18禁在线播放成人免费| 欧美日本视频| 一个人免费在线观看电影| 熟妇人妻久久中文字幕3abv| 欧美一区二区亚洲| 91狼人影院| 日韩成人av中文字幕在线观看| 麻豆成人av视频| 日本爱情动作片www.在线观看| 亚洲在久久综合| 日韩成人av中文字幕在线观看| 久久精品国产亚洲av涩爱 | 伦理电影大哥的女人| 国产精品久久久久久av不卡| 亚洲av二区三区四区| av卡一久久| 在线观看免费视频日本深夜| 亚洲精品久久国产高清桃花| 亚洲中文字幕日韩| 九色成人免费人妻av| 亚洲av.av天堂| 国产色婷婷99| 亚洲内射少妇av| 人人妻人人看人人澡| 狂野欧美激情性xxxx在线观看| 日韩成人伦理影院| 国产黄色小视频在线观看| 国产毛片a区久久久久| 欧美日韩乱码在线| 国产一区二区三区av在线 | 青春草亚洲视频在线观看| 亚洲美女视频黄频| .国产精品久久| 亚洲欧美成人综合另类久久久 | 亚洲自偷自拍三级| 精品无人区乱码1区二区| 国产午夜精品论理片| 国产真实伦视频高清在线观看| 亚洲精品粉嫩美女一区| 夜夜夜夜夜久久久久| 欧美日韩一区二区视频在线观看视频在线 | 麻豆国产97在线/欧美| 精品久久久久久久人妻蜜臀av| 亚洲18禁久久av| 欧美变态另类bdsm刘玥| 岛国在线免费视频观看| 午夜福利在线观看免费完整高清在 | 大又大粗又爽又黄少妇毛片口| 男女下面进入的视频免费午夜| 国产69精品久久久久777片| 波多野结衣巨乳人妻| 日韩成人伦理影院| 18+在线观看网站| 国产成年人精品一区二区| 亚洲精品乱码久久久v下载方式| 天天躁夜夜躁狠狠久久av| 久久午夜福利片| 白带黄色成豆腐渣| 免费人成视频x8x8入口观看| 欧美激情久久久久久爽电影| 亚洲av第一区精品v没综合| 伦精品一区二区三区| 日本爱情动作片www.在线观看| 伦精品一区二区三区| 日日干狠狠操夜夜爽| 特级一级黄色大片| 精品免费久久久久久久清纯| 欧美人与善性xxx| 欧美日韩乱码在线| 18+在线观看网站| 黑人高潮一二区| 亚洲av不卡在线观看| 国产精品福利在线免费观看| 午夜久久久久精精品| 国产精品精品国产色婷婷| 在线天堂最新版资源| 国产视频内射| 午夜福利在线在线| 1024手机看黄色片| 欧美不卡视频在线免费观看| 一区二区三区四区激情视频 | 三级国产精品欧美在线观看| 欧美成人一区二区免费高清观看| 国产伦一二天堂av在线观看| 国产亚洲91精品色在线| 免费黄网站久久成人精品| 91麻豆精品激情在线观看国产| 欧美日韩国产亚洲二区| 久久九九热精品免费| 深夜a级毛片| 日韩视频在线欧美| 日日摸夜夜添夜夜爱| 男的添女的下面高潮视频| 内地一区二区视频在线| 综合色av麻豆| av.在线天堂| 蜜桃亚洲精品一区二区三区| 少妇的逼好多水| 网址你懂的国产日韩在线| 久久精品夜色国产| 国产精品,欧美在线| 欧美+日韩+精品| 久久久久网色| 久久亚洲精品不卡| 亚洲成av人片在线播放无| 一级毛片我不卡| 黄片无遮挡物在线观看| 欧美一级a爱片免费观看看| 国产黄片视频在线免费观看| 一区二区三区高清视频在线| 成年av动漫网址| 91久久精品国产一区二区三区| 女同久久另类99精品国产91| 美女 人体艺术 gogo| 久久精品国产清高在天天线| 国产免费男女视频| 成人av在线播放网站| 九九久久精品国产亚洲av麻豆| 日韩成人伦理影院| 1024手机看黄色片| 国产蜜桃级精品一区二区三区| 国产午夜精品论理片| 亚洲欧美中文字幕日韩二区| 99久久精品热视频| 国产伦一二天堂av在线观看| 成人av在线播放网站| 高清日韩中文字幕在线| 不卡视频在线观看欧美|