• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    具有特殊結(jié)構(gòu)和電子性質(zhì)的PdAu/Al2O3催化劑上蒽醌加氫反應(yīng)性能

    2015-01-04 12:52:25何志遠(yuǎn)管永川張金利天津大學(xué)化工學(xué)院天津300072
    物理化學(xué)學(xué)報(bào) 2015年4期
    關(guān)鍵詞:價態(tài)化工學(xué)院雙金屬

    韓 優(yōu) 何志遠(yuǎn) 管永川 李 韡 張金利(天津大學(xué)化工學(xué)院,天津300072)

    具有特殊結(jié)構(gòu)和電子性質(zhì)的PdAu/Al2O3催化劑上蒽醌加氫反應(yīng)性能

    韓 優(yōu) 何志遠(yuǎn) 管永川 李 韡 張金利*
    (天津大學(xué)化工學(xué)院,天津300072)

    通過改變Pd和Au的負(fù)載順序合成了一系列具有不同結(jié)構(gòu)和電子性質(zhì)的PdAu雙金屬催化劑,并用于蒽醌加氫反應(yīng).其中通過先負(fù)載Au后負(fù)載Pd的順序制得的Pd/Au/Al2O3催化劑,其加氫效率可高達(dá)14.27 g·L-1. X射線衍射、透射電子顯微鏡、H2程序升溫還原和X射線光電子能譜等分析表征結(jié)果顯示,Pd/Au/Al2O3催化劑中分散在Au顆粒表面的Pd納米顆粒具有獨(dú)特的爆米花結(jié)構(gòu),其表面零價態(tài)的單質(zhì)Pd含量最多,而這種表面零價態(tài)的單質(zhì)Pd是蒽醌加氫反應(yīng)中的關(guān)鍵活性組分.此外,Au的加入可有效抑制副反應(yīng)的發(fā)生,減少降解產(chǎn)物的生成,從而大大提高了催化選擇性.

    負(fù)載順序;PdAu雙金屬;蒽醌加氫;降解產(chǎn)物

    1 Introduction

    Catalytic hydrogenation of 2-ethylanthraquinone(EAQ)into 2-ethylanthrahydroquinone(EAQH2)is the key reaction in the industrial synthesis of H2O2.1,2In this method,EAQ is hydrogenated to EAQH2in the presence of metal catalyst,and then EAQH2is oxidized by O2to yield H2O2with regeneration of the starting EAQ.The target product EAQH2formed in the quinonehydroquinone stage undergoes further hydrogenation to givevarious products through two reaction pathways.The first reaction route consists of the successive saturation of aromatic ring to generate 2-ethyl-5,6,7,8-tetrahydro-9,10-anthrahydroquinone (H4EAQH2)and 2-ethyl-1,2,3,4,5,6,7,8-octahydro-9,10-anthrahydroquinone(H8EAQH2).The second route is the hydrogenolytic cleavage of C―O bonds to give 2-ethylanthrone(EAN) as the main product.Among them only H4EAQH2can be oxidized by O2to generate H2O2and its corresponding 2-ethyl-5,6,7,8-tetrahydro-9,10-anthraquinone(H4EAQ)can also be used in the production cycle of H2O2.Thus EAQ and H4EAQ are called as“active quinones”and other hydrogenation products are considered as“degradation products”.3-6Limiting degradation products formed in the anthraquinone process is one of the priority issues of process improvement,since the formation of degradation products substantially reduces the amount of active quinones.7

    ?Editorial office ofActa Physico-Chimica Sinica

    Drelinkiewicz et al.5,8,9carried out pioneering work to investigate feasible method to limit the formation of degradation products on Pd catalysts.They reported that alkali modifiers(Li,Na, K,Cs)could accelerate the rate of the first quinone-hydroquinone stage whereas reduce the rate of reactions in“deep hydrogenation”stage.The suppression of“deep hydrogenation”stage was ascribed to reduced acidity of catalysts by alkaline promoters.5They also coated SiO2with polyaniline(PANI).The prepared Pd/ PANI(SiO2)catalyst exhibited high reactivity to phenyl ring saturation and strong inhibition of degradation reactions compared with conventional Pd/SiO2catalyst.Such advantageous catalytic properties may be related with the weakening of the strength of hydrogen bonding and hydrophobic character of polymer.8Modification of the Al2O3support with Na2SiO3solution was another effective way to limit hydrogenolytic reactions producing degradation products and enhance the maintenance of catalysts activity during the hydrogenation experiment.The observed phenomenon showing a profitable role of silica species may be interpreted by modification of adsorption properties of the surface towards anthraquinone molecules.9Li et al.3,10improved preparation methods ofAl2O3support used in EAQ hydrogenation.They prepared spherical Al2O3,SiO2-Al2O3using conventional oil-drop (OD)method,and Al2O3using the separate nucleation and aging steps(SNAS)method.The order of average hydrogenation efficiency and selectivity to active quinones was Pd/Al2O3(SNAS) (10.9 g·L-1,97%)>Pd/SiO2-Al2O3(OD)(10.3 g·L-1)>Pd/Al2O3(OD)(8.6 g·L-1,93%).The improved performance can be ascribed to the modified pore structure of support,which can increase the dispersion of Pd and decrease the diffusion resistance.

    These researches mainly focused on the modification of supports.Few attempts have been made to limit the formation of degradation products through controlling the catalytic chemistry of Pd based on catalyst design principles.A potential method to improve catalytic performance is incorporation of a second metal into the Pd catalyst.11-13Au has been found to enhance the activity of Pd significantly by the pioneer work of Hutchings et al.14-16Bimetallic PdAu catalysts have been reported to be active for a variety of selective hydrogenation reactions.Yang et al.17reported that bimetallic PdAu catalyst showed a higher activity and selectivity than Pd catalyst in hydrogenation of phenol to cyclohexanone,conversion increased from 15%to 97.5%and selectivity increased from 94.6%to 96.6%.Panpranot et al.18found that Au in bimetallic PdAu catalyst for 1-heptyne hydrogenation could promote electrons for Pd,which greatly promoted the second-step hydrogenation of 1-heptene to heptane.Yang et al.19also found the addition of Au to Pd catalyst favorably promoted the hydrogenation of cinnamaldehyde with conversion rate improved for three times.The selectivity to hydrocinnamal dehyde was also increased from 85%to 90%.Ouyang et al.20revealed that the role of Au in bimetallic PdAu catalyst for the direct synthesis of H2O2from H2and O2was to isolate single Pd sites to facilitate the dissociation of H2but unfavorable for the dissociation of O2.This promotion effect dramatically enhanced the selectivity to H2O2and reduced the decomposition of H2O2.Based on these encouraging findings, incorporation of Au into Pd/Al2O3catalyst becomes a meaningful and feasible method to improve its catalytic activity and selectivity for the hydrogenation of EAQ.

    In our present work,a combination of impregnation(IM)and deposition-precipitation(DP)methods was used to prepare the bimetallic PdAu/Al2O3catalysts with high performance for the EAQ hydrogenation reaction.In an attempt to establish a relationship between the catalytic performance and their structural and electronic properties,a systematic investigation of the structural and electronic properties of PdAu/Al2O3catalysts with different preparation methods was carried out via various analytic techniques,such as N2adsorption-desorption,X-ray diffraction (XRD),transmission electron microscopy(TEM),CO chemisorption,hydrogen temperature program reduction(H2-TPR),and X-ray photoelectron spectroscopy(XPS).

    2 Experimental

    2.1 Catalyst preparation

    In this work,HAuCl4·3H2O(99.99%Sigma-Alddrich)was used as gold precursor and PdCl2(99.99%Sigma-Alddrich)as palladium precursor.Pseudoboehmite(99%CNOOC Tianjin Chemical Research Institute)was calcined in air at 550°C for 4 h to obtain γ-Al2O3.The particle size was remained between 0.02 and 0.10 mm.γ-Al2O3was used as a support for preparing three bimetallic PdAu samples with the same Pd(0.3%,w,mass fraction,the same below)andAu(0.28%)loadings at a mole ratio of 2:1 but prepared with three different procedures as follows.

    (i)The catalyst(Pd/Au/Al2O3)was prepared by depositing the two metals separately using different techniques(i.e.,Pd by IM and Au by DP).Au was deposited using DP by suspending the support in a HAuCl4aqueous solution.The pH was adjusted to 7 by dropwise addition of a 1 mol·L-1NaOH solution(96%,Tianjin Guangfu Fine Chemical Research Institute).Then,the material was vigorously mixed for 2 h and maintained standing at 45°C for 12 h.The obtained sample was dried at 120°C overnight and calcined in static air at 550°C for 4 h.In the second step,theobtained Au/Al2O3was impregnated with a PdCl2aqueous solution.Then,the obtained sample was subjected to the same treatment conditions described above.

    (ii)Another catalyst sample(Au/Pd/Al2O3)was prepared by inverting the deposition order where the Pd was deposited by IM in the first step followed byAu loading using a DP method in the second step.

    (iii)The third catalyst(Pd-Au/Al2O3)was prepared by co-DP. Astirred slurry of γ-Al2O3in a PdCl2and HAuCl4aqueous solution was adjusted to pH 7 by dropwise addition of a 1 mol·L-1NaOH sodium hydroxide solution.Then the obtained sample was subjected to the same treatment conditions described above.

    For comparison,a monometallic Pd catalyst(Pd/Al2O3)was prepared by IM,and a monometallic Au catalyst(Au/Al2O3)was synthesized by DP.The detailed procedures were the same as those used for the bimetallic catalysts.In all of these catalysts,we kept the method of Pd(or Au)addition to the catalyst consistent, i.e.,Au by DP and Pd by IM(except the Pd-Au/Al2O3because of the procedure limitation).All of the catalysts were prepared by reducing the sample for 2 h under a H2flow at 350°C with a rate of 5°C·min-1.

    2.2 Catalyst characterization

    N2adsorption-desorption isotherms were determined at-196°C using a ASAP 2000 analyzer(Micromeritics,America).Inductively coupled plasma-atomic emission spectrometry(ICP-AES) was carried out using an Iris advantage device(Thermo Jarrel Ash,America).XRD patterns were measured from 10°to 90°(2θ) using a Bruker D8Advance diffractometer equipped with a Si(Li) solid-state detector(SOL-X)and a sealed tube providing Cu Kαradiation(Bruker,Germany).TEM and scanning transmission electron microscopy(STEM)analysis were carried out using a JEOL JEM2010 microscope under an accelerating voltage of 200 kV(JEOL,Japan).This instrument includes an EDAX X-ray energy dispersive spectrometer(EDS)and a JEOL high-angle annular dark-field(HAADF)detector.The XPS spectra were recorded using an Axis Ultra DLD spectrometer employing a monochromated Al-KαX-ray source(hν=1486.6 eV),hybrid (magnetic/electrostatic)optics,a multi-channel plate,and delayline detector(DLD)(Kratos,Britain).All the binding energies were referenced to the C 1s peak at 284.6 eV.H2-TPR was performed with a TPDRO1100 instrument(Thermo Jarrel Ash, America):a sample of 50 mg was heated from room temperature to 900°C at a heating rate of 10°C·min-1in a 10.0%H2-Ar mixture flowing at a rate of 20 mL·min-1.A TPDRO1100 instrument was used to perform pulse chemisorption to determine the CO uptake(Thermo Jarrel Ash,America).The catalysts were reduced at 550°C respectively for 1 h and then cooled to room temperature in He.Pulse CO chemisorption was performed using 500 μL pulse of 10%CO/He in a He carrier gas.A 1:1 CO/Pd molar ratio was assumed to determine the Pd surface content of the catalysts.

    The N2adsorption-desorption,ICP,H2-TPR,and CO chemisorption investigations were performed with fresh catalysts,and the XRD,TEM,and XPS investigations were performed using the reduced catalysts.

    2.3 Catalytic performance test

    The hydrogenation experiments were carried out in an autoclave at 0.3 MPa and 60°C.The working solution was prepared by dissolving 120 g of solid EAQ(98%,TCI)in 1 L of a mixed solvent of trioctyl phosphate(98%,TCI)and trimethylbenzene (98%,TCI)with the volume ratio of 0.33.60 mL of the working solution was mixed with 1.20 g of catalyst,and then,the mixture was hydrogenated in a H2atmosphere for 30 min.After the hydrogenation reaction,the solution was instantaneously centrifugally separated with a rotating speed of 3000 r·min-1for 15 min to remove the solid catalyst.Then,2 mL of the catalyst-free solution was placed into 20 mL of deionized water,and the mixture was oxidized by oxygen at room temperature for 30 min in a separating funnel.2 mL of dilute phosphorous acid was added to the deionized water to prevent H2O2decomposition during the oxidation reaction.After the oxidation reaction,a H2O2aqueous solution was obtained from the sublayer solution of the separating funnel.The H2O2content was analyzed by titration with a KMnO4solution.Prior to the titration,5 mL of a 20%(w)sulfuric acid solution was added to the H2O2solution.The catalytic activity is expressed by the following simplified equation:3where B is the hydrogenation efficiency(g·L-1),which is defined as the mass of H2O2formed per volume working solution,C is the KMnO4solution concentration(mol·L-1),V0is the KMnO4solution volume(mL),and V is the H2O2solution volume(mL).

    A high performance liquid chromatograph(HPLC)equipped with a C18 separation column and UV detector was used to analyze the concentrations of EAQ and H4EAQ,which were denoted as ct(EAQ)and ct(H4EAQ),respectively,at t=30 min in the reoxidized working solution.The mobile phase was a mixture of methanol and water with a volume ratio of 80:20.The wavelength of the ultraviolet radiation was 245 nm.The sum of the EAQ and H4EAQ concentrations in the solution was smaller than the initial concentration of EAQ(i.e.,c0(EAQ)).This difference was assumed as cumulative of the degradation products(cD)given by a mass balance:4,6

    3 Results and discussion

    3.1 Structural properties

    3.1.1 N2adsorption-desorption

    The chemical compositions and textural properties of the calcined catalysts are summarized in Table 1.The N2adsorptiondesorption isotherm for the γ-Al2O3(Fig.S1,Supporting Information)showed that it was a type IV isotherm with hysteresis loop of mesoporous materials.The bare γ-Al2O3exhibited mesoporous structure with SBET=190 m2·g-1,Vp=0.56 cm3·g-1,Dp=11.7 nm.When the support was loaded with metal,its surface area and total pore volume(for example,Pd/Au/Al2O3SBET=174 m2·g-1,Vp=0.54 cm3·g-1)descended.This was caused by some Pd or Au complexes partially blocking the micropores during the calcination process.

    The Pd andAu amounts of the catalysts were analyzed by ICP. As listed in Table 1,the Pd andAu amounts found in the catalysts were slightly lower than the theoretical value(i.e.,0.30%for Pd and 0.28%for Au),but their mole ratio in the bimetallic catalysts equalled to the nominal value of 2:1.

    Table 1 Chemical composition and textural properties of the calcined catalysts and bare support

    3.1.2 XRD

    The metal crystallites of the catalysts were characterized using XRD.As shown in Fig.1,peaks located at 2θ=38.1°,44.3°,and 77.6°were indexed to the(111),(200),and(311)planes of cubic Au metal.19The XRD characteristic peaks corresponding to Pd,i.e., (111)at 40.1°and(200)at 46.6°,were not detected in any of the catalysts,which might be due to the overlapping with the broad feature from theAl2O3support,(222)at 39.5°and(400)at 45.9°.21Table 2 presents the Au particle size data calculated using the Scherrer equation.The fairly large particle size(16.3-21.1 nm) was due to the calcination at a high temperature(550°C)in air.22Because the average pore diameter of the bare support was 11.7 nm,these particles could not enter into the Al2O3pores and were located on the external surface.23

    Fig.1 XRD patterns for theAl2O3,Au/Al2O3,Pd/Al2O3,Pd/Au/ Al2O3,Au/Pd/Al2O3,and Pd-Au/Al2O3after reduction

    Table 2 Specifications of several catalysts prepared using different methods

    3.1.3 TEM

    In order to gain a better understanding of the microstructure of the PdAu particles,the samples were observed using STEMHAADF and TEM.TheAu particles with an average size of 13.9 nm were clearly visible in the TEM images ofAu/Al2O3in Fig.S2 (Supporting Information).TEM results for Pd/Al2O3indicated that Pd was better dispersed on theAl2O3support with an average size of 6.2 nm.For Pd/Au/Al2O3,as shown in Fig.2(a),PdAu particles dispersed homogeneously on support,with an average particle size of 15.2 nm.The HRTEM image(Fig.2(b))showed that these Pd nanoclusters with popcorn structure were dispersed on the Al2O3supported Au particles.The STEM-HAADF and linescanning EDS results shown in Fig.2(c)and 2(d)further confirmed the observation from the HRTEM.The Pd particles were 4-5 nm and theAu particle was~15 nm.

    For the Au/Pd/Al2O3,particles with an average size of 14.9 nm were observed(Fig.3(a)).In a random selection of these bimetallic particles(Fig.3(b)),three Pd particles were surrounded with Au. The STEM-HAADF and line-scanning EDS(Figs.3(c)and 3(d)) indicated that the partially coverage of Pd surface by Au.24In our present study,Au particles loaded in the second step could melt during the calcination process.25TheseAu species incorporated Pd particles that were near from each other into larger aggregates.

    A totally different morphology was observed for the Pd-Au/ Al2O3catalyst,which exhibited a vast quantity of larger bimetallic particles with an average size of 25.8 nm(Fig.4(a)).The HRTEM image(Fig.4(b))showed that largeAu particle was covered by Pd. The STEM-HAADF and line-scanning EDS shown in Fig.4c and 4d further confirmed theAucore-Pdshellstructure was formed in Pd-Au/Al2O3catalyst.The core-shell structure of supported bimetallic PdAu particles with relative large size(>30 nm)prepared by the same co-IM method has also been reported by other research groups.14,25-28On the premise of this structure,the Au particle size (14.9 nm)based on XRD results only reflected the size of Au core,which was in accordance with size observed by line-scanning EDS(15-17 nm).The Pd particle size(25.6 nm)based on CO chemisorption results(in Table 2)reflected the size of these Aucore-Pdshellparticles,which was in accordance with size observed by TEM(25.8 nm).

    3.1.4 CO chemisorption

    CO chemisorption was performed to determine the Pd dispersion and particle size.26The corresponding results are shown in Table 2.The dispersion of Pd increased in the following order: Pd/Au/Al2O3>Pd/Al2O3>Au/Pd/Al2O3>Pd-Au/Al2O3.The calculated size of Pd nanoparticle in Pd/Au/Al2O3catalyst was in agreement with that observed by line-scanning EDS results.The popcornstructure of Pd nanoparticles formed on the supportedAu particles improved the dispersion of Pd.For Au/Pd/Al2O3,the lower dispersion compared with Pd/Al2O3was due to the coverage by Au. And the lowest dispersion of Pd-Au/Al2O3was due to the formation of large particles.

    Fig.2 (a)TEM image,(b)HRTEM image,and(c)STEM-HAADF image of Pd/Au/Al2O3catalyst; (d)line-scanning EDS of the metal particle indicated with a line in STEM-HAADF image

    Fig.3 (a)TEM image,(b)HRTEM image,and(c)STEM-HAADF image ofAu/Pd/Al2O3catalyst; (d)line-scanning EDS of the metal particle indicated with a line in STEM-HAADF image

    Fig.4 (a)TEM image,(b)HRTEM image,and(c)STEM-HAADF image of Pd-Au/Al2O3catalyst, (d)line-scanning EDS of the metal particle indicated with a line in STEM-HAADF image

    3.2 Electronic properties

    3.2.1 H2-TPR

    To further understand the interaction between Pd and Au,the reducibility of the unreduced samples was investigated by H2-TPR,and the results are shown in Fig.5.The Au/Al2O3catalyst exhibited a broadened H2consumption peak in the temperature range of 170-210°C,which may be due to the reduction ofAu3+.19For the Pd/Al2O3catalyst,peaks observed at 130,150,and 375, 460°C were due to the reduction of surface PdO,Pd2O and subsurface PdO,Pd2O,respectively.29For the bimetallic PdAu catalysts,all of the reduction peaks for the Pd species shifted to lower temperatures,and the extent of the shift for Pd/Au/Al2O3and Au/Pd/Al2O3was larger than that for Pd-Au/Al2O3.In addition,the first reduction peak that appeared at 100°C for Pd/Au/Al2O3was much sharper than that of Au/Pd/Al2O3,which further demonstrated that the Pd in Pd/Au/Al2O3possessed a relatively uniform particle size.It should be noted that the dissociative H2adsorption capacity of the metal catalyst is related to the electronic structure of the metal.19The results of H2-TPR suggested that the addition ofAu have modified the electronic properties of Pd.

    Fig.5 H2-TPR curves forAl2O3,Au/Al2O3,Pd/Al2O3, Pd/Au/Al2O3,Au/Pd/Al2O3,Pd-Au/Al2O3

    3.2.2 XPS

    To obtain additional insight into the electronic relationship between the Pd and Au species in the bimetallic PdAu catalysts, the chemical states of Pd andAu were investigated by XPS.Prior to the measurements,all of the catalysts were reduced in H2and maintained in a vacuum desiccator.The test samples were prepared in a glovebox in order to avoid the contact with air.The Pd 3d andAu 4f spectra of the catalysts are shown in Fig.6.Ashift of ca 0.1-0.8 eV was observed toward high binding energy compared to the monometallic Pd for the three bimetallic PdAu catalysts,which was due to the charge transfer betweenAu and Pd.19The presence of Pd2+in all of these catalysts resulted from the incomplete reduction of some surface oxide layer of PdO.18

    Fig.6 XPS spectra of Pd 3d(a)andAu 4f(b)in the different reduced catalysts

    The fraction of Pd species on the surface was roughly represented by the peak-fitting method.The XPS-derived atomic ratios are listed in Table 3.It is important to note that the addition ofAu elevated the ratio of Pd0in these bimetallic PdAu samples compared to that in the pure Pd/Al2O3catalyst,which was consistent with the results of other researchers.30,31Further analysis indicated that the percentage of Pd0on the surface increased in the following order:Pd/Au/Al2O3>Au/Pd/Al2O3>Pd/Al2O3>Pd-Au/Al2O3, and the percentage of Au0on the surface decreased in the same order.These results implied that the addition of Au benefited the reduction of Pd2+to metallic Pd or the protection of Pd0from being oxidized to Pd2+.In addition,the Au0species can act as an electronic promoter for Pd.

    Table 3 Surface atomic ratios(%)of the catalysts after reduction based on XPS

    3.3 Mechanism of loading sequence effect on the structural and electronic properties of bimetallic catalysts

    Based on the characterization results,the schematic diagrams at the top-left corner of Figs.2(b),3(b),and 4(b)showed the structures of the reduced bimetallic PdAu/Al2O3catalysts prepared via different loading sequences.For Pd/Au/Al2O3,Pd was subsequently loaded on the Au particles to form a popcorn structure with a uniform particle size distribution and an improved Pd species dispersion.In addition,the subsequently loaded Pd nanoclusters on the Au particles might inhibit the aggregation of the Au particles during the second calcination step due to its higher melting point.25Therefore,more Pd atoms were exposed on the surface of the catalyst.For Au/Pd/Al2O3,Pd was partially covered by Au,thus it contained a lower content of surface Pd. The Pd-Au/Al2O3sample exhibited larger bimetallic particles with Aucore-Pdshellstructure.Due to the low dispersion,much fewer surface Pd atoms were exposed.

    The different size distributions and morphologies of the supported PdAu catalysts led to different interactions betweenAu and Pd.The results of a theoretical study32indicated that the Au adatom was basically neutral on the Al2O3support,while the Pd adatom could provide a significant amount of charge transfer to the Al2O3surface,which could explain the easy oxidation of Pd. When Au is deposited first followed by Pd loading to form the unique popcorn structure in the Pd/Au/Al2O3catalyst,a high content of Pd was formed on theAu surface rather than theAl2O3surface,which prevented the electron transfer from Pd to theAl2O3support and maintained more Pd in the metallic state.In addition, the popcorn structure of the PdAu nanoparticles in Pd/Au/Al2O3, which were uniform and small in size,increased the contact area between Au and Pd,which led to a shortcut for electron transfer fromAu to Pd and reduction of Pd2+to metallic Pd.Therefore,the content of metallic surface Pd in Pd/Au/Al2O3was the highest among the three bimetallic PdAu catalysts prepared with different loading sequences.

    3.4 Catalytic performance

    The catalytic performance of the bimetallic PdAu/Al2O3catalysts is shown in Table 4.A negligible yield(1.11 g·L-1)wasobtained for Au/Al2O3under the given reaction condition,implying that Au was inactive for the EAQ hydrogenation reaction. OnceAu was added to the Pd/Al2O3,the Pd/Au/Al2O3(14.27 g·L-1) and Au/Pd/Al2O3(12.79 g·L-1)catalysts exhibited higher hydrogenation efficiency than Pd/Al2O3(12.04 g·L-1),especially for the Pd/Au/Al2O3catalyst.The hydrogenation efficiency increased in the following order:Pd/Au/Al2O3>Au/Pd/Al2O3>Pd/Al2O3>Pd-Au/Al2O3.This order was consistent with the surface Pd0content in these catalysts,which indicated that surface Pd0was a key active component for the EAQ hydrogenation reaction.The hydrogenation efficiency was 14.27 g·L-1for the Pd/Au/Al2O3catalyst.The hydrogenation efficiencies of different Pd/Al2O3catalysts measured by Li et al.3,10,33,34in a fixed bed reactor were 8.0,8.5,10.2,and 10.9 g·L-1.The catalytic performances of industrial catalysts were also evaluated under the same condition as our prepared catalysts and the corresponding data were also listed in Table 4.As determined by ICP analysis,the Pd amounts found in the industrial catalyst-1 and industrial catalyst-2 were 0.6%, 1.8%,respectively.Compared with these two industrial catalysts, the Pd/Au/Al2O3was highly active but with a much lower Pd loading.The hydrogenation efficiency based on the mass of Pd was calculated and increased in the following order Pd/Au/Al2O3(4757 g·L-1·g-1)>Pd/Al2O3(4013 g·L-1·g-1)>industrial catalyst-1 (1933 g·L-1·g-1)>industrial catalyst-2(712 g·L-1·g-1).

    Table 4 Catalytic activities for EAQ hydrogenation with different catalysts and the composition of the re-oxidized working solution

    In the anthraquinone process,only EAQ and H4EAQ are called“active quinones”because they can be used in the H2O2production cycle.Other hydrogenation products are considered as“degradation products”.10Because the degradation products that formed in the hydrogenation/oxidation process cycle will cause a loss of active quinones,the amount of active quinones is an important parameter in H2O2production using the anthraquinone method.The amount of active quinines(ct(EAQ)+ct(H4EAQ))and degradation products(cD)in the re-oxidized working solution are also listed in Table 4.It clearly shows that the amount of degradation products decreases via adding Au into the Pd/Al2O3catalyst,demonstrating that the addition of Au can effectively suppress the side reactions.The Pd/Au/Al2O3catalyst generated the fewest degradation products among all the catalysts in the first hydrogenation/oxidation process cycle.Its selectivity to active quinones was also much higher than the industrial catalysts.Table 5 presents the catalytic performance results for the optimal Pd/Au/ Al2O3catalysts at various mole ratios of Pd and Au.We kept the Pd loading constant(0.3%)and changed Pd/Au mole ratio by altering theAu loading.The catalytic performance results in Table 5 further demonstrated that the addition of Au could keep the catalytic selectivity at a high level(>99%)via suppressing the side reactions.Futhermore,the loading amount of Au could affect the catalytic activity to some extent,and the best mole ratio for Pd/Au/ Al2O3catalyst was 2:1.

    Two types of compounds have been suggested for the composition of degradation products.One consists of the successive saturation of phenyl ring,such as H8EAQH2.The second route is the hydrogenolytic cleavage of C―O bonds,such as EAN.The hydrogenation of the second aromatic ring with formation of H8EAQH2was observed only after complete transformation of quinone system in EAQ to the EAQH2.35So the degradation products listed in Tables 4 and 5 mainly consist of hydrogenolysisderiving products.As a matter of fact,the side reactions comprising the hydrogenolytic cleavage of C―O bonds were strongly limited by addition ofAu.

    Table 5 Catalytic activities for the optimal Pd/Au/Al2O3catalysts at various mole ratios of Pd andAu and the composition of the re-oxidized working solution

    4 Conclusions

    Pd/Au/γ-Al2O3catalyst prepared by loading Pd on Au particles deposited on γ-Al2O3support showed superior catalytic performance(i.e.,B=14.27 g·L-1,selectivity>99%)in the EAQ hydrogenation reaction.The morphology of the sample could be depicted as small,monodispersed Pd nanoparticles distributed on supported Au particles.Moreover,the electronic promotion effect of Au helped to keep more metallic Pd on the catalyst surface, which was the key active component for the reaction of EAQ hydrogenation.The addition of Au was found to improve the selectivity to active quinones.These conclusions not only provide the basis for the design of novel catalysts used in the industrial anthraquinone process,but also are helpful in the development of supported bimetallic PdAu catalysts for related reactions.

    Supporting Information:The N2adsorption-desorption isotherms of γ-Al2O3and the prepared catalysts,and the TEM images for Pd/Al2O3and Au/Al2O3have been included.This information is available free of charge via the internet at http://www. whxb.pku.edu.cn.

    (1) Campos-Martin,J.M.;Blanco-Brieva,G.;Fierro,J.L.G. Angew.Chem.Int.Edit.2006,45,6962.

    (2) Samanta,C.Appl.Catal.A 2008,350,133.doi:10.1016/j. apcata.2008.07.043

    (3) Feng,J.T.;Wang,H.Y.;Evans,D.G.;Duan,X.;Li,D.Q.Appl. Catal.A 2010,382,240.doi:10.1016/j.apcata.2010.04.052

    (4) Drelinkiewicz,A.;Waksmundzka-Gora,A.J.Mol.Catal.A: Chem.2006,246,167.doi:10.1016/j.molcata.2005.10.026

    (5) Kosydar,R.;Drelinkiewicz,A.;Lalik,E.;Gurgul,J.Appl. Catal.,A 2011,402,121.doi:10.1016/j.apcata.2011.05.036

    (6) Kosydar,R.;Drelinkiewicz,A.;Ganhy,J.P.Catal.Lett.2010, 139,105.doi:10.1007/s10562-010-0413-1

    (7) Chen,Q.L.Chem.Eng.Process 2008,47,787.doi:10.1016/j. cep.2006.12.012

    (8) Drelinkiewicz,A.;Waksmundzka-Góra,A.;Makowski,W.; Stejskal,J.Catal.Commun.2005,6,347.doi:10.1016/j. catcom.2005.02.009

    (9) Drelinkiewicz,A.;Kangas,R.;Laitinen,R.;Pukkinen,A.; Pursiainen,J.Appl.Catal.A 2004,263,71.doi:10.1016/j. apcata.2003.12.010

    (10) Tang,P.G.;Chai,Y.Y.;Feng,J.T.;Li,Y.;Li,D.Q.Appl.Catal. A 2014,469,312.doi:10.1016/j.apcata.2013.10.008

    (11) Ding,T.;Qin,Y.N.;Ma,Z.Chin.J.Catal.2002,23(3),227. [丁 彤,秦永寧,馬 智.催化學(xué)報(bào),2002,23(3),227.]

    (12) Wang,F.;Xu,X.L.Chem.Ind.Eng.Prog.2012,31(1),107. [王 豐,徐賢倫.化工進(jìn)展,2012,31(1),107.]

    (13) Wang,R.;Li,C.C.;Chen,T.W.;Lin,J.X.;Mao,S.L.Chin.J. Catal.2004,25(9),711. [王 榕,林墀昌,陳天文,林建新,毛樹祿.催化學(xué)報(bào),2004,25(9),711.]

    (14) Edwards,J.K.;Freakley,S.J.;Carley,A.F.;Kiely,C.J.; Hutchings,G.J.Accounts Chem.Res.2013,47,845.

    (15) Hutchings,G.J.;Kiely,C.J.Accounts Chem.Res.2013,46, 1759.doi:10.1021/ar300356m

    (16) Sankar,M.;Dimitratos,N.;Miedziak,P.J.;Wells,P.P.;Kiely, C.J.;Hutchings,G.J.Chem.Soc.Rev.2012,41,8099.doi: 10.1039/c2cs35296f

    (17) Yang,X.;Du,L.;Liao,S.J.;Li,Y.X.;Song,H.Y.Catal. Commun.2012,17,29.doi:10.1016/j.catcom.2011.10.006

    (18) Kittisakmontree,P.;Pongthawornsakun,B.;Yoshida,H.;Fujita, S.;Arai,M.;Panpranot,J.J.Catal.2013,297,155.doi: 10.1016/j.jcat.2012.10.007

    (19) Yang,X.;Chen,D.;Liao,S.J.;Song,H.Y.;Li,Y.W.;Fu,Z.Y.; Su,Y.L.J.Catal.2012,291,36.doi:10.1016/j.jcat.2012.04.003

    (20) Ouyang,L.;Da,G.J.;Tian,P.F.;Chen,T.Y.;Liang,G.D.;Xu, J.;Han,Y.F.J.Catal.2014,311,129.doi:10.1016/j. jcat.2013.11.008

    (21) Menegazzo,F.;Signoretto,M.;Manzoli,M.;Boccuzzi,F.; Cruciani,G.;Pinna,F.;Strukul,G.J.Catal.2009,268, 122.doi:10.1016/j.jcat.2009.09.010

    (22) Suo,Z.H.;Ma,C.Y.;Liao,W.P.;Jin,M.S.;Lv,H.Y.Fuel Process.Technol.2011,92 1549.doi:10.1016/j. fuproc.2011.03.018

    (23) Pawelec,B.;Venezia,A.M.;La Parola,V.;Cano-Serrano,E.; Campos-Martin,J.M.;Fierro,J.L.G.Appl.Surf.Sci.2005, 242,380.doi:10.1016/j.apsusc.2004.09.004

    (24) Wang,Z.Q.;Zhou,Z.M.;Zhang,R.;Li,L.;Cheng,Z.M.Acta Phys.-Chim.Sin.2014,30,2316.[王沾祺,周志明,張 銳,李 莉,程振民.物理化學(xué)學(xué)報(bào),2014,30,2316.]doi:10.3866/ PKU.WHXB201410152

    (25) Edwards,J.K.;Solsona,B.E.;Landon,P.;Carley,A.F.; Herzing,A.;Kiely,C.J.;Hutchings,G.J.J.Catal.2005,236, 69.doi:10.1016/j.jcat.2005.09.015

    (26) Bulushev,D.A.;Beloshapkin,S.;Plyusnin,P.E.;Shubin,Y.V.; Bukhtiyarov,V.I.;Korenev,S.V.;Ross,J.R.H.J.Catal.2013, 299,171.doi:10.1016/j.jcat.2012.12.009

    (27) Edwards,J.K.;Ntainjua,N.;Carley,A.F.;Herzing,A.A.; Kiely,C.J.;Hutchings,G.J.Angew.Chem.Int.Edit.2009,48, 8512.doi:10.1002/anie.v48:45

    (28) Edwards,J.K.;Thomas,A.;Carley,A.F.;Herzing,A.A.;Kiely, C.J.;Hutchings,G.J.Green Chem.2008,10,388.doi:10.1039/ b714553p

    (29) Babu,N.S.;Lingaiah,N.;Kumar,J.V.;Prasad,P.S.S.Appl. Catal.A 2009,367,70.doi:10.1016/j.apcata.2009.07.031

    (30) Qian,K.;Huang,W.X.Catal.Today 2011,164,320.doi: 10.1016/j.cattod.2010.10.018

    (31) Maclennan,A.;Banerjee,A.;Hu,Y.F.;Miller,J.T.;Scott,R.W. J.ACS Catal.2013,3,1411.doi:10.1021/cs400230t

    (32) Márquez,A.M.;Graciani,J.;Sanz,J.F.Theor.Chem.Acc. 2010,126,265.doi:10.1007/s00214-009-0703-0

    (33) Li,Y.;Feng,J.T.;He,Y.F.;Evans,D.G.;Li,D.Q.J.Ind.Eng. Chem.2012,51,11083.doi:10.1021/ie300385h

    (34) Yang,Y.H.;Lin,Y.J.;Feng,J.T.;Evans,D.G.;Li,D.Q.Chin. J.Catal.2006,27(4),304.[楊永輝,林彥軍,馮俊婷,Evans, D.G.,李殿卿.催化學(xué)報(bào),2006,27(4),304.]

    (35) Santacesaria,E.;Di Serio,M.;Velotti,R.;Leone,U.J.Mol. Catal.1994,94,37.doi:10.1016/0304-5102(94)87028-4

    Catalytic Performance of PdAu/Al2O3Catalyst with Special Structural and Electronic Properties in the 2-Ethylanthraquinone Hydrogenation Reaction

    HAN You HE Zhi-Yuan GUAN Yong-Chuan LI Wei ZHANG Jin-Li*
    (School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,P.R.China)

    Aseries of bimetallic PdAu catalysts with different structures were prepared by changing the loading sequence of Pd and Au for the hydrogenation of 2-ethylanthraquinone.Pd/Au/Al2O3was obtained by loading Pd ontoAu particles deposited onto anAl2O3support with a hydrogenation efficiency up to 14.27 g·L-1.According to X-ray diffraction,transmission electron microscopy,hydrogen temperature program reduction,and X-ray photoelectron spectroscopy measurements,the popcorn structure and unique electronic properties of the Pd species in the Pd/Au/Al2O3catalyst resulted in the highest content of surface metallic Pd,which was the most active component for the reaction.What is more,the addition of Au can effectively reduce the amount of degradation products by suppressing side reactions.

    Loading sequence;Bimetallic PdAu;Anthraquinone hydrogenation; Degradation product

    O643

    10.3866/PKU.WHXB201501292www.whxb.pku.edu.cn

    Received:November 26,2014;Revised:January 28,2015;Published on Web:January 29,2015.

    ?Corresponding author.Email:zhangjinli@tju.edu.cn;Tel:+86-22-27401476.

    The project was supported by the National Natural Science Foundation of China(21106094,21276179),National Key Basic Research Program of China(973)(2012CB720300),and Program for Changjiang Scholars,Innovative Research Team in University,China(IRT1161).

    國家自然科學(xué)基金委(21106094,21276179),國家重點(diǎn)基礎(chǔ)研究規(guī)劃項(xiàng)目(2012CB720300)和長江學(xué)者與創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃(IRT1161)資助

    猜你喜歡
    價態(tài)化工學(xué)院雙金屬
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    Sn在鋯合金氧化膜中穩(wěn)定價態(tài)的第一性原理研究
    上海金屬(2022年5期)2022-09-26 02:07:28
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    雙金屬支承圈擴(kuò)散焊替代技術(shù)研究
    雙金屬復(fù)合管液壓脹形機(jī)控制系統(tǒng)
    雙金屬復(fù)合管焊接方法選用
    超聲提取—三氯化鈦還原一原子熒光光譜法對土壤樣品中不同價態(tài)碲的測定
    中國測試(2018年4期)2018-05-14 15:33:30
    《化工學(xué)報(bào)》贊助單位
    雙金屬復(fù)合板的拉伸回彈特性研究
    成人av一区二区三区在线看| 婷婷丁香在线五月| 国产精品av久久久久免费| 精品电影一区二区在线| 久久久久久久久中文| 久久久久性生活片| 男人舔奶头视频| 国产亚洲精品av在线| 成年人黄色毛片网站| 亚洲激情在线av| 免费无遮挡裸体视频| 女人被狂操c到高潮| 99久久国产精品久久久| 国产精品一区二区三区四区久久| 亚洲av片天天在线观看| 麻豆成人午夜福利视频| 久久久久久久午夜电影| 国产野战对白在线观看| 欧美不卡视频在线免费观看| 高清在线国产一区| 久久精品91无色码中文字幕| 国产精品av视频在线免费观看| h日本视频在线播放| 亚洲avbb在线观看| 国产精品久久视频播放| 国产精品一及| 日韩欧美国产一区二区入口| 亚洲专区字幕在线| 性欧美人与动物交配| 这个男人来自地球电影免费观看| 哪里可以看免费的av片| 亚洲真实伦在线观看| 成人国产综合亚洲| 在线播放国产精品三级| 国产精品久久视频播放| 国产高清视频在线播放一区| 一级毛片高清免费大全| 精品99又大又爽又粗少妇毛片 | 草草在线视频免费看| 国产精品野战在线观看| 亚洲国产色片| 欧美午夜高清在线| 国产午夜精品论理片| 国产亚洲av嫩草精品影院| 美女午夜性视频免费| 久久精品国产综合久久久| 美女cb高潮喷水在线观看 | 窝窝影院91人妻| 99riav亚洲国产免费| 在线观看一区二区三区| 国产乱人伦免费视频| 午夜激情福利司机影院| 国产成人福利小说| 精品国产超薄肉色丝袜足j| 91老司机精品| 免费在线观看亚洲国产| 午夜亚洲福利在线播放| 欧美三级亚洲精品| 久久伊人香网站| 在线观看美女被高潮喷水网站 | 亚洲成av人片免费观看| 老熟妇乱子伦视频在线观看| 国产高清videossex| 偷拍熟女少妇极品色| 国产成人系列免费观看| av福利片在线观看| 国产久久久一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 97人妻精品一区二区三区麻豆| 在线观看66精品国产| 亚洲欧洲精品一区二区精品久久久| 午夜福利视频1000在线观看| 色综合亚洲欧美另类图片| 欧美日韩黄片免| 黑人操中国人逼视频| 午夜激情欧美在线| 变态另类丝袜制服| 色老头精品视频在线观看| 成人特级av手机在线观看| 日韩免费av在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av电影不卡..在线观看| 国产欧美日韩一区二区三| 美女被艹到高潮喷水动态| 淫妇啪啪啪对白视频| 欧美成狂野欧美在线观看| 国产精品自产拍在线观看55亚洲| 无遮挡黄片免费观看| 老熟妇乱子伦视频在线观看| 国产精品电影一区二区三区| 亚洲成人久久爱视频| 欧美性猛交╳xxx乱大交人| 精华霜和精华液先用哪个| 中文字幕久久专区| 国产v大片淫在线免费观看| 亚洲欧美日韩卡通动漫| 99久久精品热视频| 村上凉子中文字幕在线| 国产精品1区2区在线观看.| 亚洲欧洲精品一区二区精品久久久| 高清在线国产一区| 精品无人区乱码1区二区| 国产成人影院久久av| 综合色av麻豆| 亚洲欧美日韩无卡精品| 麻豆成人av在线观看| 精品一区二区三区av网在线观看| 日本撒尿小便嘘嘘汇集6| 后天国语完整版免费观看| 一个人免费在线观看电影 | 国产私拍福利视频在线观看| 国产午夜福利久久久久久| 国产午夜精品论理片| 精品久久久久久久久久免费视频| 99久久综合精品五月天人人| 1024手机看黄色片| 99久久无色码亚洲精品果冻| 叶爱在线成人免费视频播放| 热99在线观看视频| 亚洲av成人不卡在线观看播放网| 三级国产精品欧美在线观看 | 麻豆久久精品国产亚洲av| 国产精品乱码一区二三区的特点| 黄色丝袜av网址大全| 99精品欧美一区二区三区四区| 久久欧美精品欧美久久欧美| 国内精品美女久久久久久| 成人高潮视频无遮挡免费网站| 欧美成人免费av一区二区三区| 香蕉国产在线看| 一个人免费在线观看的高清视频| 婷婷六月久久综合丁香| 999久久久国产精品视频| 欧美高清成人免费视频www| 免费在线观看日本一区| e午夜精品久久久久久久| 国产精华一区二区三区| 午夜福利免费观看在线| 久久精品夜夜夜夜夜久久蜜豆| 人人妻,人人澡人人爽秒播| 人妻夜夜爽99麻豆av| 国产精品一区二区精品视频观看| 日本一本二区三区精品| 少妇的丰满在线观看| 国产一区在线观看成人免费| 99久久精品一区二区三区| 少妇的丰满在线观看| tocl精华| 最近最新免费中文字幕在线| 一级a爱片免费观看的视频| 亚洲色图av天堂| 高潮久久久久久久久久久不卡| 国产精品久久电影中文字幕| 中文字幕精品亚洲无线码一区| a级毛片在线看网站| 亚洲精品色激情综合| 五月伊人婷婷丁香| 国产精品一及| 国产精品影院久久| 激情在线观看视频在线高清| 操出白浆在线播放| 岛国视频午夜一区免费看| 天堂√8在线中文| 9191精品国产免费久久| 亚洲精品乱码久久久v下载方式 | 亚洲中文字幕日韩| 99久久99久久久精品蜜桃| 制服人妻中文乱码| 国产日本99.免费观看| 久久久久久久精品吃奶| 国产精品精品国产色婷婷| 国产成年人精品一区二区| 久久亚洲精品不卡| 日韩欧美 国产精品| 午夜两性在线视频| 婷婷精品国产亚洲av| 一区二区三区国产精品乱码| 一卡2卡三卡四卡精品乱码亚洲| 操出白浆在线播放| 好男人在线观看高清免费视频| 视频区欧美日本亚洲| 亚洲精品美女久久久久99蜜臀| 神马国产精品三级电影在线观看| 亚洲国产高清在线一区二区三| 两性午夜刺激爽爽歪歪视频在线观看| 成人一区二区视频在线观看| 无人区码免费观看不卡| 最近最新免费中文字幕在线| 亚洲av第一区精品v没综合| 久久久水蜜桃国产精品网| 美女黄网站色视频| 午夜福利在线观看免费完整高清在 | 九色国产91popny在线| 99热6这里只有精品| 亚洲av第一区精品v没综合| 高清毛片免费观看视频网站| cao死你这个sao货| 久久久久久国产a免费观看| 久久亚洲精品不卡| 午夜免费观看网址| 国产免费av片在线观看野外av| 日韩 欧美 亚洲 中文字幕| 日韩 欧美 亚洲 中文字幕| 亚洲国产精品999在线| 又黄又爽又免费观看的视频| 国产精品1区2区在线观看.| 国产亚洲精品一区二区www| 国产高清视频在线播放一区| 久久草成人影院| 1024手机看黄色片| 禁无遮挡网站| 69av精品久久久久久| 91久久精品国产一区二区成人 | 在线看三级毛片| 国产成人影院久久av| 又大又爽又粗| 中亚洲国语对白在线视频| av视频在线观看入口| 男女之事视频高清在线观看| 亚洲狠狠婷婷综合久久图片| 久久香蕉国产精品| 亚洲熟妇熟女久久| 黄片小视频在线播放| 国产免费av片在线观看野外av| 他把我摸到了高潮在线观看| 最新中文字幕久久久久 | 色综合欧美亚洲国产小说| 麻豆av在线久日| 99国产极品粉嫩在线观看| 婷婷精品国产亚洲av在线| 午夜福利在线在线| 亚洲欧美精品综合一区二区三区| 国语自产精品视频在线第100页| 免费看光身美女| 特级一级黄色大片| 搞女人的毛片| 黑人操中国人逼视频| 99国产精品99久久久久| 国产精品一区二区三区四区免费观看 | 国产精品香港三级国产av潘金莲| 黄色女人牲交| 黄色视频,在线免费观看| 亚洲av第一区精品v没综合| 麻豆国产av国片精品| 国产精品久久视频播放| x7x7x7水蜜桃| 一级毛片女人18水好多| 黄色成人免费大全| 91九色精品人成在线观看| 夜夜看夜夜爽夜夜摸| 国产真人三级小视频在线观看| 国产一区二区激情短视频| 高清毛片免费观看视频网站| 狂野欧美激情性xxxx| 麻豆一二三区av精品| 亚洲 欧美 日韩 在线 免费| www日本黄色视频网| 精品久久久久久久毛片微露脸| a在线观看视频网站| 人妻久久中文字幕网| 成人一区二区视频在线观看| 午夜两性在线视频| av国产免费在线观看| 88av欧美| 综合色av麻豆| 中亚洲国语对白在线视频| 禁无遮挡网站| www.熟女人妻精品国产| 搞女人的毛片| 亚洲av成人不卡在线观看播放网| 亚洲av免费在线观看| 欧美xxxx黑人xx丫x性爽| 国产精品美女特级片免费视频播放器 | 嫩草影院精品99| 变态另类丝袜制服| 久久久久久大精品| 精品国产乱码久久久久久男人| 国产精品久久久久久人妻精品电影| 天天躁日日操中文字幕| 毛片女人毛片| 很黄的视频免费| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产精品成人综合色| 国产精品久久视频播放| 亚洲欧美日韩高清专用| 女警被强在线播放| 成人av在线播放网站| 久久精品国产99精品国产亚洲性色| 亚洲色图 男人天堂 中文字幕| 毛片女人毛片| 欧美黄色淫秽网站| 成人18禁在线播放| 日韩欧美在线二视频| 亚洲黑人精品在线| 每晚都被弄得嗷嗷叫到高潮| 最近在线观看免费完整版| 国产午夜福利久久久久久| 国产成人av激情在线播放| 欧美日韩亚洲国产一区二区在线观看| 啦啦啦观看免费观看视频高清| 欧美日本视频| 三级男女做爰猛烈吃奶摸视频| 成人三级黄色视频| 日韩欧美三级三区| 天天添夜夜摸| 久久久久国内视频| 非洲黑人性xxxx精品又粗又长| 非洲黑人性xxxx精品又粗又长| 久久久久国产一级毛片高清牌| 成年女人毛片免费观看观看9| 精品久久久久久久久久久久久| 日韩欧美在线乱码| 老司机在亚洲福利影院| 久久久久久九九精品二区国产| 色哟哟哟哟哟哟| 一区二区三区高清视频在线| 丁香欧美五月| 国产午夜精品久久久久久| 夜夜爽天天搞| 国产日本99.免费观看| 99热这里只有精品一区 | 色尼玛亚洲综合影院| 午夜精品一区二区三区免费看| 激情在线观看视频在线高清| 久久九九热精品免费| 亚洲男人的天堂狠狠| 高潮久久久久久久久久久不卡| 熟妇人妻久久中文字幕3abv| 国产高清视频在线播放一区| 久久99热这里只有精品18| 舔av片在线| 女警被强在线播放| 窝窝影院91人妻| 成人av一区二区三区在线看| 日韩三级视频一区二区三区| 欧美黑人巨大hd| 亚洲人与动物交配视频| 久久午夜综合久久蜜桃| 国产熟女xx| 欧美高清成人免费视频www| 亚洲欧洲精品一区二区精品久久久| 亚洲av五月六月丁香网| 精品电影一区二区在线| 他把我摸到了高潮在线观看| 一个人免费在线观看电影 | 99精品久久久久人妻精品| 欧美3d第一页| 在线十欧美十亚洲十日本专区| www日本黄色视频网| 国模一区二区三区四区视频 | 精品久久久久久,| 亚洲av第一区精品v没综合| 国产精品久久电影中文字幕| 国产亚洲av高清不卡| 欧美黄色片欧美黄色片| 美女cb高潮喷水在线观看 | 国内揄拍国产精品人妻在线| 欧美激情在线99| 欧美成人免费av一区二区三区| 在线十欧美十亚洲十日本专区| 亚洲熟女毛片儿| 日韩欧美精品v在线| 琪琪午夜伦伦电影理论片6080| 亚洲五月天丁香| 久久久久国产一级毛片高清牌| 在线观看舔阴道视频| 999久久久国产精品视频| 88av欧美| 精品久久久久久久末码| 色综合欧美亚洲国产小说| 欧美最黄视频在线播放免费| 久久精品91蜜桃| 亚洲成人中文字幕在线播放| 免费看美女性在线毛片视频| 可以在线观看的亚洲视频| 中文字幕久久专区| 亚洲电影在线观看av| 免费av毛片视频| 亚洲九九香蕉| 真人一进一出gif抽搐免费| 国产久久久一区二区三区| 岛国在线观看网站| 亚洲av成人不卡在线观看播放网| 18禁国产床啪视频网站| 亚洲精品美女久久av网站| 成年人黄色毛片网站| 九色国产91popny在线| 黄色成人免费大全| 最新中文字幕久久久久 | 国产高清视频在线观看网站| 一本久久中文字幕| 在线播放国产精品三级| 在线十欧美十亚洲十日本专区| 最好的美女福利视频网| 长腿黑丝高跟| aaaaa片日本免费| 好看av亚洲va欧美ⅴa在| 男人舔女人的私密视频| 国产欧美日韩精品亚洲av| 欧美日韩福利视频一区二区| netflix在线观看网站| 久久久久久九九精品二区国产| 床上黄色一级片| 久久久国产成人免费| 日韩精品中文字幕看吧| 午夜福利18| 成在线人永久免费视频| 国产视频内射| 特级一级黄色大片| 男女午夜视频在线观看| 黄色视频,在线免费观看| 很黄的视频免费| 中文字幕av在线有码专区| 18禁观看日本| 久久精品综合一区二区三区| 一进一出抽搐动态| 日日摸夜夜添夜夜添小说| 每晚都被弄得嗷嗷叫到高潮| 精品久久久久久久毛片微露脸| 欧美丝袜亚洲另类 | 亚洲av成人不卡在线观看播放网| 九九热线精品视视频播放| 日韩有码中文字幕| 最新美女视频免费是黄的| 亚洲电影在线观看av| 中文字幕人妻丝袜一区二区| 亚洲人成电影免费在线| 天堂av国产一区二区熟女人妻| 精品人妻1区二区| 噜噜噜噜噜久久久久久91| 成年免费大片在线观看| 成人高潮视频无遮挡免费网站| 国产主播在线观看一区二区| 最近手机中文字幕大全| 国产av一区在线观看免费| 精品国产一区二区三区久久久樱花 | 日本熟妇午夜| 亚洲欧美精品专区久久| 一个人观看的视频www高清免费观看| 免费人成在线观看视频色| 日韩av不卡免费在线播放| 欧美性感艳星| 蜜桃亚洲精品一区二区三区| www.av在线官网国产| 久久99热这里只有精品18| 亚洲欧美清纯卡通| 秋霞伦理黄片| 亚洲真实伦在线观看| 美女内射精品一级片tv| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久久久免| 亚洲国产精品合色在线| 国产极品天堂在线| 在线观看美女被高潮喷水网站| 99热这里只有精品一区| 国产激情偷乱视频一区二区| 日本五十路高清| av卡一久久| 中文字幕久久专区| 成人三级黄色视频| 亚洲精品国产av成人精品| 免费人成在线观看视频色| 少妇人妻一区二区三区视频| 亚洲婷婷狠狠爱综合网| 青春草视频在线免费观看| 午夜福利在线在线| 嫩草影院入口| 免费一级毛片在线播放高清视频| 午夜福利在线在线| 毛片一级片免费看久久久久| 日本一本二区三区精品| 国产精品.久久久| 色哟哟·www| 麻豆精品久久久久久蜜桃| 黄色日韩在线| 久久人人爽人人爽人人片va| 青春草国产在线视频| 99久久精品一区二区三区| av免费观看日本| 一级黄片播放器| 成人毛片60女人毛片免费| 国产精品伦人一区二区| 国产熟女欧美一区二区| 偷拍熟女少妇极品色| 99久久精品一区二区三区| www.色视频.com| 亚洲av电影不卡..在线观看| 亚洲乱码一区二区免费版| 中文乱码字字幕精品一区二区三区 | av女优亚洲男人天堂| 亚洲,欧美,日韩| 九九热线精品视视频播放| 国产免费又黄又爽又色| 亚洲怡红院男人天堂| 国产91av在线免费观看| 亚洲欧美精品专区久久| 非洲黑人性xxxx精品又粗又长| 国产精品一区二区性色av| 午夜福利在线观看吧| 三级经典国产精品| 欧美一区二区亚洲| 在线播放无遮挡| 97在线视频观看| 中文字幕久久专区| 97超视频在线观看视频| 亚洲图色成人| 国内揄拍国产精品人妻在线| 欧美成人免费av一区二区三区| 国产极品天堂在线| 国产成人aa在线观看| 永久免费av网站大全| 麻豆成人午夜福利视频| 欧美激情国产日韩精品一区| 一级毛片久久久久久久久女| 久久这里有精品视频免费| 精品午夜福利在线看| 亚洲在线自拍视频| 99热网站在线观看| 99久久人妻综合| 精品国产三级普通话版| 18禁动态无遮挡网站| 欧美日本亚洲视频在线播放| 成人av在线播放网站| av在线蜜桃| 国产片特级美女逼逼视频| 成年女人看的毛片在线观看| 国产精品久久视频播放| 欧美激情久久久久久爽电影| 搡老妇女老女人老熟妇| 特级一级黄色大片| 亚洲av电影在线观看一区二区三区 | 亚洲精品乱码久久久久久按摩| 国产亚洲精品久久久com| 免费观看在线日韩| 久久国内精品自在自线图片| 国产精品一区二区在线观看99 | 国产精品国产三级国产av玫瑰| 国产91av在线免费观看| 国产一区二区三区av在线| 秋霞在线观看毛片| 汤姆久久久久久久影院中文字幕 | 日韩av在线大香蕉| 欧美不卡视频在线免费观看| 两个人视频免费观看高清| 九草在线视频观看| 99国产精品一区二区蜜桃av| 人妻制服诱惑在线中文字幕| av视频在线观看入口| 欧美不卡视频在线免费观看| 卡戴珊不雅视频在线播放| 一个人看的www免费观看视频| 国产精品久久视频播放| 免费av不卡在线播放| videossex国产| 国产精品精品国产色婷婷| av专区在线播放| 精品久久久久久久久av| 一级毛片aaaaaa免费看小| 少妇的逼好多水| 一级毛片aaaaaa免费看小| 久久久精品94久久精品| 97超碰精品成人国产| 少妇裸体淫交视频免费看高清| 亚洲在久久综合| 久久综合国产亚洲精品| 亚洲无线观看免费| 超碰av人人做人人爽久久| 日本熟妇午夜| 狠狠狠狠99中文字幕| 久久久久国产网址| 99国产精品一区二区蜜桃av| 黄色配什么色好看| 一本一本综合久久| 亚洲中文字幕一区二区三区有码在线看| 99久久精品国产国产毛片| 麻豆久久精品国产亚洲av| 精品人妻熟女av久视频| 一区二区三区高清视频在线| 日韩 亚洲 欧美在线| 亚洲精品日韩在线中文字幕| 三级国产精品片| 在线观看av片永久免费下载| 秋霞在线观看毛片| 精品人妻视频免费看| 九九爱精品视频在线观看| 亚洲av.av天堂| 成人美女网站在线观看视频| 国产亚洲午夜精品一区二区久久 | 精品午夜福利在线看| 国产日韩欧美在线精品| 国产精品一区二区三区四区久久| 亚洲三级黄色毛片| 中国国产av一级| 看免费成人av毛片| 精品久久久久久久末码| 国产午夜福利久久久久久| 麻豆成人午夜福利视频| 亚洲激情五月婷婷啪啪| 韩国高清视频一区二区三区| 日本与韩国留学比较| 国产单亲对白刺激| 在线观看一区二区三区| 国产又黄又爽又无遮挡在线| 精品久久久久久久久av| 小蜜桃在线观看免费完整版高清| 欧美性感艳星| 女人久久www免费人成看片 | 精品酒店卫生间| 亚洲精品国产av成人精品| 边亲边吃奶的免费视频| 国产精品一二三区在线看| 午夜a级毛片| 国产成人a区在线观看| 变态另类丝袜制服| 欧美日本视频|