• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    具有特殊結(jié)構(gòu)和電子性質(zhì)的PdAu/Al2O3催化劑上蒽醌加氫反應(yīng)性能

    2015-01-04 12:52:25何志遠(yuǎn)管永川張金利天津大學(xué)化工學(xué)院天津300072
    物理化學(xué)學(xué)報(bào) 2015年4期
    關(guān)鍵詞:價態(tài)化工學(xué)院雙金屬

    韓 優(yōu) 何志遠(yuǎn) 管永川 李 韡 張金利(天津大學(xué)化工學(xué)院,天津300072)

    具有特殊結(jié)構(gòu)和電子性質(zhì)的PdAu/Al2O3催化劑上蒽醌加氫反應(yīng)性能

    韓 優(yōu) 何志遠(yuǎn) 管永川 李 韡 張金利*
    (天津大學(xué)化工學(xué)院,天津300072)

    通過改變Pd和Au的負(fù)載順序合成了一系列具有不同結(jié)構(gòu)和電子性質(zhì)的PdAu雙金屬催化劑,并用于蒽醌加氫反應(yīng).其中通過先負(fù)載Au后負(fù)載Pd的順序制得的Pd/Au/Al2O3催化劑,其加氫效率可高達(dá)14.27 g·L-1. X射線衍射、透射電子顯微鏡、H2程序升溫還原和X射線光電子能譜等分析表征結(jié)果顯示,Pd/Au/Al2O3催化劑中分散在Au顆粒表面的Pd納米顆粒具有獨(dú)特的爆米花結(jié)構(gòu),其表面零價態(tài)的單質(zhì)Pd含量最多,而這種表面零價態(tài)的單質(zhì)Pd是蒽醌加氫反應(yīng)中的關(guān)鍵活性組分.此外,Au的加入可有效抑制副反應(yīng)的發(fā)生,減少降解產(chǎn)物的生成,從而大大提高了催化選擇性.

    負(fù)載順序;PdAu雙金屬;蒽醌加氫;降解產(chǎn)物

    1 Introduction

    Catalytic hydrogenation of 2-ethylanthraquinone(EAQ)into 2-ethylanthrahydroquinone(EAQH2)is the key reaction in the industrial synthesis of H2O2.1,2In this method,EAQ is hydrogenated to EAQH2in the presence of metal catalyst,and then EAQH2is oxidized by O2to yield H2O2with regeneration of the starting EAQ.The target product EAQH2formed in the quinonehydroquinone stage undergoes further hydrogenation to givevarious products through two reaction pathways.The first reaction route consists of the successive saturation of aromatic ring to generate 2-ethyl-5,6,7,8-tetrahydro-9,10-anthrahydroquinone (H4EAQH2)and 2-ethyl-1,2,3,4,5,6,7,8-octahydro-9,10-anthrahydroquinone(H8EAQH2).The second route is the hydrogenolytic cleavage of C―O bonds to give 2-ethylanthrone(EAN) as the main product.Among them only H4EAQH2can be oxidized by O2to generate H2O2and its corresponding 2-ethyl-5,6,7,8-tetrahydro-9,10-anthraquinone(H4EAQ)can also be used in the production cycle of H2O2.Thus EAQ and H4EAQ are called as“active quinones”and other hydrogenation products are considered as“degradation products”.3-6Limiting degradation products formed in the anthraquinone process is one of the priority issues of process improvement,since the formation of degradation products substantially reduces the amount of active quinones.7

    ?Editorial office ofActa Physico-Chimica Sinica

    Drelinkiewicz et al.5,8,9carried out pioneering work to investigate feasible method to limit the formation of degradation products on Pd catalysts.They reported that alkali modifiers(Li,Na, K,Cs)could accelerate the rate of the first quinone-hydroquinone stage whereas reduce the rate of reactions in“deep hydrogenation”stage.The suppression of“deep hydrogenation”stage was ascribed to reduced acidity of catalysts by alkaline promoters.5They also coated SiO2with polyaniline(PANI).The prepared Pd/ PANI(SiO2)catalyst exhibited high reactivity to phenyl ring saturation and strong inhibition of degradation reactions compared with conventional Pd/SiO2catalyst.Such advantageous catalytic properties may be related with the weakening of the strength of hydrogen bonding and hydrophobic character of polymer.8Modification of the Al2O3support with Na2SiO3solution was another effective way to limit hydrogenolytic reactions producing degradation products and enhance the maintenance of catalysts activity during the hydrogenation experiment.The observed phenomenon showing a profitable role of silica species may be interpreted by modification of adsorption properties of the surface towards anthraquinone molecules.9Li et al.3,10improved preparation methods ofAl2O3support used in EAQ hydrogenation.They prepared spherical Al2O3,SiO2-Al2O3using conventional oil-drop (OD)method,and Al2O3using the separate nucleation and aging steps(SNAS)method.The order of average hydrogenation efficiency and selectivity to active quinones was Pd/Al2O3(SNAS) (10.9 g·L-1,97%)>Pd/SiO2-Al2O3(OD)(10.3 g·L-1)>Pd/Al2O3(OD)(8.6 g·L-1,93%).The improved performance can be ascribed to the modified pore structure of support,which can increase the dispersion of Pd and decrease the diffusion resistance.

    These researches mainly focused on the modification of supports.Few attempts have been made to limit the formation of degradation products through controlling the catalytic chemistry of Pd based on catalyst design principles.A potential method to improve catalytic performance is incorporation of a second metal into the Pd catalyst.11-13Au has been found to enhance the activity of Pd significantly by the pioneer work of Hutchings et al.14-16Bimetallic PdAu catalysts have been reported to be active for a variety of selective hydrogenation reactions.Yang et al.17reported that bimetallic PdAu catalyst showed a higher activity and selectivity than Pd catalyst in hydrogenation of phenol to cyclohexanone,conversion increased from 15%to 97.5%and selectivity increased from 94.6%to 96.6%.Panpranot et al.18found that Au in bimetallic PdAu catalyst for 1-heptyne hydrogenation could promote electrons for Pd,which greatly promoted the second-step hydrogenation of 1-heptene to heptane.Yang et al.19also found the addition of Au to Pd catalyst favorably promoted the hydrogenation of cinnamaldehyde with conversion rate improved for three times.The selectivity to hydrocinnamal dehyde was also increased from 85%to 90%.Ouyang et al.20revealed that the role of Au in bimetallic PdAu catalyst for the direct synthesis of H2O2from H2and O2was to isolate single Pd sites to facilitate the dissociation of H2but unfavorable for the dissociation of O2.This promotion effect dramatically enhanced the selectivity to H2O2and reduced the decomposition of H2O2.Based on these encouraging findings, incorporation of Au into Pd/Al2O3catalyst becomes a meaningful and feasible method to improve its catalytic activity and selectivity for the hydrogenation of EAQ.

    In our present work,a combination of impregnation(IM)and deposition-precipitation(DP)methods was used to prepare the bimetallic PdAu/Al2O3catalysts with high performance for the EAQ hydrogenation reaction.In an attempt to establish a relationship between the catalytic performance and their structural and electronic properties,a systematic investigation of the structural and electronic properties of PdAu/Al2O3catalysts with different preparation methods was carried out via various analytic techniques,such as N2adsorption-desorption,X-ray diffraction (XRD),transmission electron microscopy(TEM),CO chemisorption,hydrogen temperature program reduction(H2-TPR),and X-ray photoelectron spectroscopy(XPS).

    2 Experimental

    2.1 Catalyst preparation

    In this work,HAuCl4·3H2O(99.99%Sigma-Alddrich)was used as gold precursor and PdCl2(99.99%Sigma-Alddrich)as palladium precursor.Pseudoboehmite(99%CNOOC Tianjin Chemical Research Institute)was calcined in air at 550°C for 4 h to obtain γ-Al2O3.The particle size was remained between 0.02 and 0.10 mm.γ-Al2O3was used as a support for preparing three bimetallic PdAu samples with the same Pd(0.3%,w,mass fraction,the same below)andAu(0.28%)loadings at a mole ratio of 2:1 but prepared with three different procedures as follows.

    (i)The catalyst(Pd/Au/Al2O3)was prepared by depositing the two metals separately using different techniques(i.e.,Pd by IM and Au by DP).Au was deposited using DP by suspending the support in a HAuCl4aqueous solution.The pH was adjusted to 7 by dropwise addition of a 1 mol·L-1NaOH solution(96%,Tianjin Guangfu Fine Chemical Research Institute).Then,the material was vigorously mixed for 2 h and maintained standing at 45°C for 12 h.The obtained sample was dried at 120°C overnight and calcined in static air at 550°C for 4 h.In the second step,theobtained Au/Al2O3was impregnated with a PdCl2aqueous solution.Then,the obtained sample was subjected to the same treatment conditions described above.

    (ii)Another catalyst sample(Au/Pd/Al2O3)was prepared by inverting the deposition order where the Pd was deposited by IM in the first step followed byAu loading using a DP method in the second step.

    (iii)The third catalyst(Pd-Au/Al2O3)was prepared by co-DP. Astirred slurry of γ-Al2O3in a PdCl2and HAuCl4aqueous solution was adjusted to pH 7 by dropwise addition of a 1 mol·L-1NaOH sodium hydroxide solution.Then the obtained sample was subjected to the same treatment conditions described above.

    For comparison,a monometallic Pd catalyst(Pd/Al2O3)was prepared by IM,and a monometallic Au catalyst(Au/Al2O3)was synthesized by DP.The detailed procedures were the same as those used for the bimetallic catalysts.In all of these catalysts,we kept the method of Pd(or Au)addition to the catalyst consistent, i.e.,Au by DP and Pd by IM(except the Pd-Au/Al2O3because of the procedure limitation).All of the catalysts were prepared by reducing the sample for 2 h under a H2flow at 350°C with a rate of 5°C·min-1.

    2.2 Catalyst characterization

    N2adsorption-desorption isotherms were determined at-196°C using a ASAP 2000 analyzer(Micromeritics,America).Inductively coupled plasma-atomic emission spectrometry(ICP-AES) was carried out using an Iris advantage device(Thermo Jarrel Ash,America).XRD patterns were measured from 10°to 90°(2θ) using a Bruker D8Advance diffractometer equipped with a Si(Li) solid-state detector(SOL-X)and a sealed tube providing Cu Kαradiation(Bruker,Germany).TEM and scanning transmission electron microscopy(STEM)analysis were carried out using a JEOL JEM2010 microscope under an accelerating voltage of 200 kV(JEOL,Japan).This instrument includes an EDAX X-ray energy dispersive spectrometer(EDS)and a JEOL high-angle annular dark-field(HAADF)detector.The XPS spectra were recorded using an Axis Ultra DLD spectrometer employing a monochromated Al-KαX-ray source(hν=1486.6 eV),hybrid (magnetic/electrostatic)optics,a multi-channel plate,and delayline detector(DLD)(Kratos,Britain).All the binding energies were referenced to the C 1s peak at 284.6 eV.H2-TPR was performed with a TPDRO1100 instrument(Thermo Jarrel Ash, America):a sample of 50 mg was heated from room temperature to 900°C at a heating rate of 10°C·min-1in a 10.0%H2-Ar mixture flowing at a rate of 20 mL·min-1.A TPDRO1100 instrument was used to perform pulse chemisorption to determine the CO uptake(Thermo Jarrel Ash,America).The catalysts were reduced at 550°C respectively for 1 h and then cooled to room temperature in He.Pulse CO chemisorption was performed using 500 μL pulse of 10%CO/He in a He carrier gas.A 1:1 CO/Pd molar ratio was assumed to determine the Pd surface content of the catalysts.

    The N2adsorption-desorption,ICP,H2-TPR,and CO chemisorption investigations were performed with fresh catalysts,and the XRD,TEM,and XPS investigations were performed using the reduced catalysts.

    2.3 Catalytic performance test

    The hydrogenation experiments were carried out in an autoclave at 0.3 MPa and 60°C.The working solution was prepared by dissolving 120 g of solid EAQ(98%,TCI)in 1 L of a mixed solvent of trioctyl phosphate(98%,TCI)and trimethylbenzene (98%,TCI)with the volume ratio of 0.33.60 mL of the working solution was mixed with 1.20 g of catalyst,and then,the mixture was hydrogenated in a H2atmosphere for 30 min.After the hydrogenation reaction,the solution was instantaneously centrifugally separated with a rotating speed of 3000 r·min-1for 15 min to remove the solid catalyst.Then,2 mL of the catalyst-free solution was placed into 20 mL of deionized water,and the mixture was oxidized by oxygen at room temperature for 30 min in a separating funnel.2 mL of dilute phosphorous acid was added to the deionized water to prevent H2O2decomposition during the oxidation reaction.After the oxidation reaction,a H2O2aqueous solution was obtained from the sublayer solution of the separating funnel.The H2O2content was analyzed by titration with a KMnO4solution.Prior to the titration,5 mL of a 20%(w)sulfuric acid solution was added to the H2O2solution.The catalytic activity is expressed by the following simplified equation:3where B is the hydrogenation efficiency(g·L-1),which is defined as the mass of H2O2formed per volume working solution,C is the KMnO4solution concentration(mol·L-1),V0is the KMnO4solution volume(mL),and V is the H2O2solution volume(mL).

    A high performance liquid chromatograph(HPLC)equipped with a C18 separation column and UV detector was used to analyze the concentrations of EAQ and H4EAQ,which were denoted as ct(EAQ)and ct(H4EAQ),respectively,at t=30 min in the reoxidized working solution.The mobile phase was a mixture of methanol and water with a volume ratio of 80:20.The wavelength of the ultraviolet radiation was 245 nm.The sum of the EAQ and H4EAQ concentrations in the solution was smaller than the initial concentration of EAQ(i.e.,c0(EAQ)).This difference was assumed as cumulative of the degradation products(cD)given by a mass balance:4,6

    3 Results and discussion

    3.1 Structural properties

    3.1.1 N2adsorption-desorption

    The chemical compositions and textural properties of the calcined catalysts are summarized in Table 1.The N2adsorptiondesorption isotherm for the γ-Al2O3(Fig.S1,Supporting Information)showed that it was a type IV isotherm with hysteresis loop of mesoporous materials.The bare γ-Al2O3exhibited mesoporous structure with SBET=190 m2·g-1,Vp=0.56 cm3·g-1,Dp=11.7 nm.When the support was loaded with metal,its surface area and total pore volume(for example,Pd/Au/Al2O3SBET=174 m2·g-1,Vp=0.54 cm3·g-1)descended.This was caused by some Pd or Au complexes partially blocking the micropores during the calcination process.

    The Pd andAu amounts of the catalysts were analyzed by ICP. As listed in Table 1,the Pd andAu amounts found in the catalysts were slightly lower than the theoretical value(i.e.,0.30%for Pd and 0.28%for Au),but their mole ratio in the bimetallic catalysts equalled to the nominal value of 2:1.

    Table 1 Chemical composition and textural properties of the calcined catalysts and bare support

    3.1.2 XRD

    The metal crystallites of the catalysts were characterized using XRD.As shown in Fig.1,peaks located at 2θ=38.1°,44.3°,and 77.6°were indexed to the(111),(200),and(311)planes of cubic Au metal.19The XRD characteristic peaks corresponding to Pd,i.e., (111)at 40.1°and(200)at 46.6°,were not detected in any of the catalysts,which might be due to the overlapping with the broad feature from theAl2O3support,(222)at 39.5°and(400)at 45.9°.21Table 2 presents the Au particle size data calculated using the Scherrer equation.The fairly large particle size(16.3-21.1 nm) was due to the calcination at a high temperature(550°C)in air.22Because the average pore diameter of the bare support was 11.7 nm,these particles could not enter into the Al2O3pores and were located on the external surface.23

    Fig.1 XRD patterns for theAl2O3,Au/Al2O3,Pd/Al2O3,Pd/Au/ Al2O3,Au/Pd/Al2O3,and Pd-Au/Al2O3after reduction

    Table 2 Specifications of several catalysts prepared using different methods

    3.1.3 TEM

    In order to gain a better understanding of the microstructure of the PdAu particles,the samples were observed using STEMHAADF and TEM.TheAu particles with an average size of 13.9 nm were clearly visible in the TEM images ofAu/Al2O3in Fig.S2 (Supporting Information).TEM results for Pd/Al2O3indicated that Pd was better dispersed on theAl2O3support with an average size of 6.2 nm.For Pd/Au/Al2O3,as shown in Fig.2(a),PdAu particles dispersed homogeneously on support,with an average particle size of 15.2 nm.The HRTEM image(Fig.2(b))showed that these Pd nanoclusters with popcorn structure were dispersed on the Al2O3supported Au particles.The STEM-HAADF and linescanning EDS results shown in Fig.2(c)and 2(d)further confirmed the observation from the HRTEM.The Pd particles were 4-5 nm and theAu particle was~15 nm.

    For the Au/Pd/Al2O3,particles with an average size of 14.9 nm were observed(Fig.3(a)).In a random selection of these bimetallic particles(Fig.3(b)),three Pd particles were surrounded with Au. The STEM-HAADF and line-scanning EDS(Figs.3(c)and 3(d)) indicated that the partially coverage of Pd surface by Au.24In our present study,Au particles loaded in the second step could melt during the calcination process.25TheseAu species incorporated Pd particles that were near from each other into larger aggregates.

    A totally different morphology was observed for the Pd-Au/ Al2O3catalyst,which exhibited a vast quantity of larger bimetallic particles with an average size of 25.8 nm(Fig.4(a)).The HRTEM image(Fig.4(b))showed that largeAu particle was covered by Pd. The STEM-HAADF and line-scanning EDS shown in Fig.4c and 4d further confirmed theAucore-Pdshellstructure was formed in Pd-Au/Al2O3catalyst.The core-shell structure of supported bimetallic PdAu particles with relative large size(>30 nm)prepared by the same co-IM method has also been reported by other research groups.14,25-28On the premise of this structure,the Au particle size (14.9 nm)based on XRD results only reflected the size of Au core,which was in accordance with size observed by line-scanning EDS(15-17 nm).The Pd particle size(25.6 nm)based on CO chemisorption results(in Table 2)reflected the size of these Aucore-Pdshellparticles,which was in accordance with size observed by TEM(25.8 nm).

    3.1.4 CO chemisorption

    CO chemisorption was performed to determine the Pd dispersion and particle size.26The corresponding results are shown in Table 2.The dispersion of Pd increased in the following order: Pd/Au/Al2O3>Pd/Al2O3>Au/Pd/Al2O3>Pd-Au/Al2O3.The calculated size of Pd nanoparticle in Pd/Au/Al2O3catalyst was in agreement with that observed by line-scanning EDS results.The popcornstructure of Pd nanoparticles formed on the supportedAu particles improved the dispersion of Pd.For Au/Pd/Al2O3,the lower dispersion compared with Pd/Al2O3was due to the coverage by Au. And the lowest dispersion of Pd-Au/Al2O3was due to the formation of large particles.

    Fig.2 (a)TEM image,(b)HRTEM image,and(c)STEM-HAADF image of Pd/Au/Al2O3catalyst; (d)line-scanning EDS of the metal particle indicated with a line in STEM-HAADF image

    Fig.3 (a)TEM image,(b)HRTEM image,and(c)STEM-HAADF image ofAu/Pd/Al2O3catalyst; (d)line-scanning EDS of the metal particle indicated with a line in STEM-HAADF image

    Fig.4 (a)TEM image,(b)HRTEM image,and(c)STEM-HAADF image of Pd-Au/Al2O3catalyst, (d)line-scanning EDS of the metal particle indicated with a line in STEM-HAADF image

    3.2 Electronic properties

    3.2.1 H2-TPR

    To further understand the interaction between Pd and Au,the reducibility of the unreduced samples was investigated by H2-TPR,and the results are shown in Fig.5.The Au/Al2O3catalyst exhibited a broadened H2consumption peak in the temperature range of 170-210°C,which may be due to the reduction ofAu3+.19For the Pd/Al2O3catalyst,peaks observed at 130,150,and 375, 460°C were due to the reduction of surface PdO,Pd2O and subsurface PdO,Pd2O,respectively.29For the bimetallic PdAu catalysts,all of the reduction peaks for the Pd species shifted to lower temperatures,and the extent of the shift for Pd/Au/Al2O3and Au/Pd/Al2O3was larger than that for Pd-Au/Al2O3.In addition,the first reduction peak that appeared at 100°C for Pd/Au/Al2O3was much sharper than that of Au/Pd/Al2O3,which further demonstrated that the Pd in Pd/Au/Al2O3possessed a relatively uniform particle size.It should be noted that the dissociative H2adsorption capacity of the metal catalyst is related to the electronic structure of the metal.19The results of H2-TPR suggested that the addition ofAu have modified the electronic properties of Pd.

    Fig.5 H2-TPR curves forAl2O3,Au/Al2O3,Pd/Al2O3, Pd/Au/Al2O3,Au/Pd/Al2O3,Pd-Au/Al2O3

    3.2.2 XPS

    To obtain additional insight into the electronic relationship between the Pd and Au species in the bimetallic PdAu catalysts, the chemical states of Pd andAu were investigated by XPS.Prior to the measurements,all of the catalysts were reduced in H2and maintained in a vacuum desiccator.The test samples were prepared in a glovebox in order to avoid the contact with air.The Pd 3d andAu 4f spectra of the catalysts are shown in Fig.6.Ashift of ca 0.1-0.8 eV was observed toward high binding energy compared to the monometallic Pd for the three bimetallic PdAu catalysts,which was due to the charge transfer betweenAu and Pd.19The presence of Pd2+in all of these catalysts resulted from the incomplete reduction of some surface oxide layer of PdO.18

    Fig.6 XPS spectra of Pd 3d(a)andAu 4f(b)in the different reduced catalysts

    The fraction of Pd species on the surface was roughly represented by the peak-fitting method.The XPS-derived atomic ratios are listed in Table 3.It is important to note that the addition ofAu elevated the ratio of Pd0in these bimetallic PdAu samples compared to that in the pure Pd/Al2O3catalyst,which was consistent with the results of other researchers.30,31Further analysis indicated that the percentage of Pd0on the surface increased in the following order:Pd/Au/Al2O3>Au/Pd/Al2O3>Pd/Al2O3>Pd-Au/Al2O3, and the percentage of Au0on the surface decreased in the same order.These results implied that the addition of Au benefited the reduction of Pd2+to metallic Pd or the protection of Pd0from being oxidized to Pd2+.In addition,the Au0species can act as an electronic promoter for Pd.

    Table 3 Surface atomic ratios(%)of the catalysts after reduction based on XPS

    3.3 Mechanism of loading sequence effect on the structural and electronic properties of bimetallic catalysts

    Based on the characterization results,the schematic diagrams at the top-left corner of Figs.2(b),3(b),and 4(b)showed the structures of the reduced bimetallic PdAu/Al2O3catalysts prepared via different loading sequences.For Pd/Au/Al2O3,Pd was subsequently loaded on the Au particles to form a popcorn structure with a uniform particle size distribution and an improved Pd species dispersion.In addition,the subsequently loaded Pd nanoclusters on the Au particles might inhibit the aggregation of the Au particles during the second calcination step due to its higher melting point.25Therefore,more Pd atoms were exposed on the surface of the catalyst.For Au/Pd/Al2O3,Pd was partially covered by Au,thus it contained a lower content of surface Pd. The Pd-Au/Al2O3sample exhibited larger bimetallic particles with Aucore-Pdshellstructure.Due to the low dispersion,much fewer surface Pd atoms were exposed.

    The different size distributions and morphologies of the supported PdAu catalysts led to different interactions betweenAu and Pd.The results of a theoretical study32indicated that the Au adatom was basically neutral on the Al2O3support,while the Pd adatom could provide a significant amount of charge transfer to the Al2O3surface,which could explain the easy oxidation of Pd. When Au is deposited first followed by Pd loading to form the unique popcorn structure in the Pd/Au/Al2O3catalyst,a high content of Pd was formed on theAu surface rather than theAl2O3surface,which prevented the electron transfer from Pd to theAl2O3support and maintained more Pd in the metallic state.In addition, the popcorn structure of the PdAu nanoparticles in Pd/Au/Al2O3, which were uniform and small in size,increased the contact area between Au and Pd,which led to a shortcut for electron transfer fromAu to Pd and reduction of Pd2+to metallic Pd.Therefore,the content of metallic surface Pd in Pd/Au/Al2O3was the highest among the three bimetallic PdAu catalysts prepared with different loading sequences.

    3.4 Catalytic performance

    The catalytic performance of the bimetallic PdAu/Al2O3catalysts is shown in Table 4.A negligible yield(1.11 g·L-1)wasobtained for Au/Al2O3under the given reaction condition,implying that Au was inactive for the EAQ hydrogenation reaction. OnceAu was added to the Pd/Al2O3,the Pd/Au/Al2O3(14.27 g·L-1) and Au/Pd/Al2O3(12.79 g·L-1)catalysts exhibited higher hydrogenation efficiency than Pd/Al2O3(12.04 g·L-1),especially for the Pd/Au/Al2O3catalyst.The hydrogenation efficiency increased in the following order:Pd/Au/Al2O3>Au/Pd/Al2O3>Pd/Al2O3>Pd-Au/Al2O3.This order was consistent with the surface Pd0content in these catalysts,which indicated that surface Pd0was a key active component for the EAQ hydrogenation reaction.The hydrogenation efficiency was 14.27 g·L-1for the Pd/Au/Al2O3catalyst.The hydrogenation efficiencies of different Pd/Al2O3catalysts measured by Li et al.3,10,33,34in a fixed bed reactor were 8.0,8.5,10.2,and 10.9 g·L-1.The catalytic performances of industrial catalysts were also evaluated under the same condition as our prepared catalysts and the corresponding data were also listed in Table 4.As determined by ICP analysis,the Pd amounts found in the industrial catalyst-1 and industrial catalyst-2 were 0.6%, 1.8%,respectively.Compared with these two industrial catalysts, the Pd/Au/Al2O3was highly active but with a much lower Pd loading.The hydrogenation efficiency based on the mass of Pd was calculated and increased in the following order Pd/Au/Al2O3(4757 g·L-1·g-1)>Pd/Al2O3(4013 g·L-1·g-1)>industrial catalyst-1 (1933 g·L-1·g-1)>industrial catalyst-2(712 g·L-1·g-1).

    Table 4 Catalytic activities for EAQ hydrogenation with different catalysts and the composition of the re-oxidized working solution

    In the anthraquinone process,only EAQ and H4EAQ are called“active quinones”because they can be used in the H2O2production cycle.Other hydrogenation products are considered as“degradation products”.10Because the degradation products that formed in the hydrogenation/oxidation process cycle will cause a loss of active quinones,the amount of active quinones is an important parameter in H2O2production using the anthraquinone method.The amount of active quinines(ct(EAQ)+ct(H4EAQ))and degradation products(cD)in the re-oxidized working solution are also listed in Table 4.It clearly shows that the amount of degradation products decreases via adding Au into the Pd/Al2O3catalyst,demonstrating that the addition of Au can effectively suppress the side reactions.The Pd/Au/Al2O3catalyst generated the fewest degradation products among all the catalysts in the first hydrogenation/oxidation process cycle.Its selectivity to active quinones was also much higher than the industrial catalysts.Table 5 presents the catalytic performance results for the optimal Pd/Au/ Al2O3catalysts at various mole ratios of Pd and Au.We kept the Pd loading constant(0.3%)and changed Pd/Au mole ratio by altering theAu loading.The catalytic performance results in Table 5 further demonstrated that the addition of Au could keep the catalytic selectivity at a high level(>99%)via suppressing the side reactions.Futhermore,the loading amount of Au could affect the catalytic activity to some extent,and the best mole ratio for Pd/Au/ Al2O3catalyst was 2:1.

    Two types of compounds have been suggested for the composition of degradation products.One consists of the successive saturation of phenyl ring,such as H8EAQH2.The second route is the hydrogenolytic cleavage of C―O bonds,such as EAN.The hydrogenation of the second aromatic ring with formation of H8EAQH2was observed only after complete transformation of quinone system in EAQ to the EAQH2.35So the degradation products listed in Tables 4 and 5 mainly consist of hydrogenolysisderiving products.As a matter of fact,the side reactions comprising the hydrogenolytic cleavage of C―O bonds were strongly limited by addition ofAu.

    Table 5 Catalytic activities for the optimal Pd/Au/Al2O3catalysts at various mole ratios of Pd andAu and the composition of the re-oxidized working solution

    4 Conclusions

    Pd/Au/γ-Al2O3catalyst prepared by loading Pd on Au particles deposited on γ-Al2O3support showed superior catalytic performance(i.e.,B=14.27 g·L-1,selectivity>99%)in the EAQ hydrogenation reaction.The morphology of the sample could be depicted as small,monodispersed Pd nanoparticles distributed on supported Au particles.Moreover,the electronic promotion effect of Au helped to keep more metallic Pd on the catalyst surface, which was the key active component for the reaction of EAQ hydrogenation.The addition of Au was found to improve the selectivity to active quinones.These conclusions not only provide the basis for the design of novel catalysts used in the industrial anthraquinone process,but also are helpful in the development of supported bimetallic PdAu catalysts for related reactions.

    Supporting Information:The N2adsorption-desorption isotherms of γ-Al2O3and the prepared catalysts,and the TEM images for Pd/Al2O3and Au/Al2O3have been included.This information is available free of charge via the internet at http://www. whxb.pku.edu.cn.

    (1) Campos-Martin,J.M.;Blanco-Brieva,G.;Fierro,J.L.G. Angew.Chem.Int.Edit.2006,45,6962.

    (2) Samanta,C.Appl.Catal.A 2008,350,133.doi:10.1016/j. apcata.2008.07.043

    (3) Feng,J.T.;Wang,H.Y.;Evans,D.G.;Duan,X.;Li,D.Q.Appl. Catal.A 2010,382,240.doi:10.1016/j.apcata.2010.04.052

    (4) Drelinkiewicz,A.;Waksmundzka-Gora,A.J.Mol.Catal.A: Chem.2006,246,167.doi:10.1016/j.molcata.2005.10.026

    (5) Kosydar,R.;Drelinkiewicz,A.;Lalik,E.;Gurgul,J.Appl. Catal.,A 2011,402,121.doi:10.1016/j.apcata.2011.05.036

    (6) Kosydar,R.;Drelinkiewicz,A.;Ganhy,J.P.Catal.Lett.2010, 139,105.doi:10.1007/s10562-010-0413-1

    (7) Chen,Q.L.Chem.Eng.Process 2008,47,787.doi:10.1016/j. cep.2006.12.012

    (8) Drelinkiewicz,A.;Waksmundzka-Góra,A.;Makowski,W.; Stejskal,J.Catal.Commun.2005,6,347.doi:10.1016/j. catcom.2005.02.009

    (9) Drelinkiewicz,A.;Kangas,R.;Laitinen,R.;Pukkinen,A.; Pursiainen,J.Appl.Catal.A 2004,263,71.doi:10.1016/j. apcata.2003.12.010

    (10) Tang,P.G.;Chai,Y.Y.;Feng,J.T.;Li,Y.;Li,D.Q.Appl.Catal. A 2014,469,312.doi:10.1016/j.apcata.2013.10.008

    (11) Ding,T.;Qin,Y.N.;Ma,Z.Chin.J.Catal.2002,23(3),227. [丁 彤,秦永寧,馬 智.催化學(xué)報(bào),2002,23(3),227.]

    (12) Wang,F.;Xu,X.L.Chem.Ind.Eng.Prog.2012,31(1),107. [王 豐,徐賢倫.化工進(jìn)展,2012,31(1),107.]

    (13) Wang,R.;Li,C.C.;Chen,T.W.;Lin,J.X.;Mao,S.L.Chin.J. Catal.2004,25(9),711. [王 榕,林墀昌,陳天文,林建新,毛樹祿.催化學(xué)報(bào),2004,25(9),711.]

    (14) Edwards,J.K.;Freakley,S.J.;Carley,A.F.;Kiely,C.J.; Hutchings,G.J.Accounts Chem.Res.2013,47,845.

    (15) Hutchings,G.J.;Kiely,C.J.Accounts Chem.Res.2013,46, 1759.doi:10.1021/ar300356m

    (16) Sankar,M.;Dimitratos,N.;Miedziak,P.J.;Wells,P.P.;Kiely, C.J.;Hutchings,G.J.Chem.Soc.Rev.2012,41,8099.doi: 10.1039/c2cs35296f

    (17) Yang,X.;Du,L.;Liao,S.J.;Li,Y.X.;Song,H.Y.Catal. Commun.2012,17,29.doi:10.1016/j.catcom.2011.10.006

    (18) Kittisakmontree,P.;Pongthawornsakun,B.;Yoshida,H.;Fujita, S.;Arai,M.;Panpranot,J.J.Catal.2013,297,155.doi: 10.1016/j.jcat.2012.10.007

    (19) Yang,X.;Chen,D.;Liao,S.J.;Song,H.Y.;Li,Y.W.;Fu,Z.Y.; Su,Y.L.J.Catal.2012,291,36.doi:10.1016/j.jcat.2012.04.003

    (20) Ouyang,L.;Da,G.J.;Tian,P.F.;Chen,T.Y.;Liang,G.D.;Xu, J.;Han,Y.F.J.Catal.2014,311,129.doi:10.1016/j. jcat.2013.11.008

    (21) Menegazzo,F.;Signoretto,M.;Manzoli,M.;Boccuzzi,F.; Cruciani,G.;Pinna,F.;Strukul,G.J.Catal.2009,268, 122.doi:10.1016/j.jcat.2009.09.010

    (22) Suo,Z.H.;Ma,C.Y.;Liao,W.P.;Jin,M.S.;Lv,H.Y.Fuel Process.Technol.2011,92 1549.doi:10.1016/j. fuproc.2011.03.018

    (23) Pawelec,B.;Venezia,A.M.;La Parola,V.;Cano-Serrano,E.; Campos-Martin,J.M.;Fierro,J.L.G.Appl.Surf.Sci.2005, 242,380.doi:10.1016/j.apsusc.2004.09.004

    (24) Wang,Z.Q.;Zhou,Z.M.;Zhang,R.;Li,L.;Cheng,Z.M.Acta Phys.-Chim.Sin.2014,30,2316.[王沾祺,周志明,張 銳,李 莉,程振民.物理化學(xué)學(xué)報(bào),2014,30,2316.]doi:10.3866/ PKU.WHXB201410152

    (25) Edwards,J.K.;Solsona,B.E.;Landon,P.;Carley,A.F.; Herzing,A.;Kiely,C.J.;Hutchings,G.J.J.Catal.2005,236, 69.doi:10.1016/j.jcat.2005.09.015

    (26) Bulushev,D.A.;Beloshapkin,S.;Plyusnin,P.E.;Shubin,Y.V.; Bukhtiyarov,V.I.;Korenev,S.V.;Ross,J.R.H.J.Catal.2013, 299,171.doi:10.1016/j.jcat.2012.12.009

    (27) Edwards,J.K.;Ntainjua,N.;Carley,A.F.;Herzing,A.A.; Kiely,C.J.;Hutchings,G.J.Angew.Chem.Int.Edit.2009,48, 8512.doi:10.1002/anie.v48:45

    (28) Edwards,J.K.;Thomas,A.;Carley,A.F.;Herzing,A.A.;Kiely, C.J.;Hutchings,G.J.Green Chem.2008,10,388.doi:10.1039/ b714553p

    (29) Babu,N.S.;Lingaiah,N.;Kumar,J.V.;Prasad,P.S.S.Appl. Catal.A 2009,367,70.doi:10.1016/j.apcata.2009.07.031

    (30) Qian,K.;Huang,W.X.Catal.Today 2011,164,320.doi: 10.1016/j.cattod.2010.10.018

    (31) Maclennan,A.;Banerjee,A.;Hu,Y.F.;Miller,J.T.;Scott,R.W. J.ACS Catal.2013,3,1411.doi:10.1021/cs400230t

    (32) Márquez,A.M.;Graciani,J.;Sanz,J.F.Theor.Chem.Acc. 2010,126,265.doi:10.1007/s00214-009-0703-0

    (33) Li,Y.;Feng,J.T.;He,Y.F.;Evans,D.G.;Li,D.Q.J.Ind.Eng. Chem.2012,51,11083.doi:10.1021/ie300385h

    (34) Yang,Y.H.;Lin,Y.J.;Feng,J.T.;Evans,D.G.;Li,D.Q.Chin. J.Catal.2006,27(4),304.[楊永輝,林彥軍,馮俊婷,Evans, D.G.,李殿卿.催化學(xué)報(bào),2006,27(4),304.]

    (35) Santacesaria,E.;Di Serio,M.;Velotti,R.;Leone,U.J.Mol. Catal.1994,94,37.doi:10.1016/0304-5102(94)87028-4

    Catalytic Performance of PdAu/Al2O3Catalyst with Special Structural and Electronic Properties in the 2-Ethylanthraquinone Hydrogenation Reaction

    HAN You HE Zhi-Yuan GUAN Yong-Chuan LI Wei ZHANG Jin-Li*
    (School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,P.R.China)

    Aseries of bimetallic PdAu catalysts with different structures were prepared by changing the loading sequence of Pd and Au for the hydrogenation of 2-ethylanthraquinone.Pd/Au/Al2O3was obtained by loading Pd ontoAu particles deposited onto anAl2O3support with a hydrogenation efficiency up to 14.27 g·L-1.According to X-ray diffraction,transmission electron microscopy,hydrogen temperature program reduction,and X-ray photoelectron spectroscopy measurements,the popcorn structure and unique electronic properties of the Pd species in the Pd/Au/Al2O3catalyst resulted in the highest content of surface metallic Pd,which was the most active component for the reaction.What is more,the addition of Au can effectively reduce the amount of degradation products by suppressing side reactions.

    Loading sequence;Bimetallic PdAu;Anthraquinone hydrogenation; Degradation product

    O643

    10.3866/PKU.WHXB201501292www.whxb.pku.edu.cn

    Received:November 26,2014;Revised:January 28,2015;Published on Web:January 29,2015.

    ?Corresponding author.Email:zhangjinli@tju.edu.cn;Tel:+86-22-27401476.

    The project was supported by the National Natural Science Foundation of China(21106094,21276179),National Key Basic Research Program of China(973)(2012CB720300),and Program for Changjiang Scholars,Innovative Research Team in University,China(IRT1161).

    國家自然科學(xué)基金委(21106094,21276179),國家重點(diǎn)基礎(chǔ)研究規(guī)劃項(xiàng)目(2012CB720300)和長江學(xué)者與創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃(IRT1161)資助

    猜你喜歡
    價態(tài)化工學(xué)院雙金屬
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    Sn在鋯合金氧化膜中穩(wěn)定價態(tài)的第一性原理研究
    上海金屬(2022年5期)2022-09-26 02:07:28
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    雙金屬支承圈擴(kuò)散焊替代技術(shù)研究
    雙金屬復(fù)合管液壓脹形機(jī)控制系統(tǒng)
    雙金屬復(fù)合管焊接方法選用
    超聲提取—三氯化鈦還原一原子熒光光譜法對土壤樣品中不同價態(tài)碲的測定
    中國測試(2018年4期)2018-05-14 15:33:30
    《化工學(xué)報(bào)》贊助單位
    雙金屬復(fù)合板的拉伸回彈特性研究
    午夜日韩欧美国产| av福利片在线观看| 国内精品久久久久精免费| 亚洲avbb在线观看| 美女 人体艺术 gogo| 国内精品宾馆在线| 69av精品久久久久久| 亚洲精品影视一区二区三区av| 欧美成人一区二区免费高清观看| 一区二区三区免费毛片| 两个人视频免费观看高清| 岛国在线免费视频观看| 性插视频无遮挡在线免费观看| 99国产精品一区二区蜜桃av| 午夜福利在线观看吧| 男女边吃奶边做爰视频| 亚洲内射少妇av| 少妇的逼好多水| 亚洲av成人av| 波多野结衣高清作品| 亚洲自偷自拍三级| 丰满的人妻完整版| 国产精品人妻久久久影院| 亚洲熟妇中文字幕五十中出| 国产一区二区在线av高清观看| 噜噜噜噜噜久久久久久91| 嫩草影院新地址| 狠狠狠狠99中文字幕| 成人无遮挡网站| 欧美色视频一区免费| 国产欧美日韩一区二区精品| 日本黄色片子视频| 一本精品99久久精品77| 成人综合一区亚洲| 国产单亲对白刺激| 亚洲精品乱码久久久v下载方式| 亚洲国产精品久久男人天堂| 久久国产精品人妻蜜桃| 高清在线国产一区| 国产精品久久视频播放| 国产一区二区在线av高清观看| 亚洲真实伦在线观看| 日本黄色视频三级网站网址| 12—13女人毛片做爰片一| 日韩国内少妇激情av| 真人做人爱边吃奶动态| 国产麻豆成人av免费视频| 18禁裸乳无遮挡免费网站照片| 久久6这里有精品| 天天躁日日操中文字幕| а√天堂www在线а√下载| 99riav亚洲国产免费| 在线观看午夜福利视频| 一本久久中文字幕| 成年人黄色毛片网站| 毛片女人毛片| 99在线视频只有这里精品首页| 欧美色视频一区免费| 国产淫片久久久久久久久| av女优亚洲男人天堂| 久久精品国产99精品国产亚洲性色| 一本精品99久久精品77| 中文字幕高清在线视频| 黄色配什么色好看| 身体一侧抽搐| 美女免费视频网站| av国产免费在线观看| 精品久久久久久,| 精华霜和精华液先用哪个| 少妇丰满av| 日本 av在线| 色噜噜av男人的天堂激情| 热99在线观看视频| 亚洲av免费在线观看| 美女黄网站色视频| 国产欧美日韩精品亚洲av| 欧美精品国产亚洲| 有码 亚洲区| 久久亚洲真实| 国产视频内射| 欧美精品啪啪一区二区三区| 国产私拍福利视频在线观看| 麻豆国产av国片精品| 国内精品久久久久精免费| 色哟哟哟哟哟哟| 亚洲18禁久久av| 午夜老司机福利剧场| 国产av一区在线观看免费| 欧美日韩综合久久久久久 | 亚洲狠狠婷婷综合久久图片| 人妻久久中文字幕网| 欧美日韩瑟瑟在线播放| 久久亚洲精品不卡| 天天躁日日操中文字幕| 大又大粗又爽又黄少妇毛片口| 不卡一级毛片| or卡值多少钱| 欧美成人免费av一区二区三区| 熟妇人妻久久中文字幕3abv| 国产伦精品一区二区三区视频9| 69av精品久久久久久| 精品99又大又爽又粗少妇毛片 | 久久九九热精品免费| 久久国产精品人妻蜜桃| 91久久精品电影网| 俄罗斯特黄特色一大片| 免费黄网站久久成人精品| 国语自产精品视频在线第100页| 男女做爰动态图高潮gif福利片| 夜夜爽天天搞| 人妻丰满熟妇av一区二区三区| 日本黄大片高清| 天堂√8在线中文| 国产美女午夜福利| 国产探花极品一区二区| 国产蜜桃级精品一区二区三区| 久久午夜福利片| 国产在视频线在精品| 久久香蕉精品热| 免费高清视频大片| 乱系列少妇在线播放| 人人妻人人看人人澡| 国产男靠女视频免费网站| 国产精品女同一区二区软件 | 国产精品国产三级国产av玫瑰| 99久久精品国产国产毛片| 欧美最黄视频在线播放免费| 精品人妻视频免费看| а√天堂www在线а√下载| 蜜桃久久精品国产亚洲av| 国产白丝娇喘喷水9色精品| 国产精品久久久久久精品电影| 性色avwww在线观看| 精品一区二区三区av网在线观看| av天堂在线播放| а√天堂www在线а√下载| 亚洲美女搞黄在线观看 | 免费不卡的大黄色大毛片视频在线观看 | 色吧在线观看| 美女 人体艺术 gogo| 特级一级黄色大片| 亚洲av免费在线观看| 熟女人妻精品中文字幕| 日韩精品中文字幕看吧| 国产国拍精品亚洲av在线观看| 亚洲国产色片| 成人高潮视频无遮挡免费网站| www.色视频.com| 禁无遮挡网站| 国产伦在线观看视频一区| eeuss影院久久| 中国美女看黄片| 午夜久久久久精精品| 欧美日韩国产亚洲二区| 久久精品91蜜桃| 五月玫瑰六月丁香| 亚洲美女黄片视频| 搡女人真爽免费视频火全软件 | 欧美精品啪啪一区二区三区| 国产高清不卡午夜福利| 成人国产一区最新在线观看| 国产主播在线观看一区二区| 国产精品日韩av在线免费观看| 亚洲精华国产精华精| 成人av在线播放网站| 婷婷丁香在线五月| 成人欧美大片| 国产毛片a区久久久久| 老熟妇仑乱视频hdxx| 欧美日本亚洲视频在线播放| 99热网站在线观看| 嫩草影院新地址| 韩国av在线不卡| 亚洲,欧美,日韩| 婷婷六月久久综合丁香| 一进一出抽搐动态| 欧美最新免费一区二区三区| 九九热线精品视视频播放| 亚洲欧美精品综合久久99| 在线观看66精品国产| 床上黄色一级片| 国产单亲对白刺激| 成人av一区二区三区在线看| 成人午夜高清在线视频| 中文字幕久久专区| 精华霜和精华液先用哪个| 午夜免费激情av| 色综合婷婷激情| 亚洲精品日韩av片在线观看| 日韩欧美精品免费久久| 尾随美女入室| 国产精品一及| 日本黄色片子视频| 国产免费一级a男人的天堂| 免费大片18禁| 亚洲三级黄色毛片| 在线观看一区二区三区| 99精品久久久久人妻精品| 欧美日韩国产亚洲二区| 亚洲熟妇熟女久久| 亚洲国产精品久久男人天堂| 午夜影院日韩av| 午夜老司机福利剧场| 少妇的逼水好多| 少妇被粗大猛烈的视频| 国产麻豆成人av免费视频| 日韩精品中文字幕看吧| 综合色av麻豆| 国产综合懂色| 国产一区二区三区av在线 | 亚洲av第一区精品v没综合| 最近最新中文字幕大全电影3| 国产爱豆传媒在线观看| 国产成人影院久久av| 亚洲午夜理论影院| 国产精品一区二区三区四区久久| 人妻久久中文字幕网| 三级国产精品欧美在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲美女搞黄在线观看 | 久久久久久国产a免费观看| 婷婷丁香在线五月| 日韩精品青青久久久久久| 欧美黑人巨大hd| 美女被艹到高潮喷水动态| eeuss影院久久| 久9热在线精品视频| 不卡视频在线观看欧美| 少妇的逼好多水| 国产v大片淫在线免费观看| 身体一侧抽搐| 97热精品久久久久久| 中文字幕av在线有码专区| 一区福利在线观看| 成年免费大片在线观看| 成人毛片a级毛片在线播放| 亚洲aⅴ乱码一区二区在线播放| 窝窝影院91人妻| 少妇丰满av| 国产精品美女特级片免费视频播放器| 99久久九九国产精品国产免费| 长腿黑丝高跟| 中文在线观看免费www的网站| 自拍偷自拍亚洲精品老妇| 一本久久中文字幕| h日本视频在线播放| 久久久久久大精品| 精品久久久噜噜| 婷婷色综合大香蕉| 国产日本99.免费观看| 色5月婷婷丁香| 2021天堂中文幕一二区在线观| 天天躁日日操中文字幕| 亚洲国产日韩欧美精品在线观看| 亚洲av成人av| 精品日产1卡2卡| 成人高潮视频无遮挡免费网站| 国产精品人妻久久久影院| 国产淫片久久久久久久久| 99热精品在线国产| 亚州av有码| 老司机福利观看| 日本免费一区二区三区高清不卡| 亚洲四区av| 黄色一级大片看看| 超碰av人人做人人爽久久| 日韩大尺度精品在线看网址| 国产伦精品一区二区三区视频9| 免费在线观看成人毛片| 1000部很黄的大片| 一本久久中文字幕| av福利片在线观看| 日韩av在线大香蕉| 搡老熟女国产l中国老女人| 99热只有精品国产| 久久久久精品国产欧美久久久| 午夜影院日韩av| 久久久国产成人免费| 婷婷精品国产亚洲av| 欧美性猛交╳xxx乱大交人| 久久久精品大字幕| 丰满人妻一区二区三区视频av| 免费看日本二区| 国产精品综合久久久久久久免费| 国产亚洲av嫩草精品影院| 不卡视频在线观看欧美| 偷拍熟女少妇极品色| 欧美最黄视频在线播放免费| 国产成年人精品一区二区| 亚洲av不卡在线观看| 波多野结衣高清无吗| 美女cb高潮喷水在线观看| 搡老熟女国产l中国老女人| 免费高清视频大片| 国产精品永久免费网站| 美女免费视频网站| 久久精品国产99精品国产亚洲性色| 久久热精品热| 国产真实乱freesex| 变态另类成人亚洲欧美熟女| 夜夜爽天天搞| 国产精品99久久久久久久久| 亚洲性夜色夜夜综合| 成年女人看的毛片在线观看| 亚洲精品久久国产高清桃花| 亚洲av五月六月丁香网| 偷拍熟女少妇极品色| 成人欧美大片| 床上黄色一级片| 国产 一区 欧美 日韩| 精品人妻视频免费看| 中文字幕精品亚洲无线码一区| 中文亚洲av片在线观看爽| 一区二区三区四区激情视频 | 最近最新中文字幕大全电影3| 欧美bdsm另类| 中出人妻视频一区二区| av天堂在线播放| 成人av在线播放网站| 夜夜看夜夜爽夜夜摸| 99久久无色码亚洲精品果冻| 国产精品国产高清国产av| 偷拍熟女少妇极品色| 午夜视频国产福利| 国产精品日韩av在线免费观看| 国产aⅴ精品一区二区三区波| 日韩中字成人| 色av中文字幕| 少妇被粗大猛烈的视频| 成人亚洲精品av一区二区| 无遮挡黄片免费观看| 国产中年淑女户外野战色| 在线天堂最新版资源| 天天躁日日操中文字幕| 国产精品98久久久久久宅男小说| 狠狠狠狠99中文字幕| 亚洲性久久影院| 九九热线精品视视频播放| 亚洲三级黄色毛片| 在线观看免费视频日本深夜| 热99在线观看视频| 在线免费十八禁| 日韩在线高清观看一区二区三区 | 亚洲av第一区精品v没综合| 亚洲久久久久久中文字幕| 女同久久另类99精品国产91| 哪里可以看免费的av片| 国产精品伦人一区二区| 亚洲国产高清在线一区二区三| 国产一区二区激情短视频| 桃色一区二区三区在线观看| 女同久久另类99精品国产91| 亚洲狠狠婷婷综合久久图片| 级片在线观看| 大型黄色视频在线免费观看| 搡老妇女老女人老熟妇| 观看免费一级毛片| 日韩欧美精品v在线| 日本 欧美在线| 大又大粗又爽又黄少妇毛片口| 亚洲精品在线观看二区| 欧美激情在线99| 国产色爽女视频免费观看| 日韩一本色道免费dvd| 国产精品自产拍在线观看55亚洲| 内地一区二区视频在线| 久久精品人妻少妇| 久久午夜福利片| 欧美最黄视频在线播放免费| 午夜a级毛片| 亚洲av免费高清在线观看| 亚洲午夜理论影院| 国产精品国产三级国产av玫瑰| 在线免费观看不下载黄p国产 | 少妇裸体淫交视频免费看高清| 久久久久久久久久久丰满 | 午夜精品在线福利| 日本黄大片高清| 日本一二三区视频观看| 亚洲电影在线观看av| 18禁裸乳无遮挡免费网站照片| 国产精品98久久久久久宅男小说| 国产精品久久视频播放| 国产亚洲精品久久久久久毛片| 天天躁日日操中文字幕| 又紧又爽又黄一区二区| 亚洲va在线va天堂va国产| 又紧又爽又黄一区二区| 男人的好看免费观看在线视频| 亚洲专区国产一区二区| 日韩欧美精品免费久久| 成人特级黄色片久久久久久久| 亚洲va在线va天堂va国产| 麻豆成人av在线观看| 亚洲精华国产精华精| h日本视频在线播放| 夜夜爽天天搞| 在线观看免费视频日本深夜| 国产亚洲精品久久久com| 亚洲电影在线观看av| 美女cb高潮喷水在线观看| 亚洲中文字幕日韩| 国产精品嫩草影院av在线观看 | 欧美zozozo另类| 国产精品国产高清国产av| 女人十人毛片免费观看3o分钟| 成人高潮视频无遮挡免费网站| 国产高清有码在线观看视频| 色综合色国产| 欧美xxxx黑人xx丫x性爽| 波野结衣二区三区在线| 高清毛片免费观看视频网站| 亚洲中文字幕一区二区三区有码在线看| 日本一二三区视频观看| 国产免费一级a男人的天堂| 久9热在线精品视频| 免费在线观看影片大全网站| 三级毛片av免费| 国产精品久久久久久亚洲av鲁大| 97超级碰碰碰精品色视频在线观看| 最好的美女福利视频网| 国产精品伦人一区二区| 日本 av在线| 国产久久久一区二区三区| 热99在线观看视频| 久久国产精品人妻蜜桃| 床上黄色一级片| 少妇的逼水好多| 最近视频中文字幕2019在线8| 日日摸夜夜添夜夜添av毛片 | 变态另类成人亚洲欧美熟女| 免费观看的影片在线观看| 999久久久精品免费观看国产| 国产精品嫩草影院av在线观看 | 色精品久久人妻99蜜桃| 全区人妻精品视频| 人妻少妇偷人精品九色| 亚洲精品在线观看二区| 如何舔出高潮| 久久久久久伊人网av| 久久人妻av系列| 国产高清视频在线观看网站| 看黄色毛片网站| 国产精品女同一区二区软件 | 俺也久久电影网| 亚洲中文字幕一区二区三区有码在线看| 国产欧美日韩一区二区精品| 欧美又色又爽又黄视频| 国产单亲对白刺激| 久久婷婷人人爽人人干人人爱| 又爽又黄a免费视频| 亚州av有码| 日日摸夜夜添夜夜添小说| 舔av片在线| 国产精品99久久久久久久久| 亚洲aⅴ乱码一区二区在线播放| 国产精品国产高清国产av| 久久午夜福利片| 波多野结衣高清作品| 俄罗斯特黄特色一大片| 99久国产av精品| 变态另类成人亚洲欧美熟女| 日韩欧美一区二区三区在线观看| 啦啦啦观看免费观看视频高清| 亚洲av电影不卡..在线观看| 我的老师免费观看完整版| 免费人成视频x8x8入口观看| 麻豆一二三区av精品| 亚洲精品色激情综合| 久久精品国产99精品国产亚洲性色| 欧美一区二区精品小视频在线| 给我免费播放毛片高清在线观看| 亚洲性久久影院| 国产一区二区在线av高清观看| 午夜久久久久精精品| 一a级毛片在线观看| 熟女人妻精品中文字幕| 欧美日韩综合久久久久久 | 我要看日韩黄色一级片| 成人美女网站在线观看视频| 黄色女人牲交| 成人亚洲精品av一区二区| 精华霜和精华液先用哪个| 97超级碰碰碰精品色视频在线观看| 成人毛片a级毛片在线播放| 久久午夜亚洲精品久久| 99视频精品全部免费 在线| 在线观看美女被高潮喷水网站| 久久久久国内视频| 麻豆av噜噜一区二区三区| 12—13女人毛片做爰片一| 亚洲成人久久爱视频| 成人美女网站在线观看视频| 99久久精品热视频| 特大巨黑吊av在线直播| 村上凉子中文字幕在线| 日本黄色片子视频| 欧美+亚洲+日韩+国产| 人妻少妇偷人精品九色| 色综合色国产| 91在线精品国自产拍蜜月| 日韩国内少妇激情av| 欧美激情在线99| 国产高清三级在线| 国产精品一区二区三区四区久久| 老女人水多毛片| 色吧在线观看| 国产 一区 欧美 日韩| 色吧在线观看| 老女人水多毛片| 久久中文看片网| 国内久久婷婷六月综合欲色啪| 免费无遮挡裸体视频| 色在线成人网| 51国产日韩欧美| 日韩人妻高清精品专区| 春色校园在线视频观看| 欧美精品啪啪一区二区三区| 69av精品久久久久久| 亚洲av五月六月丁香网| 99国产精品一区二区蜜桃av| 日本熟妇午夜| 精品免费久久久久久久清纯| 亚洲,欧美,日韩| 听说在线观看完整版免费高清| 免费一级毛片在线播放高清视频| 床上黄色一级片| a级一级毛片免费在线观看| 亚洲av美国av| 亚洲天堂国产精品一区在线| 一a级毛片在线观看| 人妻久久中文字幕网| 97人妻精品一区二区三区麻豆| 国产亚洲欧美98| 精品人妻视频免费看| x7x7x7水蜜桃| 日本五十路高清| 干丝袜人妻中文字幕| 两个人的视频大全免费| 成人av在线播放网站| 日本免费一区二区三区高清不卡| 一个人免费在线观看电影| 日日摸夜夜添夜夜添av毛片 | 午夜激情欧美在线| 91久久精品电影网| 久久久色成人| 亚洲电影在线观看av| 国产亚洲精品久久久com| 国产白丝娇喘喷水9色精品| av视频在线观看入口| 搞女人的毛片| 中文字幕熟女人妻在线| 韩国av一区二区三区四区| 免费看美女性在线毛片视频| 中文字幕av在线有码专区| 国产黄a三级三级三级人| 精品久久久久久久人妻蜜臀av| 国产精品三级大全| 美女被艹到高潮喷水动态| 亚洲最大成人av| 国产精品乱码一区二三区的特点| 日韩av在线大香蕉| 99视频精品全部免费 在线| 麻豆成人午夜福利视频| 国产爱豆传媒在线观看| 18禁黄网站禁片午夜丰满| 久久欧美精品欧美久久欧美| 国产视频内射| 神马国产精品三级电影在线观看| 性欧美人与动物交配| 国内揄拍国产精品人妻在线| 观看免费一级毛片| 亚洲18禁久久av| 精品久久久久久久人妻蜜臀av| 国产精品女同一区二区软件 | 欧美一区二区亚洲| 欧美日本视频| 日本a在线网址| 变态另类成人亚洲欧美熟女| 久久国内精品自在自线图片| 动漫黄色视频在线观看| 亚洲四区av| 91久久精品电影网| 99热6这里只有精品| 欧美日韩精品成人综合77777| 又爽又黄a免费视频| 久久精品影院6| 免费av观看视频| 欧美在线一区亚洲| 999久久久精品免费观看国产| 午夜激情福利司机影院| 美女大奶头视频| 亚洲第一电影网av| 免费不卡的大黄色大毛片视频在线观看 | 夜夜看夜夜爽夜夜摸| 麻豆成人午夜福利视频| 国产三级中文精品| 欧美3d第一页| 深夜a级毛片| 亚洲不卡免费看| 美女黄网站色视频| 国产精品野战在线观看| 欧美一区二区亚洲| 亚洲午夜理论影院| 亚洲av熟女| 国产熟女欧美一区二区| 亚洲四区av| 色哟哟哟哟哟哟| 亚洲av第一区精品v没综合| 国产乱人伦免费视频| 好男人在线观看高清免费视频| 日韩精品青青久久久久久| 女的被弄到高潮叫床怎么办 | 精品午夜福利视频在线观看一区| 久久亚洲精品不卡|