• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水熱合成制備Al摻雜α-MnO2納米管及其超級(jí)電容器電化學(xué)性能

    2015-01-04 12:52:16謝華清上海第二工業(yè)大學(xué)城市建設(shè)與環(huán)境工程學(xué)院上海201209
    物理化學(xué)學(xué)報(bào) 2015年4期
    關(guān)鍵詞:納米管水熱電容器

    黎 陽 謝華清 李 靖(上海第二工業(yè)大學(xué)城市建設(shè)與環(huán)境工程學(xué)院,上海201209)

    水熱合成制備Al摻雜α-MnO2納米管及其超級(jí)電容器電化學(xué)性能

    黎 陽*謝華清 李 靖
    (上海第二工業(yè)大學(xué)城市建設(shè)與環(huán)境工程學(xué)院,上海201209)

    通過水熱法制備了未摻雜α-MnO2和Al摻雜α-MnO2,對(duì)產(chǎn)物的形貌、結(jié)構(gòu)和電化學(xué)性能進(jìn)行了研究.掃描電鏡(SEM)和高分辨透射電鏡(HRTEM)觀察表明制備產(chǎn)物呈納米管形態(tài).紫外-可見光譜分析計(jì)算了產(chǎn)物的能帶間隙:隨著Al的摻雜,α-MnO2的能帶間隙值降低.以未摻雜α-MnO2與Al摻雜α-MnO2作為電極材料,通過循環(huán)伏安(CV)和恒流充放電測試電極的超級(jí)電容器性能.在50 mA·g-1電流密度下,未摻雜α-MnO2與Al摻雜α-MnO2電極的比電容分別達(dá)到了204.8和228.8 F·g-1.電化學(xué)阻抗譜(EIS)分析表明Al的摻雜降低了α-MnO2在電解液中的阻抗,有利于提高其電化學(xué)比電容.增強(qiáng)的比電容及在1000個(gè)循環(huán)后仍具有良好的容量保持率,使Al摻雜α-MnO2在超級(jí)電容器中具有較好的應(yīng)用前景.

    α-MnO2;Al摻雜;納米管;超級(jí)電容器;電化學(xué)電容器

    ?Editorial office ofActa Physico-Chimica Sinica

    1 Introduction

    Manganese oxide,with its versatile structures,low cost,and environmental friendliness,is believed to have great potential to be applied in wide areas.In recent years,manganese oxides have been intensively studied as an electrode material for supercapacitors.The hot research spots mainly focus on the preparation and properties of nanostructured manganese oxides,the combination of manganese oxides with other components,doping in manganese oxides,etc.

    Nanostructured manganese oxides with different morphologies have been studied to explore the effects of nanoscale structures on their properties.Yao et al.1prepared high-quality ultra-long α-MnO2nanowires,with a diameter of about 25 nm and a length of several hundred micrometers,which exhibited a high specific capacitance and a superior cycling stability with only 4.7%loss after 1000 cycles.Lambda-MnO2was synthesized with a developed porous,ordered,and interconnected pore structure used as supercapacitor electrode.The as-synthesized porous lambda-MnO2materials showed a noticeably performance(120 F·g-1)at a high constant current(1A·g-1).2Zhu et al.3prepared hierarchical MnO2nanoflower via a hydrothermal treatment.The hierarchical MnO2nanoflower delivered not only high specific capacitance of 347 F·g-1,but also excellent cycle stability(97.5%capacitance retention after 10000 cycles at a scan rate of 20 mV·s-1).Although nanostructured manganese oxides presented promoted electrochemical performances,fussy preparation process seemed inevitable and further efforts are necessary to obtain elevated specific capacitance.

    The composites formed by MnO2and other materials,such as carbon/polymers,also demonstrate attractive electrochemical performances.Jiang et al.4developed a three-dimensional(3D) nanostructure comprised of ternary rGO(reduced graphene oxide)/ CNTs(carbon nanotubes)/MnO2nanocomposites for high-rate supercapacitors.The optimized nanocomposite exhibited a high specific capacitance of 319 F·g-1with enhanced rate capability (222 F·g-1even at 60A·g-1)and good cycling stability in 1 mol· L-1Na2SO4aqueous solution.Azhagan et al.5demonstrated a simple and comparatively low temperature synthesis of functionalized multilayer fullerenes so called carbon nano-onions (CNOs).In situ incorporation of MnO2nanoparticles to the CNOs increased the specific capacitance up to 1207 F·g-1,which was close to the theoretical value of pseudocapacitive MnO2.In Zolfaghari'swork,6carbon black(CB)/MnO2composites were prepared by a sonochemical method.When the mass fraction(w) of MnO2in composite material was 65%,the specific capacitance of CB-MnO2composite calculated from the CV curves was 313 F·g-1,showed higher energy density than pure gamma-MnO2.Yu et al.7synthesized ZnO@MnO2andAl-doped ZnO(AZO)@MnO2hybrid electrodes in core/shell geometries on stainless steel substrates by a scalable low-cost solution route.The excellent capacitive properties indicate that the AZO@MnO2hybrid architecture can serve as a promising electrode material for supercapacitors as well as other electrochemical energy storage/ conversion devices.Furthermore,nano composites of partially reduced graphene oxide-K2Mn4O8presented excellent electrochemical performances as well.8

    Doping was an effective way to change the properties of materials.It was revealed in many research works that the electrochemical performances of MnO2can be improved prominently via doping various elements into MnO2lattice.Some elements,including Co,9,10Fe,11Al,12-14V,15Pd,16Sn,17Li,18etc.,were doped into manganese oxides and proved to have positive influences on the properties of manganese oxides.Co-doped birnessite-type MnO2was prepared by Wang et al.,10which showed a very high specific capacitance of 326.4 F·g-1and indicated that cobalt had great effects on the micro-morphology and electrochemical properties of manganese dioxide.Dubal and Lokhande11potentiostatically prepared amorphous and highly porous nanonest like Fe:MnO2thin films.The maximum specific capacitance of 273 F·g-1was achieved for 2%(atomic ratio)Fe:MnO2at 5 mV·s-1scan rate.In Hashem'swork,12Al,Cu,and Mg doped cryptomelane manganese dioxides were prepared by wet-chemical method.The electrical conductivity of doped MnO2increased in comparison with pure MnO2,while Al-doped MnO2exhibited the lower resistivity. Various shapes of hierarchical MnO2(nanorod,nanothorn sphere, sphere)were successfully synthesized using the hydrothermal method with quantitative control ofAl3+in solution.13It was found that Al3+species in the solution acted as a functional doping species into(2×2)tunnels of α-MnO2and also as a catalyst. Malankar et al.18developed a new method to synthesize a uniform round-shaped Li-doped MnO2by ozonation of acidic MnSO4in the presence of Li+ions.The electrochemical properties of Lidoped MnO2were studied by recording discharge profile and the mechanisms were discussed.

    α-MnO2,with its special(2×2)tunnel cavity structure,presents attractive activity in lithium ion batteries,19,20supercapacitor,1,21microwave absorption,22,23catalyst,24,25etc.However,the inherent semi-conduct properties of α-MnO2leads to its low electrical conductivity,which is not beneficial to charge transfer in electrochemical process.So,it is necessary to enhance the electrical conductivity of α-MnO2.In this work,Al element was doped into α-MnO2nanotube to obtain uniform solid solution via hydrothermal method.It is expected that the doped Al could improve the electrical conductivity and electrochemical performances of α-MnO2.Moreover,the hollow space in the nanotube structure can provide a way for ions in the electrolyte to pass through,which would enlarge the contact areas between nanotube surface and electrolyte.As a result,more electrochemical active positions were formed and beneficial to redox processes on the nanotube surface.The investigations on the influences of doping on the structure and electrochemical performances of α-MnO2were carried out and discussed.

    2 Experimental

    Un-doped and Al-doped α-MnO2were prepared via hydrothermal method.All of the reactants and solvents were analytical-grade and were used without further purification.In a typical procedure,4.8 mmol potassium permanganate(99.0%)and aluminum nitrate(99.0%)were dissolved in 40 mL de-ionized water by magnetic stirring.Then 18 mmol concentrated hydrochloric acid(36.0%)was added in the above solution with stirring for 30 min.Finally,the solution was transferred to a Teflon reactor(100 mL volume)and placed in an oven and kept at 130°C for 10 h. After the temperature of the oven decreased to room temperature, the product in the reactor was collected by centrifugation,washed with de-ionized water and dried at 100°C for 24 h,resulting in brown black powder.The mole ratio of Mn andAl was controlled at 98:2 in the present study.The un-doped and doped samples were nominated as PM and AM,respectively.The structure and morphology of as-synthesized samples were examined by scanning electron microscopy(SEM,HITACHI,S-4800,Japan),X-ray diffraction(XRD,D8-ADVANCE,Cu Kα,Germany),ultravioletvisible absorption spectroscopy(UV-2550,SHIMADZU,Japan), and high resolution transmission electron microscopy(HRTEM, FEI,TECNAI G2-F20,USA)

    As-prepared powders were fabricated as electrodes to investigate their electrochemical properties.The typical procedure for electrode fabrication can be described as follow:as-synthesized samples,10%(w,mass fraction)conducting agent(acetylene black)and 10%(w)PVDF(poly vinyliene tetrafluoroethylene) latex as binder were mixed in mortar.Then the mixture was pressed into foam nickel mesh dried in air at 120°C for 12 h to remove solvent and finally was pressed under 10 MPa pressure to keep good adherence between electrode material and the nickel mesh current collector.Electrochemical investigations were carried out in three-electrode cell using carbon as counter electrode andAg/AgCl as reference electrode.The electrolyte,0.1 mol· L-1Na2SO4,was used to study the capacitive behavior of as-prepared electrodes.Cyclic voltammetry(CV)studies were performed at a potential range of-0.2-0.8 V(vs Ag/AgCl)at scan rates of 5,10,20,30,50,and 100 mV·s-1on electrochemical workstation(VMP3,BioLogic,France).Galvanostatical chargedischarge test was conducted at current densities of 20,50,80, 100,200,500,and 1000 mA·g-1between-0.2-0.8 V(vs Ag/ AgCl)using computer controlled cycling equipment(LAND, Wuhan China).Electrochemical impedance spectra(EIS)were measured over the frequency-range of 100 kHz-10 mHz at a potentiostatic signal amplitude of 5 mV on same workstation as CV test.

    3 Results and discussion

    3.1 Structure characterization

    XRD patterns of the as-prepared pristine α-MnO2andAl-doped α-MnO2are presented in Fig.1.It is apparent that PM and AM samples all demonstrate single tetragonal phase structures,corresponding to the characteristic peaks of α-MnO2phase(JCPDS 44-0141).No diffraction peaks of other phases or impurities etc. could be observed.The doping of Al causes variations of crystalline lattice of α-MnO2,which are listed in Table 1.The lattice parameters a and b increase from 0.9831 to 0.9866 nm,while lattice parameter c shows negligible change.So,the lattice expansion of Al-doped α-MnO2mainly happens along x and y axes and keeps stable in z axes direction.As a result,the volume ofAM sample cell expands from 0.2764 to 0.2783 nm3,which indicates that Al doping has effect on the structure of α-MnO2.During the formation of α-MnO2,Al ion(Al3+,ionic radius 0.057 nm),has similar ionic radius to Mn ion(Mn4+,ionic radius 0.052 nm),may mostly substitute Mn in MnO6octahedron and some Al ions exist at the center of(2×2)tunnel cavity where K+exists previously. Finally,it can be confirmed from XRD patterns that the dopedAl all exists with the form of solid solution in cryptomelane structure of α-MnO2.

    Fig.1 X-ray diffraction patterns of as-prepared α-MnO2(PM)andAl-doped α-MnO2(AM)

    Table 1 Variations of α-MnO2lattice parameters before and afterAl-doping

    Fig.2 shows the SEM morphologies of un-doped α-MnO2and Al-doped α-MnO2.PM andAM samples all show similar nanotube morphology and distribute homogeneously,which implies that the doping ofAl has no distinct effects on the morphology of α-MnO2. Those nanotubes are scores of nanometers in diameters and several hundreds of nanometers in lengths.It can be clearly observed and estimated that the wall thickness of nanotube is about 20 nm both in Fig.2(a)and Fig.2(b).The growth mechanism of nanotube under hydrothermal conditions can be comprehended in previous study.26The inset in Fig.2(b)shows the compositions of AM sample.The mole ratio of Mn andAl is about 98.1:1.9,which is close to the desired Al content.The details of as-prepared nanotubes are disclosed in high resolution image,as shown in Fig.3.Fig.3(a)apparently demonstrates hollow center structure of the nanotube and the diameters of these nanotubes are about 50-80 nm.The selected area electron diffraction(SAED)pattern in inset reveals the electronic diffraction characteristics of AM sample,indicating the single crystalline structure of individual nanotube.Fig.3(b)presents the zoom out view of selecting area within black circle in Fig.3(a).The lattice line of the sample couldbe distinguished easily.The center region of the nanotube is brighter than that of both side,due to film thickness of the hollow center in nanotube.The lattice-fringe distance is about 0.69 nm, which is corresponding to the(110)d-space of tetragonal α-MnO2(JCPDS file No.44-0141)and such result is in accordance with the XRD results.

    Generally,the energy band structures of substances would be altered when heterogeneous atoms are doped,which plays important roles in regulating physical properties of substances.In this study,the influences of doping on the band gaps of as-synthesized α-MnO2nantubes are studied by UV-Vis absorption spectroscopy.In Fig.4,the absorption spectra of α-MnO2nanotubes are presented.The inset demonstrates the Tauc plots calculated from absorption spectrum.By extrapolation of the Tauc plots,the band gaps of PM andAM samples can be determined as 2.14 and 2.05 eV,respectively.In former work,27the band gap values are different,which may have relationship with the grain size,microstructure,and component of various samples.The band gap value decreases upon doping ofAl into α-MnO2lattice,which indicates that the dopant has obvious influence on the band structure of α-MnO2nanotube.

    Fig.3 TEM morphology(selected area electron diffraction pattern in inset)of(a)Al-doped α-MnO2and(b)its high resolution image

    Fig.4 UV-visible spectra of as-prepared samples (Tauc plot in inset)

    3.2 Electrochemical performances

    Typical cyclic voltammogram(CV)curves of as-prepared α-MnO2electrodes in 0.1 mol·L-1Na2SO4solution at room temperature are presented in Fig.5.To find appropriate scan potential ranges for CV measurements,PM and AM samples are scanned with several different potential cut-off windows,as indicated in Fig.5(a,b).The profiles of all CV curves present roughly rectangular mirror images,which demonstrate typical capacitive characteristics.When the cut-off window ranges gradually increase,the cathodic and anodic currents all amplify accordingly due to enhanced polarization effects.While the potential cut-off window is located between-0.3 and 0.9 V,the cathodic and anodic currents are apparently larger than those of potential cutoff window between 0.0 and 0.6 V.The self-made three-electrode measuring system maintains stable and no gas bubbles/impurities emerge in solution/electrode surfaces at potential cut-off window of-0.2 and 0.8 V.So,it can be decided that the favorable scan potential cut-off window is between-0.2-0.8 V(vs Ag/AgCl). Various scan rates of 5,10,20,30,50,and 100 mV·s-1are applied in CV investigation to study the capacitive behaviors of PM and AM electrodes between-0.2-0.8 V in Fig.5(c,d).The PM and AM electrodes all exhibit highly electrochemical reversibility between-0.2 and 0.8 V,which can be judged from roughly rectangular mirror shapes in Fig.5(c,d).Obviously,with the increase of scan rates in CV measurements,the CV curves gradually deviate from rectangular shapes and the areas of CV curves enlarge.By comparison of CV patterns of PM andAM samples,the doping ofAl has no distinct effects on the profiles of CV curves.

    The capacitance of MnO2is considered to be mainly produced from pseudo-capacitance,which is attributed to reversible redox reaction happened between electrode and electrolyte in terms of intercalation/de-intercalation of H+or Na+.To study the capacitance variations of MnO2before and after doping,galvanostatical charge-discharge measurements are conducted.Fig.6 presents the charge-discharge curves of PM andAM samples.Under 50 mA· g-1current density,the profiles of charge-discharge curves of PMand AM samples display similar variation characteristics,as indicated in Fig.6(a).The IR drops for both samples are displayed in the inset.The potential-time relationships on charge-discharge curves are all approximately linear except the discharge curve become placid at lower potential stage,which implies that both electrodes have regular capacitive behaviors.The specific capacitance(SC)of samples could be calculated with chargedischarge profiles via equation:

    Fig.6 Galvanostatical charge-discharge measurements of(a)profiles conducted under 50 mA·g-1current density (zoom in view of pattern in inset)and(b)the variations of specific capacitances upon current density increasing

    where C,I,?t,?V,and m are the specific capacitance,galvanostatic current,charge-discharge time,potential cut-off window, and mass of electro-active material.When the charge-discharge current densities increase from 20 to 1000 mA·g-1,the SC decreases monotonously both for PM andAM,as shown in Fig.6(b). It can be seen that the SC of AM sample are greater than that of PM sample under all current densities.Upon current density increasing,the discrepancy of SC between PM and AM samples keeps stable,which may be attributed to weaker ion/electrical conductivity of un-doped α-MnO2sample.Poor electrical conductivity is not beneficial to electron exchange between electrode and electrolyte,leading to less pseudo-capacitance faradic reactions and producing smaller capacitances.By calculation from equation(1),when the current density ascends from 20 to 1000 mA·g-1,the SC of PM and AM samples falls from 315.4 and 336.5 F·g-1to 14.4 and 33.6 F·g-1respectively,indicating thatAldoped α-MnO2can maintain superior SC than un-doped sample.For comparison,commercial MnO2(A.R.,Sinapharm Chemical Reagent Co.,Ltd.)is fabricated into electrode and measured.The SC of commercial MnO2is only 124.2 F·g-1under 20 mA·g-1,far less than those of AM and PM samples.The doping is considered to account for the enhancement of SC of doped sample.By doping Al element,the charge transfer ability of α-MnO2is enhanced, which could be convinced in following EIS analysis.

    Fig.7(a)shows the electrochemical impedance spectra of doped and un-doped samples.The charge transfer process happened on the electrode interface can be described by the semicircle at high frequencies and the near linear variation at low frequencies represents the ion diffusion process.The semicircles at high frequencies are presented in the inset on the top right corner.The corresponding values of intersection of semicircle and x-coordinate show the charge transfer impedances Rctof samples,which determines the process in terms of redox reactions at the interface between electrode and electrolyte.In this study,the impedance value Rctof un-doped α-MnO2is greater than that of doped samples,which indicates that the charge transfer process is easier to happen on the interface for Al-doped α-MnO2than for un-doped α-MnO2.Furthermore,the simulated equivalent circuit diagram is provided in Fig.7(a),where Rct,Rohm,CPE,and Zware charge charansfer resistance,Ohm resistance,constant phase element, and Warburg resistance,respectively.By analysis of ZsimpWin software,the simulated values of Rctare 8.65 and 10.18 Ω forAM and PM samples respectively,which are in good accordance with the experimental results and indicate that the equivalent circuit diagram can properly simulate the impedance characterizations of the electrodes.

    Fig.7 (a)Electrochemical impedance spectra of PM andAM samples(zoom in view of high frequency zone in inset)and (b)cycling performances under a current density of 50 mA·g-1

    The cycling performances of un-doped and doped α-MnO2are presented in Fig.7(b).Apparently,both samples demonstrate preferable cycling stabilities.With charge/discharge process going,the decreases of SC are small and the SC discrepancy between doped and un-doped α-MnO2presents little variation,which is different from the results in former literature.28It is considered that doped Al may occupy(2×2)tunnel position or substitute Mn in MnO6octahedron,which could influence the intercalation/deintercalation of H+/Na+upon cycling.In present study,no obvious influences of doping on cycling stability are displayed,which means that un-doped and doped samples all have stable structures upon cycling.As proved in UV-Vis measurement in Fig.4,the band gap of AM decreases in comparison to that of PM,which means that the band structure of MnO2has changed viaAl doping. By further investigation in EIS spectra,doping ofAl into α-MnO2lattices results in lower impedance value and preferable electrochemical capacitance.As a result,the doping is considered to be responsible for improved SC and good cycling performance ofAldoped α-MnO2.

    4 Conclusions

    Un-doped and Al-doped α-MnO2with nanotube morphology were successfully synthesized via hydrothermal method.Asprepared α-MnO2behaved cryptomelane structures in X-ray diffraction patterns and the variation of lattice parameters was detected in Al-doped α-MnO2.The band gaps of un-doped and doped α-MnO2were determined by ultraviolet-visible absorption spectra,which revealed that the band gap value of α-MnO2decreased after doping.In CV tests,un-doped andAl-doped α-MnO2all displayed good capacitive response.The profiles of CV curves gradually changed with scan rate increasing.The specific capacitances of un-doped and Al-doped α-MnO2were 204.8 and 228.8 F·g-1respectively under 50 mA·g-1current density during charge-discharge process.Both samples exhibited good cycling stability.The superior electrical conductivity ofAl-doped α-MnO2was convinced by EIS measurement,which could account for better specific capacitance of doped sample.Based on the good cycling performance and improved specific capacitance,Al-doped α-MnO2may be used as a potential electrode material for supercapacitors.

    (1) Yao,W.;Wang,J.;Li,H.;Lu,Y.J.Power Sources 2014,247, 824.doi:10.1016/j.jpowsour.2013.09.039

    (2) Ghimbeu,C.M.;Malak-Polaczyk,A.;Frackowiak,E.;Vix-Guterl,C.J.Appl.Electrochem.2014,44,123.doi:10.1007/ s10800-013-0614-6

    (3) Zhu,G.;Deng,L.;Wang,J.;Kang,L.;Liu,Z.H.Colloids Surfaces A 2013,434,42.doi:10.1016/j.colsurfa.2013.05.008

    (4) Jiang,H.;Dai,Y.;Hu,Y.;Chen,W.;Li,C.ACS Sustain.Chem. Eng.2014,2,70.doi:10.1021/sc400313y

    (5) Azhagan,M.V.K.;Vaishampayan,M.V.;Shelke,M.V. J.Mater.Chem.A 2014,2,2152.doi:10.1039/C3TA14076H

    (6) Zolfaghari,A.;Naderi,H.R.;Mortaheb,H.R.J.Electroanal. Chem.2013,697,60.doi:10.1016/j.jelechem.2013.03.012

    (7) Yu,M.;Sun,H.;Sun,X.;Lu,F.;Wang,G.;Hu,T.;Qiu,H.; Lian,J.Int.J.Electrochem.Sci.2013,8,2313.

    (8) Li,L.;He,Y.Q.;Chu,X.F.;Li,Y.M.;Sun,F.F.;Huang,H.Z. Acta Phys.-Chim.Sin.2013,29,1681.[李 樂,賀蘊(yùn)秋,儲(chǔ)曉菲,李一鳴,孫芳芳,黃河洲.物理化學(xué)學(xué)報(bào),2013,29,1681.] doi:10.3866/PKU.WHXB201305223

    (9) Hashem,A.M.;Abuzeid,H.M.;Mikhailova,D.;Ehrenberg,H.; Mauger,A.;Julien,C.M.J.Mater.Sci.2012,47,2479.doi: 10.1007/s10853-011-6071-x

    (10) Wang,G.;Shao,G.;Du,J.;Zhang,Y.;Ma,Z.Mater.Chem. Phys.2013,138,108.doi:10.1016/j.matchemphys.2012.11.024

    (11) Dubal,D.P.;Lokhande,C.D.Ceram.Int.2013,39,415.doi: 10.1016/j.ceramint.2012.06.042

    (12) Hashem,A.M.;Abuzeid,H.M.;Narayanan,N.;Ehrenberg,H.; Julien,C.M.Mater.Chem.Phys.2011,130,33.doi:10.1016/j. matchemphys.2011.04.074

    (13) Ryu,W.H.;Han,D.W.;Kim,W.K.;Kwon,H.S.J.Nanopart. Res.2011,13,4777.doi:10.1007/s11051-011-0448-2

    (14) Shanthi,S.;Ravi,S.Int.J.Chem.Tech.Res.2014,6,2066.

    (15) Wang,S.;Liu,Q.;Yu,J.;Zeng,J.Int.J.Electrochem.Sci.2012, 7,1242.

    (16) Kunkalekar,R.K.;Salker,A.V.React.Kinet.Mech.Catal. 2012,106,395.doi:10.1007/s11144-012-0443-3

    (17) Hashem,A.M.;Abdel-Latif,A.M.;Abuzeid,H.M.;Abbas,H. M.;Ehrenberg,H.;Farag,R.S.;Mauger,A.;Julien,C.M. J.Alloy.Compd.2011,509,9669.doi:10.1016/j. jallcom.2011.07.075

    (18) Malankar,H.;Umare,S.S.;Singh,K.Mater.Lett.2009,63, 2016.doi:10.1016/j.matlet.2009.06.044

    (19) Jung,K.N.;Riaz,A.;Lee,S.B.;Lim,T.H.;Park,S.J.;Song, R.H.;Yoon,S.;Shin,K.H.;Lee,J.W.J.Power Sources 2013, 244,328.doi:10.1016/j.jpowsour.2013.01.028

    (20) Zhang,Y.;Liu,H.;Zhu,Z.;Wong,K.W.;Mi,R.;Mei,J.;Lau, W.M.Electrochim.Acta 2013,108,465.doi:10.1016/j. electacta.2013.07.002

    (21) Song,Z.;Liu,W.;Zhao,M.;Zhang,Y.;Liu,G.;Yu,C.;Qiu,J. J.Alloy.Compd.2013,560,151.doi:10.1016/j. jallcom.2013.01.117

    (22) Wang,G.S.;He,S.;Luo,X.;Wen,B.;Lu,M.M.;Guo,L.;Cao, M.S.RSC Adv.2013,3,18009.doi:10.1039/c3ra42412j

    (23) Zhou,M.;Zhang,X.;Wang,L.;Wei,J.;Zhu,K.;Feng,B. J.Nanosci.Nanotechnol.2013,13,904.doi:10.1166/ jnn.2013.5958

    (24) Shan,J.;Zhu,Y.;Zhang,S.;Zhu,T.;Rouvimov,S.;Tao,F. J.Phys.Chem.C 2013,117,8329.doi:10.1021/jp4018103

    (25) Wu,Y.;Lu,Y.;Song,C.;Ma,Z.;Xing,S.;Gao,Y.Catal.Today 2013,201,32.doi:10.1016/j.cattod.2012.04.032

    (26) Umek,P.;Gloter,A.;Pregelj,M.;Dominko,R.;Jagodic,M.; Jaglicic,Z.;Zimina,A.;Brzhezinskaya,M.;Potocnik,A.; Filipic,C.;Levstik,A.;Arcon,D.J.Phys.Chem.C 2009,113, 14798.doi:10.1021/jp9050319

    (27) Sakai,N.;Ebina,Y.;Takada,K.;Sasaki,T.J.Phys.Chem.B 2005,109,9651.doi:10.1021/jp0500485

    (28) Kang,J.L.;Hirata,A.H.;Kang,L.J.;Zhang,X.M.;Hou,Y.; Chen,L.Y.;Li,C.;Fujita,T.;Atagi,K.;Chen,M.W.Angew. Chem.Int.Edit.2013,52,1664.doi:10.1002/anie.v52.6

    Hydrothermal Synthesis of Al-Doped α-MnO2Nanotubes and Their Electrochemical Performance for Supercapacitors

    LI Yang*XIE Hua-Qing LI Jing
    (School of Urban Development and Environmental Engineering,Shanghai Second Polytechnic University, Shanghai 201209,P.R.China)

    α-MnO2and Al-doped α-MnO2were synthesized via a hydrothermal method.The morphologies, structures,and electrochemical performances of as-synthesized un-doped and doped α-MnO2were studied. Scanning electron microscopy(SEM)and high-resolution transmission electron microscopy(HRTEM)show that these un-doped and doped α-MnO2are nanotube shaped.The band gaps of α-MnO2are investigated by ultraviolet-visible absorption spectroscopy,which indicates that the band gap of α-MnO2decreases upon Al doping.The electrochemical performances of un-doped and doped α-MnO2as electrode materials for supercapacitors were measured by cyclic voltammetry(CV)and galvanostatical charge/discharge tests.The specific capacitances of un-doped and Al-doped α-MnO2respectively reach 204.8 and 228.8 F·g-1under a current density of 50 mA·g-1.It was discovered that the electrochemical impedance of Al-doped α-MnO2was decreased byAl doping analyzed using electrochemical impedance spectra(EIS),which provides a beneficial increase to its electrochemical specific capacitance.Enhanced specific capacitance and preferable cycling stability(up to 1000 cycles)forAl-doped α-MnO2mean that these systems are favorable prospects for application in supercapacitors.

    α-MnO2;Al doping;Nanotube;Supercapacitor;Electrochemical capacitor

    O646;TM911

    10.3866/PKU.WHXB201502021www.whxb.pku.edu.cn

    Received:September 9,2014;Revised:January 29,2015;Published on Web:February 2,2015.

    ?Corresponding author.Email:liyang@sspu.edu.cn;Tel/Fax:+86-21-50216301.

    The project was supported by the Key Innovation Foundation of Shanghai Education Commission,China(13ZZ139),Key Discipline Construction (Materials Science)of Shanghai Second Polytechnic University,China(XXKPY1302),and Program for Professor of SpecialAppointment(Eastern Scholar)at Shanghai Institutions of Higher Learning,China.

    上海市教委創(chuàng)新重點(diǎn)項(xiàng)目(13ZZ139),上海第二工業(yè)大學(xué)校級(jí)重點(diǎn)培育學(xué)科(材料科學(xué))建設(shè)(XXKPY1302)及上海市高?!皷|方學(xué)者”崗位計(jì)劃資助

    猜你喜歡
    納米管水熱電容器
    最近鄰弱交換相互作用對(duì)spin-1納米管磁化強(qiáng)度的影響
    電容器的實(shí)驗(yàn)教學(xué)
    物理之友(2020年12期)2020-07-16 05:39:20
    含有電容器放電功能的IC(ICX)的應(yīng)用及其安規(guī)符合性要求
    電子制作(2019年22期)2020-01-14 03:16:28
    無功補(bǔ)償電容器的應(yīng)用
    山東冶金(2019年5期)2019-11-16 09:09:38
    水熱還是空氣熱?
    石墨烯在超級(jí)電容器中的應(yīng)用概述
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    簡述ZSM-5分子篩水熱合成工藝
    一維Bi2Fe4O9納米棒陣列的無模板水熱合成
    TiO2納米管負(fù)載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    91麻豆精品激情在线观看国产| 国产v大片淫在线免费观看| 99久久综合精品五月天人人| 欧美日本视频| 亚洲精品在线美女| 亚洲国产精品sss在线观看| 国产又色又爽无遮挡免费看| 国产高清激情床上av| 久久这里只有精品中国| 色噜噜av男人的天堂激情| 97超视频在线观看视频| 91字幕亚洲| 大型黄色视频在线免费观看| 国内精品美女久久久久久| 成人高潮视频无遮挡免费网站| 日韩国内少妇激情av| 一级黄色大片毛片| 一二三四在线观看免费中文在| 一级毛片高清免费大全| 精品久久久久久久久久免费视频| 中文字幕久久专区| 窝窝影院91人妻| 国产成人精品久久二区二区免费| 亚洲自偷自拍图片 自拍| 在线观看66精品国产| 一区二区三区高清视频在线| 19禁男女啪啪无遮挡网站| 香蕉国产在线看| 午夜久久久久精精品| 国产黄片美女视频| 午夜免费观看网址| 免费观看的影片在线观看| av黄色大香蕉| 国产亚洲av高清不卡| 国产高清激情床上av| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品456在线播放app | 日韩精品青青久久久久久| 国产av不卡久久| 欧美成狂野欧美在线观看| 天堂影院成人在线观看| 一级黄色大片毛片| 1024香蕉在线观看| 男人和女人高潮做爰伦理| 99国产综合亚洲精品| 最近在线观看免费完整版| 国产在线精品亚洲第一网站| 精品电影一区二区在线| 极品教师在线免费播放| 老司机午夜福利在线观看视频| 国产成+人综合+亚洲专区| 99国产极品粉嫩在线观看| 久久久国产精品麻豆| 日韩有码中文字幕| 国产亚洲精品av在线| 久久欧美精品欧美久久欧美| 久久精品综合一区二区三区| xxxwww97欧美| 日韩精品中文字幕看吧| 国产欧美日韩一区二区三| 亚洲精品久久国产高清桃花| 天堂网av新在线| 国产99白浆流出| 亚洲av美国av| 操出白浆在线播放| 国产免费男女视频| 国产精品久久久人人做人人爽| 狠狠狠狠99中文字幕| 亚洲第一欧美日韩一区二区三区| av福利片在线观看| 99在线人妻在线中文字幕| 一级作爱视频免费观看| 日日摸夜夜添夜夜添小说| 人妻夜夜爽99麻豆av| 19禁男女啪啪无遮挡网站| 成人性生交大片免费视频hd| 国产亚洲精品av在线| 亚洲美女黄片视频| 亚洲国产精品成人综合色| 欧美中文综合在线视频| 亚洲精品在线美女| 一个人免费在线观看的高清视频| 婷婷丁香在线五月| 一区二区三区激情视频| 久久久久久久午夜电影| 亚洲精品456在线播放app | 午夜精品在线福利| 天堂av国产一区二区熟女人妻| 日韩欧美国产一区二区入口| 两个人视频免费观看高清| 精品午夜福利视频在线观看一区| 又黄又爽又免费观看的视频| 亚洲熟妇中文字幕五十中出| 18禁黄网站禁片午夜丰满| 国产成人精品久久二区二区免费| 在线观看一区二区三区| 久久性视频一级片| 黑人操中国人逼视频| 日本五十路高清| 亚洲九九香蕉| 国产日本99.免费观看| 婷婷丁香在线五月| 国产成人av教育| 桃色一区二区三区在线观看| 蜜桃久久精品国产亚洲av| 成人国产综合亚洲| 99精品欧美一区二区三区四区| 麻豆国产av国片精品| 国产欧美日韩精品一区二区| 一级a爱片免费观看的视频| 国产成人精品久久二区二区91| 日韩欧美在线二视频| 久久香蕉精品热| 亚洲av成人av| 日本撒尿小便嘘嘘汇集6| 国产免费男女视频| 深夜精品福利| 在线观看日韩欧美| 亚洲欧美日韩东京热| 精品国产三级普通话版| 麻豆国产av国片精品| 丁香六月欧美| 色噜噜av男人的天堂激情| www.www免费av| 亚洲在线自拍视频| 久久国产乱子伦精品免费另类| 亚洲性夜色夜夜综合| 欧美一级毛片孕妇| 色哟哟哟哟哟哟| 欧美日韩中文字幕国产精品一区二区三区| www国产在线视频色| 婷婷亚洲欧美| 99精品欧美一区二区三区四区| 午夜精品久久久久久毛片777| 丁香六月欧美| 久久国产乱子伦精品免费另类| 一个人观看的视频www高清免费观看 | 精品久久久久久久末码| 国产精品一区二区免费欧美| 国产精品综合久久久久久久免费| 国产高清有码在线观看视频| 国内精品久久久久精免费| 国产三级中文精品| 国产精品 国内视频| 天堂影院成人在线观看| 欧美又色又爽又黄视频| 18美女黄网站色大片免费观看| 中文在线观看免费www的网站| 日韩欧美 国产精品| 99国产综合亚洲精品| 午夜福利成人在线免费观看| 国产一区二区三区视频了| 欧美性猛交黑人性爽| 亚洲欧美精品综合久久99| 国产亚洲av高清不卡| 国产亚洲欧美在线一区二区| 欧美中文综合在线视频| 久久久久亚洲av毛片大全| 18禁美女被吸乳视频| 国产激情久久老熟女| 色哟哟哟哟哟哟| 噜噜噜噜噜久久久久久91| 欧美另类亚洲清纯唯美| 嫩草影视91久久| 搡老妇女老女人老熟妇| 人妻丰满熟妇av一区二区三区| 久久久久亚洲av毛片大全| 制服丝袜大香蕉在线| 欧美国产日韩亚洲一区| 欧美一区二区精品小视频在线| 少妇裸体淫交视频免费看高清| 天堂影院成人在线观看| 18禁观看日本| 俺也久久电影网| 亚洲av中文字字幕乱码综合| 日韩欧美一区二区三区在线观看| 两人在一起打扑克的视频| 欧美精品啪啪一区二区三区| 国产一区二区激情短视频| 婷婷丁香在线五月| 午夜福利高清视频| 99久久无色码亚洲精品果冻| 成人一区二区视频在线观看| 国产一区在线观看成人免费| 亚洲国产色片| 欧美日韩综合久久久久久 | 亚洲avbb在线观看| 免费在线观看影片大全网站| 最近最新免费中文字幕在线| 搡老熟女国产l中国老女人| 丰满的人妻完整版| 美女 人体艺术 gogo| 国产乱人伦免费视频| 国产欧美日韩精品亚洲av| www国产在线视频色| 久久精品91蜜桃| 久久久精品欧美日韩精品| 高清在线国产一区| 丁香欧美五月| 国产精品美女特级片免费视频播放器 | 亚洲熟妇中文字幕五十中出| 人妻久久中文字幕网| 三级男女做爰猛烈吃奶摸视频| 国产三级黄色录像| 精品99又大又爽又粗少妇毛片 | 久久久久国产一级毛片高清牌| 精品国产超薄肉色丝袜足j| 久久久精品欧美日韩精品| av黄色大香蕉| 午夜福利欧美成人| 午夜激情福利司机影院| 999久久久精品免费观看国产| av在线天堂中文字幕| 国产 一区 欧美 日韩| 亚洲真实伦在线观看| 一边摸一边抽搐一进一小说| 无限看片的www在线观看| 男女床上黄色一级片免费看| 国产精品 欧美亚洲| 日韩精品青青久久久久久| 18美女黄网站色大片免费观看| 欧美高清成人免费视频www| 国产91精品成人一区二区三区| 午夜激情福利司机影院| av在线蜜桃| 岛国在线免费视频观看| 色综合婷婷激情| 一进一出好大好爽视频| 亚洲av电影不卡..在线观看| 人人妻,人人澡人人爽秒播| 久久精品91无色码中文字幕| 亚洲自偷自拍图片 自拍| 亚洲av成人av| 观看免费一级毛片| av欧美777| 99热6这里只有精品| 白带黄色成豆腐渣| 国产伦人伦偷精品视频| 少妇的逼水好多| 色吧在线观看| 国产单亲对白刺激| 亚洲成人久久性| 嫩草影院入口| 婷婷亚洲欧美| 亚洲精品中文字幕一二三四区| 两个人看的免费小视频| 一区二区三区激情视频| 一区福利在线观看| 搡老妇女老女人老熟妇| 亚洲五月婷婷丁香| 最新美女视频免费是黄的| 成人特级黄色片久久久久久久| 色吧在线观看| 好男人在线观看高清免费视频| 国产高清videossex| 国产精品国产高清国产av| 一区福利在线观看| 十八禁人妻一区二区| 怎么达到女性高潮| 亚洲精品在线观看二区| 俄罗斯特黄特色一大片| 老司机午夜福利在线观看视频| 一个人看的www免费观看视频| 久久婷婷人人爽人人干人人爱| 午夜免费激情av| 天堂av国产一区二区熟女人妻| 日韩欧美一区二区三区在线观看| 精品午夜福利视频在线观看一区| 亚洲成人精品中文字幕电影| 在线免费观看不下载黄p国产 | 毛片女人毛片| 一级作爱视频免费观看| 久久草成人影院| 婷婷亚洲欧美| 亚洲av免费在线观看| 欧美日韩一级在线毛片| 丁香六月欧美| www.自偷自拍.com| 黄色视频,在线免费观看| 美女扒开内裤让男人捅视频| 一区二区三区激情视频| 久久香蕉国产精品| av片东京热男人的天堂| 一个人看视频在线观看www免费 | 欧美在线黄色| 老鸭窝网址在线观看| 国产精品一区二区免费欧美| 国产精品久久久久久亚洲av鲁大| 国产精品自产拍在线观看55亚洲| 欧美3d第一页| 精品人妻1区二区| 午夜精品久久久久久毛片777| 在线观看免费视频日本深夜| a级毛片在线看网站| 两性午夜刺激爽爽歪歪视频在线观看| 91av网站免费观看| 日韩欧美在线乱码| 女生性感内裤真人,穿戴方法视频| 两个人看的免费小视频| 免费电影在线观看免费观看| 久久午夜综合久久蜜桃| 久久亚洲精品不卡| 亚洲国产精品久久男人天堂| 亚洲美女视频黄频| 蜜桃久久精品国产亚洲av| 亚洲国产精品999在线| 国内精品久久久久久久电影| 日本免费一区二区三区高清不卡| 一级作爱视频免费观看| 99久久久亚洲精品蜜臀av| a在线观看视频网站| 亚洲国产精品合色在线| 最近最新中文字幕大全免费视频| 9191精品国产免费久久| 九色成人免费人妻av| 99热这里只有是精品50| 久久久久久久久久黄片| 国产成人av激情在线播放| 香蕉av资源在线| 熟女少妇亚洲综合色aaa.| 久久久国产欧美日韩av| 国产精品亚洲av一区麻豆| 神马国产精品三级电影在线观看| 99久久国产精品久久久| 久久欧美精品欧美久久欧美| 免费在线观看成人毛片| 国产av在哪里看| 日韩有码中文字幕| 久久精品人妻少妇| x7x7x7水蜜桃| 99国产极品粉嫩在线观看| 国产麻豆成人av免费视频| av在线蜜桃| 亚洲成av人片免费观看| 国产一级毛片七仙女欲春2| 国产精品一区二区三区四区免费观看 | АⅤ资源中文在线天堂| 99精品在免费线老司机午夜| 亚洲精品美女久久av网站| 黑人欧美特级aaaaaa片| 99精品欧美一区二区三区四区| 国产av一区在线观看免费| 色噜噜av男人的天堂激情| 中出人妻视频一区二区| 日韩 欧美 亚洲 中文字幕| 成人鲁丝片一二三区免费| 男女午夜视频在线观看| 欧美3d第一页| 国产真人三级小视频在线观看| 国产69精品久久久久777片 | 久久久久久久久免费视频了| 深夜精品福利| 成人欧美大片| 国产精品九九99| 看免费av毛片| 麻豆国产97在线/欧美| 两个人看的免费小视频| 国产真人三级小视频在线观看| 亚洲欧美日韩高清专用| 久久国产精品人妻蜜桃| 亚洲第一电影网av| 国产精品综合久久久久久久免费| 精品久久久久久久末码| 欧美日韩福利视频一区二区| 在线观看免费视频日本深夜| 亚洲av美国av| 99久久成人亚洲精品观看| 亚洲欧美日韩无卡精品| tocl精华| 欧美日韩精品网址| 欧美性猛交╳xxx乱大交人| 国内久久婷婷六月综合欲色啪| 国产极品精品免费视频能看的| 欧美在线一区亚洲| 9191精品国产免费久久| 亚洲精品粉嫩美女一区| 99久久成人亚洲精品观看| 97碰自拍视频| 真人一进一出gif抽搐免费| av福利片在线观看| 一夜夜www| 窝窝影院91人妻| 欧美黑人欧美精品刺激| 黄色丝袜av网址大全| 午夜a级毛片| 最新在线观看一区二区三区| 一区二区三区激情视频| 成人无遮挡网站| 亚洲自偷自拍图片 自拍| 亚洲国产欧洲综合997久久,| 国产av一区在线观看免费| 久久精品夜夜夜夜夜久久蜜豆| 91麻豆av在线| 精品人妻1区二区| 国产成人av教育| 亚洲成人久久性| 日韩高清综合在线| 亚洲最大成人中文| 免费大片18禁| 一级毛片精品| 国产精品久久久久久精品电影| 欧洲精品卡2卡3卡4卡5卡区| 无遮挡黄片免费观看| 久9热在线精品视频| 成人特级黄色片久久久久久久| 日日干狠狠操夜夜爽| 亚洲成av人片在线播放无| 91麻豆精品激情在线观看国产| www.精华液| 午夜福利欧美成人| 狂野欧美激情性xxxx| 欧美一区二区精品小视频在线| 亚洲色图 男人天堂 中文字幕| 在线观看66精品国产| 亚洲国产精品成人综合色| 在线观看舔阴道视频| 十八禁网站免费在线| 精品久久久久久久久久久久久| 国产成人系列免费观看| 亚洲人成伊人成综合网2020| 12—13女人毛片做爰片一| 丝袜人妻中文字幕| 又黄又粗又硬又大视频| 露出奶头的视频| 成人一区二区视频在线观看| 99热只有精品国产| 午夜成年电影在线免费观看| 美女免费视频网站| 最新在线观看一区二区三区| 99国产极品粉嫩在线观看| 日韩有码中文字幕| 亚洲电影在线观看av| 一夜夜www| 91在线观看av| 亚洲精品色激情综合| 观看免费一级毛片| 91麻豆精品激情在线观看国产| www.熟女人妻精品国产| 亚洲片人在线观看| 免费看日本二区| 欧美av亚洲av综合av国产av| 国产精品亚洲av一区麻豆| av中文乱码字幕在线| 久9热在线精品视频| 老司机在亚洲福利影院| 亚洲七黄色美女视频| 久久精品人妻少妇| 亚洲欧美一区二区三区黑人| 淫妇啪啪啪对白视频| 久久亚洲精品不卡| 狂野欧美激情性xxxx| 97碰自拍视频| 可以在线观看的亚洲视频| 国产极品精品免费视频能看的| 中亚洲国语对白在线视频| 免费在线观看视频国产中文字幕亚洲| 久久精品综合一区二区三区| 怎么达到女性高潮| 日韩欧美三级三区| 欧美极品一区二区三区四区| 亚洲国产精品sss在线观看| e午夜精品久久久久久久| 成人国产一区最新在线观看| 久9热在线精品视频| 久久精品91蜜桃| 午夜免费激情av| 国产亚洲av高清不卡| 一个人观看的视频www高清免费观看 | 精品午夜福利视频在线观看一区| 男女午夜视频在线观看| 亚洲人与动物交配视频| 每晚都被弄得嗷嗷叫到高潮| 日本一二三区视频观看| 精品不卡国产一区二区三区| 久久亚洲真实| 欧美精品啪啪一区二区三区| 搡老妇女老女人老熟妇| 特级一级黄色大片| 香蕉丝袜av| 在线观看舔阴道视频| 天天添夜夜摸| 午夜日韩欧美国产| 亚洲无线在线观看| 亚洲 欧美一区二区三区| 长腿黑丝高跟| 91老司机精品| 88av欧美| 怎么达到女性高潮| 变态另类丝袜制服| 美女被艹到高潮喷水动态| 99热这里只有是精品50| 无遮挡黄片免费观看| 国产亚洲欧美98| 999久久久国产精品视频| 午夜精品久久久久久毛片777| 不卡一级毛片| 1024手机看黄色片| 国产一区二区三区视频了| 男人的好看免费观看在线视频| 九九在线视频观看精品| 在线观看午夜福利视频| 国产亚洲精品久久久久久毛片| 免费观看的影片在线观看| 不卡一级毛片| 99精品久久久久人妻精品| 免费在线观看影片大全网站| 成人性生交大片免费视频hd| 亚洲 国产 在线| 热99re8久久精品国产| 波多野结衣高清无吗| 国产日本99.免费观看| 女人高潮潮喷娇喘18禁视频| 免费在线观看成人毛片| 亚洲乱码一区二区免费版| 99久久综合精品五月天人人| 中文字幕人成人乱码亚洲影| 亚洲男人的天堂狠狠| 九九久久精品国产亚洲av麻豆 | 老司机深夜福利视频在线观看| 日本免费a在线| 成人高潮视频无遮挡免费网站| 精品免费久久久久久久清纯| 黑人欧美特级aaaaaa片| 久久久水蜜桃国产精品网| 亚洲在线观看片| 亚洲av成人av| 久久国产精品人妻蜜桃| 免费av毛片视频| 国产高清videossex| 亚洲美女视频黄频| 伦理电影免费视频| 亚洲激情在线av| 亚洲在线自拍视频| 国产黄a三级三级三级人| 亚洲av中文字字幕乱码综合| 国产一区二区三区在线臀色熟女| 国产1区2区3区精品| 露出奶头的视频| 国产熟女xx| 日本免费a在线| 国语自产精品视频在线第100页| 18禁裸乳无遮挡免费网站照片| 全区人妻精品视频| 99在线视频只有这里精品首页| 日韩人妻高清精品专区| xxxwww97欧美| 中文字幕人成人乱码亚洲影| svipshipincom国产片| 99热只有精品国产| 夜夜躁狠狠躁天天躁| 国产精品九九99| 欧美日韩国产亚洲二区| 亚洲精品中文字幕一二三四区| 亚洲欧美精品综合一区二区三区| 男人的好看免费观看在线视频| 每晚都被弄得嗷嗷叫到高潮| 美女 人体艺术 gogo| 亚洲国产精品sss在线观看| 亚洲男人的天堂狠狠| 国产精品免费一区二区三区在线| 精品国产乱子伦一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 一区二区三区国产精品乱码| 久久香蕉国产精品| 国产午夜精品论理片| 日韩av在线大香蕉| 亚洲成人免费电影在线观看| 国产精华一区二区三区| 999久久久精品免费观看国产| 18禁黄网站禁片午夜丰满| 欧美又色又爽又黄视频| 久久这里只有精品19| 神马国产精品三级电影在线观看| e午夜精品久久久久久久| 美女大奶头视频| 人妻久久中文字幕网| av欧美777| 欧美国产日韩亚洲一区| 久久99热这里只有精品18| 观看免费一级毛片| 国产精品日韩av在线免费观看| 成人永久免费在线观看视频| 69av精品久久久久久| 日韩中文字幕欧美一区二区| 可以在线观看的亚洲视频| 国产野战对白在线观看| 日本三级黄在线观看| 老汉色av国产亚洲站长工具| 黑人操中国人逼视频| 免费搜索国产男女视频| 国产一区二区三区视频了| 亚洲欧美激情综合另类| 色噜噜av男人的天堂激情| 欧美国产日韩亚洲一区| 亚洲熟妇中文字幕五十中出| 国产伦精品一区二区三区四那| 最近视频中文字幕2019在线8| 国产精品国产高清国产av| 俺也久久电影网| 好男人电影高清在线观看| www国产在线视频色| 日韩 欧美 亚洲 中文字幕| 国产精品永久免费网站| 国产91精品成人一区二区三区| 高潮久久久久久久久久久不卡| 久久久久久国产a免费观看| 国产成+人综合+亚洲专区| 国产精品久久久久久人妻精品电影| 变态另类成人亚洲欧美熟女| 后天国语完整版免费观看| 人人妻人人澡欧美一区二区| 狂野欧美激情性xxxx| 精品国产三级普通话版| 最新美女视频免费是黄的| АⅤ资源中文在线天堂|