• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水熱合成制備Al摻雜α-MnO2納米管及其超級(jí)電容器電化學(xué)性能

    2015-01-04 12:52:16謝華清上海第二工業(yè)大學(xué)城市建設(shè)與環(huán)境工程學(xué)院上海201209
    物理化學(xué)學(xué)報(bào) 2015年4期
    關(guān)鍵詞:納米管水熱電容器

    黎 陽 謝華清 李 靖(上海第二工業(yè)大學(xué)城市建設(shè)與環(huán)境工程學(xué)院,上海201209)

    水熱合成制備Al摻雜α-MnO2納米管及其超級(jí)電容器電化學(xué)性能

    黎 陽*謝華清 李 靖
    (上海第二工業(yè)大學(xué)城市建設(shè)與環(huán)境工程學(xué)院,上海201209)

    通過水熱法制備了未摻雜α-MnO2和Al摻雜α-MnO2,對(duì)產(chǎn)物的形貌、結(jié)構(gòu)和電化學(xué)性能進(jìn)行了研究.掃描電鏡(SEM)和高分辨透射電鏡(HRTEM)觀察表明制備產(chǎn)物呈納米管形態(tài).紫外-可見光譜分析計(jì)算了產(chǎn)物的能帶間隙:隨著Al的摻雜,α-MnO2的能帶間隙值降低.以未摻雜α-MnO2與Al摻雜α-MnO2作為電極材料,通過循環(huán)伏安(CV)和恒流充放電測試電極的超級(jí)電容器性能.在50 mA·g-1電流密度下,未摻雜α-MnO2與Al摻雜α-MnO2電極的比電容分別達(dá)到了204.8和228.8 F·g-1.電化學(xué)阻抗譜(EIS)分析表明Al的摻雜降低了α-MnO2在電解液中的阻抗,有利于提高其電化學(xué)比電容.增強(qiáng)的比電容及在1000個(gè)循環(huán)后仍具有良好的容量保持率,使Al摻雜α-MnO2在超級(jí)電容器中具有較好的應(yīng)用前景.

    α-MnO2;Al摻雜;納米管;超級(jí)電容器;電化學(xué)電容器

    ?Editorial office ofActa Physico-Chimica Sinica

    1 Introduction

    Manganese oxide,with its versatile structures,low cost,and environmental friendliness,is believed to have great potential to be applied in wide areas.In recent years,manganese oxides have been intensively studied as an electrode material for supercapacitors.The hot research spots mainly focus on the preparation and properties of nanostructured manganese oxides,the combination of manganese oxides with other components,doping in manganese oxides,etc.

    Nanostructured manganese oxides with different morphologies have been studied to explore the effects of nanoscale structures on their properties.Yao et al.1prepared high-quality ultra-long α-MnO2nanowires,with a diameter of about 25 nm and a length of several hundred micrometers,which exhibited a high specific capacitance and a superior cycling stability with only 4.7%loss after 1000 cycles.Lambda-MnO2was synthesized with a developed porous,ordered,and interconnected pore structure used as supercapacitor electrode.The as-synthesized porous lambda-MnO2materials showed a noticeably performance(120 F·g-1)at a high constant current(1A·g-1).2Zhu et al.3prepared hierarchical MnO2nanoflower via a hydrothermal treatment.The hierarchical MnO2nanoflower delivered not only high specific capacitance of 347 F·g-1,but also excellent cycle stability(97.5%capacitance retention after 10000 cycles at a scan rate of 20 mV·s-1).Although nanostructured manganese oxides presented promoted electrochemical performances,fussy preparation process seemed inevitable and further efforts are necessary to obtain elevated specific capacitance.

    The composites formed by MnO2and other materials,such as carbon/polymers,also demonstrate attractive electrochemical performances.Jiang et al.4developed a three-dimensional(3D) nanostructure comprised of ternary rGO(reduced graphene oxide)/ CNTs(carbon nanotubes)/MnO2nanocomposites for high-rate supercapacitors.The optimized nanocomposite exhibited a high specific capacitance of 319 F·g-1with enhanced rate capability (222 F·g-1even at 60A·g-1)and good cycling stability in 1 mol· L-1Na2SO4aqueous solution.Azhagan et al.5demonstrated a simple and comparatively low temperature synthesis of functionalized multilayer fullerenes so called carbon nano-onions (CNOs).In situ incorporation of MnO2nanoparticles to the CNOs increased the specific capacitance up to 1207 F·g-1,which was close to the theoretical value of pseudocapacitive MnO2.In Zolfaghari'swork,6carbon black(CB)/MnO2composites were prepared by a sonochemical method.When the mass fraction(w) of MnO2in composite material was 65%,the specific capacitance of CB-MnO2composite calculated from the CV curves was 313 F·g-1,showed higher energy density than pure gamma-MnO2.Yu et al.7synthesized ZnO@MnO2andAl-doped ZnO(AZO)@MnO2hybrid electrodes in core/shell geometries on stainless steel substrates by a scalable low-cost solution route.The excellent capacitive properties indicate that the AZO@MnO2hybrid architecture can serve as a promising electrode material for supercapacitors as well as other electrochemical energy storage/ conversion devices.Furthermore,nano composites of partially reduced graphene oxide-K2Mn4O8presented excellent electrochemical performances as well.8

    Doping was an effective way to change the properties of materials.It was revealed in many research works that the electrochemical performances of MnO2can be improved prominently via doping various elements into MnO2lattice.Some elements,including Co,9,10Fe,11Al,12-14V,15Pd,16Sn,17Li,18etc.,were doped into manganese oxides and proved to have positive influences on the properties of manganese oxides.Co-doped birnessite-type MnO2was prepared by Wang et al.,10which showed a very high specific capacitance of 326.4 F·g-1and indicated that cobalt had great effects on the micro-morphology and electrochemical properties of manganese dioxide.Dubal and Lokhande11potentiostatically prepared amorphous and highly porous nanonest like Fe:MnO2thin films.The maximum specific capacitance of 273 F·g-1was achieved for 2%(atomic ratio)Fe:MnO2at 5 mV·s-1scan rate.In Hashem'swork,12Al,Cu,and Mg doped cryptomelane manganese dioxides were prepared by wet-chemical method.The electrical conductivity of doped MnO2increased in comparison with pure MnO2,while Al-doped MnO2exhibited the lower resistivity. Various shapes of hierarchical MnO2(nanorod,nanothorn sphere, sphere)were successfully synthesized using the hydrothermal method with quantitative control ofAl3+in solution.13It was found that Al3+species in the solution acted as a functional doping species into(2×2)tunnels of α-MnO2and also as a catalyst. Malankar et al.18developed a new method to synthesize a uniform round-shaped Li-doped MnO2by ozonation of acidic MnSO4in the presence of Li+ions.The electrochemical properties of Lidoped MnO2were studied by recording discharge profile and the mechanisms were discussed.

    α-MnO2,with its special(2×2)tunnel cavity structure,presents attractive activity in lithium ion batteries,19,20supercapacitor,1,21microwave absorption,22,23catalyst,24,25etc.However,the inherent semi-conduct properties of α-MnO2leads to its low electrical conductivity,which is not beneficial to charge transfer in electrochemical process.So,it is necessary to enhance the electrical conductivity of α-MnO2.In this work,Al element was doped into α-MnO2nanotube to obtain uniform solid solution via hydrothermal method.It is expected that the doped Al could improve the electrical conductivity and electrochemical performances of α-MnO2.Moreover,the hollow space in the nanotube structure can provide a way for ions in the electrolyte to pass through,which would enlarge the contact areas between nanotube surface and electrolyte.As a result,more electrochemical active positions were formed and beneficial to redox processes on the nanotube surface.The investigations on the influences of doping on the structure and electrochemical performances of α-MnO2were carried out and discussed.

    2 Experimental

    Un-doped and Al-doped α-MnO2were prepared via hydrothermal method.All of the reactants and solvents were analytical-grade and were used without further purification.In a typical procedure,4.8 mmol potassium permanganate(99.0%)and aluminum nitrate(99.0%)were dissolved in 40 mL de-ionized water by magnetic stirring.Then 18 mmol concentrated hydrochloric acid(36.0%)was added in the above solution with stirring for 30 min.Finally,the solution was transferred to a Teflon reactor(100 mL volume)and placed in an oven and kept at 130°C for 10 h. After the temperature of the oven decreased to room temperature, the product in the reactor was collected by centrifugation,washed with de-ionized water and dried at 100°C for 24 h,resulting in brown black powder.The mole ratio of Mn andAl was controlled at 98:2 in the present study.The un-doped and doped samples were nominated as PM and AM,respectively.The structure and morphology of as-synthesized samples were examined by scanning electron microscopy(SEM,HITACHI,S-4800,Japan),X-ray diffraction(XRD,D8-ADVANCE,Cu Kα,Germany),ultravioletvisible absorption spectroscopy(UV-2550,SHIMADZU,Japan), and high resolution transmission electron microscopy(HRTEM, FEI,TECNAI G2-F20,USA)

    As-prepared powders were fabricated as electrodes to investigate their electrochemical properties.The typical procedure for electrode fabrication can be described as follow:as-synthesized samples,10%(w,mass fraction)conducting agent(acetylene black)and 10%(w)PVDF(poly vinyliene tetrafluoroethylene) latex as binder were mixed in mortar.Then the mixture was pressed into foam nickel mesh dried in air at 120°C for 12 h to remove solvent and finally was pressed under 10 MPa pressure to keep good adherence between electrode material and the nickel mesh current collector.Electrochemical investigations were carried out in three-electrode cell using carbon as counter electrode andAg/AgCl as reference electrode.The electrolyte,0.1 mol· L-1Na2SO4,was used to study the capacitive behavior of as-prepared electrodes.Cyclic voltammetry(CV)studies were performed at a potential range of-0.2-0.8 V(vs Ag/AgCl)at scan rates of 5,10,20,30,50,and 100 mV·s-1on electrochemical workstation(VMP3,BioLogic,France).Galvanostatical chargedischarge test was conducted at current densities of 20,50,80, 100,200,500,and 1000 mA·g-1between-0.2-0.8 V(vs Ag/ AgCl)using computer controlled cycling equipment(LAND, Wuhan China).Electrochemical impedance spectra(EIS)were measured over the frequency-range of 100 kHz-10 mHz at a potentiostatic signal amplitude of 5 mV on same workstation as CV test.

    3 Results and discussion

    3.1 Structure characterization

    XRD patterns of the as-prepared pristine α-MnO2andAl-doped α-MnO2are presented in Fig.1.It is apparent that PM and AM samples all demonstrate single tetragonal phase structures,corresponding to the characteristic peaks of α-MnO2phase(JCPDS 44-0141).No diffraction peaks of other phases or impurities etc. could be observed.The doping of Al causes variations of crystalline lattice of α-MnO2,which are listed in Table 1.The lattice parameters a and b increase from 0.9831 to 0.9866 nm,while lattice parameter c shows negligible change.So,the lattice expansion of Al-doped α-MnO2mainly happens along x and y axes and keeps stable in z axes direction.As a result,the volume ofAM sample cell expands from 0.2764 to 0.2783 nm3,which indicates that Al doping has effect on the structure of α-MnO2.During the formation of α-MnO2,Al ion(Al3+,ionic radius 0.057 nm),has similar ionic radius to Mn ion(Mn4+,ionic radius 0.052 nm),may mostly substitute Mn in MnO6octahedron and some Al ions exist at the center of(2×2)tunnel cavity where K+exists previously. Finally,it can be confirmed from XRD patterns that the dopedAl all exists with the form of solid solution in cryptomelane structure of α-MnO2.

    Fig.1 X-ray diffraction patterns of as-prepared α-MnO2(PM)andAl-doped α-MnO2(AM)

    Table 1 Variations of α-MnO2lattice parameters before and afterAl-doping

    Fig.2 shows the SEM morphologies of un-doped α-MnO2and Al-doped α-MnO2.PM andAM samples all show similar nanotube morphology and distribute homogeneously,which implies that the doping ofAl has no distinct effects on the morphology of α-MnO2. Those nanotubes are scores of nanometers in diameters and several hundreds of nanometers in lengths.It can be clearly observed and estimated that the wall thickness of nanotube is about 20 nm both in Fig.2(a)and Fig.2(b).The growth mechanism of nanotube under hydrothermal conditions can be comprehended in previous study.26The inset in Fig.2(b)shows the compositions of AM sample.The mole ratio of Mn andAl is about 98.1:1.9,which is close to the desired Al content.The details of as-prepared nanotubes are disclosed in high resolution image,as shown in Fig.3.Fig.3(a)apparently demonstrates hollow center structure of the nanotube and the diameters of these nanotubes are about 50-80 nm.The selected area electron diffraction(SAED)pattern in inset reveals the electronic diffraction characteristics of AM sample,indicating the single crystalline structure of individual nanotube.Fig.3(b)presents the zoom out view of selecting area within black circle in Fig.3(a).The lattice line of the sample couldbe distinguished easily.The center region of the nanotube is brighter than that of both side,due to film thickness of the hollow center in nanotube.The lattice-fringe distance is about 0.69 nm, which is corresponding to the(110)d-space of tetragonal α-MnO2(JCPDS file No.44-0141)and such result is in accordance with the XRD results.

    Generally,the energy band structures of substances would be altered when heterogeneous atoms are doped,which plays important roles in regulating physical properties of substances.In this study,the influences of doping on the band gaps of as-synthesized α-MnO2nantubes are studied by UV-Vis absorption spectroscopy.In Fig.4,the absorption spectra of α-MnO2nanotubes are presented.The inset demonstrates the Tauc plots calculated from absorption spectrum.By extrapolation of the Tauc plots,the band gaps of PM andAM samples can be determined as 2.14 and 2.05 eV,respectively.In former work,27the band gap values are different,which may have relationship with the grain size,microstructure,and component of various samples.The band gap value decreases upon doping ofAl into α-MnO2lattice,which indicates that the dopant has obvious influence on the band structure of α-MnO2nanotube.

    Fig.3 TEM morphology(selected area electron diffraction pattern in inset)of(a)Al-doped α-MnO2and(b)its high resolution image

    Fig.4 UV-visible spectra of as-prepared samples (Tauc plot in inset)

    3.2 Electrochemical performances

    Typical cyclic voltammogram(CV)curves of as-prepared α-MnO2electrodes in 0.1 mol·L-1Na2SO4solution at room temperature are presented in Fig.5.To find appropriate scan potential ranges for CV measurements,PM and AM samples are scanned with several different potential cut-off windows,as indicated in Fig.5(a,b).The profiles of all CV curves present roughly rectangular mirror images,which demonstrate typical capacitive characteristics.When the cut-off window ranges gradually increase,the cathodic and anodic currents all amplify accordingly due to enhanced polarization effects.While the potential cut-off window is located between-0.3 and 0.9 V,the cathodic and anodic currents are apparently larger than those of potential cutoff window between 0.0 and 0.6 V.The self-made three-electrode measuring system maintains stable and no gas bubbles/impurities emerge in solution/electrode surfaces at potential cut-off window of-0.2 and 0.8 V.So,it can be decided that the favorable scan potential cut-off window is between-0.2-0.8 V(vs Ag/AgCl). Various scan rates of 5,10,20,30,50,and 100 mV·s-1are applied in CV investigation to study the capacitive behaviors of PM and AM electrodes between-0.2-0.8 V in Fig.5(c,d).The PM and AM electrodes all exhibit highly electrochemical reversibility between-0.2 and 0.8 V,which can be judged from roughly rectangular mirror shapes in Fig.5(c,d).Obviously,with the increase of scan rates in CV measurements,the CV curves gradually deviate from rectangular shapes and the areas of CV curves enlarge.By comparison of CV patterns of PM andAM samples,the doping ofAl has no distinct effects on the profiles of CV curves.

    The capacitance of MnO2is considered to be mainly produced from pseudo-capacitance,which is attributed to reversible redox reaction happened between electrode and electrolyte in terms of intercalation/de-intercalation of H+or Na+.To study the capacitance variations of MnO2before and after doping,galvanostatical charge-discharge measurements are conducted.Fig.6 presents the charge-discharge curves of PM andAM samples.Under 50 mA· g-1current density,the profiles of charge-discharge curves of PMand AM samples display similar variation characteristics,as indicated in Fig.6(a).The IR drops for both samples are displayed in the inset.The potential-time relationships on charge-discharge curves are all approximately linear except the discharge curve become placid at lower potential stage,which implies that both electrodes have regular capacitive behaviors.The specific capacitance(SC)of samples could be calculated with chargedischarge profiles via equation:

    Fig.6 Galvanostatical charge-discharge measurements of(a)profiles conducted under 50 mA·g-1current density (zoom in view of pattern in inset)and(b)the variations of specific capacitances upon current density increasing

    where C,I,?t,?V,and m are the specific capacitance,galvanostatic current,charge-discharge time,potential cut-off window, and mass of electro-active material.When the charge-discharge current densities increase from 20 to 1000 mA·g-1,the SC decreases monotonously both for PM andAM,as shown in Fig.6(b). It can be seen that the SC of AM sample are greater than that of PM sample under all current densities.Upon current density increasing,the discrepancy of SC between PM and AM samples keeps stable,which may be attributed to weaker ion/electrical conductivity of un-doped α-MnO2sample.Poor electrical conductivity is not beneficial to electron exchange between electrode and electrolyte,leading to less pseudo-capacitance faradic reactions and producing smaller capacitances.By calculation from equation(1),when the current density ascends from 20 to 1000 mA·g-1,the SC of PM and AM samples falls from 315.4 and 336.5 F·g-1to 14.4 and 33.6 F·g-1respectively,indicating thatAldoped α-MnO2can maintain superior SC than un-doped sample.For comparison,commercial MnO2(A.R.,Sinapharm Chemical Reagent Co.,Ltd.)is fabricated into electrode and measured.The SC of commercial MnO2is only 124.2 F·g-1under 20 mA·g-1,far less than those of AM and PM samples.The doping is considered to account for the enhancement of SC of doped sample.By doping Al element,the charge transfer ability of α-MnO2is enhanced, which could be convinced in following EIS analysis.

    Fig.7(a)shows the electrochemical impedance spectra of doped and un-doped samples.The charge transfer process happened on the electrode interface can be described by the semicircle at high frequencies and the near linear variation at low frequencies represents the ion diffusion process.The semicircles at high frequencies are presented in the inset on the top right corner.The corresponding values of intersection of semicircle and x-coordinate show the charge transfer impedances Rctof samples,which determines the process in terms of redox reactions at the interface between electrode and electrolyte.In this study,the impedance value Rctof un-doped α-MnO2is greater than that of doped samples,which indicates that the charge transfer process is easier to happen on the interface for Al-doped α-MnO2than for un-doped α-MnO2.Furthermore,the simulated equivalent circuit diagram is provided in Fig.7(a),where Rct,Rohm,CPE,and Zware charge charansfer resistance,Ohm resistance,constant phase element, and Warburg resistance,respectively.By analysis of ZsimpWin software,the simulated values of Rctare 8.65 and 10.18 Ω forAM and PM samples respectively,which are in good accordance with the experimental results and indicate that the equivalent circuit diagram can properly simulate the impedance characterizations of the electrodes.

    Fig.7 (a)Electrochemical impedance spectra of PM andAM samples(zoom in view of high frequency zone in inset)and (b)cycling performances under a current density of 50 mA·g-1

    The cycling performances of un-doped and doped α-MnO2are presented in Fig.7(b).Apparently,both samples demonstrate preferable cycling stabilities.With charge/discharge process going,the decreases of SC are small and the SC discrepancy between doped and un-doped α-MnO2presents little variation,which is different from the results in former literature.28It is considered that doped Al may occupy(2×2)tunnel position or substitute Mn in MnO6octahedron,which could influence the intercalation/deintercalation of H+/Na+upon cycling.In present study,no obvious influences of doping on cycling stability are displayed,which means that un-doped and doped samples all have stable structures upon cycling.As proved in UV-Vis measurement in Fig.4,the band gap of AM decreases in comparison to that of PM,which means that the band structure of MnO2has changed viaAl doping. By further investigation in EIS spectra,doping ofAl into α-MnO2lattices results in lower impedance value and preferable electrochemical capacitance.As a result,the doping is considered to be responsible for improved SC and good cycling performance ofAldoped α-MnO2.

    4 Conclusions

    Un-doped and Al-doped α-MnO2with nanotube morphology were successfully synthesized via hydrothermal method.Asprepared α-MnO2behaved cryptomelane structures in X-ray diffraction patterns and the variation of lattice parameters was detected in Al-doped α-MnO2.The band gaps of un-doped and doped α-MnO2were determined by ultraviolet-visible absorption spectra,which revealed that the band gap value of α-MnO2decreased after doping.In CV tests,un-doped andAl-doped α-MnO2all displayed good capacitive response.The profiles of CV curves gradually changed with scan rate increasing.The specific capacitances of un-doped and Al-doped α-MnO2were 204.8 and 228.8 F·g-1respectively under 50 mA·g-1current density during charge-discharge process.Both samples exhibited good cycling stability.The superior electrical conductivity ofAl-doped α-MnO2was convinced by EIS measurement,which could account for better specific capacitance of doped sample.Based on the good cycling performance and improved specific capacitance,Al-doped α-MnO2may be used as a potential electrode material for supercapacitors.

    (1) Yao,W.;Wang,J.;Li,H.;Lu,Y.J.Power Sources 2014,247, 824.doi:10.1016/j.jpowsour.2013.09.039

    (2) Ghimbeu,C.M.;Malak-Polaczyk,A.;Frackowiak,E.;Vix-Guterl,C.J.Appl.Electrochem.2014,44,123.doi:10.1007/ s10800-013-0614-6

    (3) Zhu,G.;Deng,L.;Wang,J.;Kang,L.;Liu,Z.H.Colloids Surfaces A 2013,434,42.doi:10.1016/j.colsurfa.2013.05.008

    (4) Jiang,H.;Dai,Y.;Hu,Y.;Chen,W.;Li,C.ACS Sustain.Chem. Eng.2014,2,70.doi:10.1021/sc400313y

    (5) Azhagan,M.V.K.;Vaishampayan,M.V.;Shelke,M.V. J.Mater.Chem.A 2014,2,2152.doi:10.1039/C3TA14076H

    (6) Zolfaghari,A.;Naderi,H.R.;Mortaheb,H.R.J.Electroanal. Chem.2013,697,60.doi:10.1016/j.jelechem.2013.03.012

    (7) Yu,M.;Sun,H.;Sun,X.;Lu,F.;Wang,G.;Hu,T.;Qiu,H.; Lian,J.Int.J.Electrochem.Sci.2013,8,2313.

    (8) Li,L.;He,Y.Q.;Chu,X.F.;Li,Y.M.;Sun,F.F.;Huang,H.Z. Acta Phys.-Chim.Sin.2013,29,1681.[李 樂,賀蘊(yùn)秋,儲(chǔ)曉菲,李一鳴,孫芳芳,黃河洲.物理化學(xué)學(xué)報(bào),2013,29,1681.] doi:10.3866/PKU.WHXB201305223

    (9) Hashem,A.M.;Abuzeid,H.M.;Mikhailova,D.;Ehrenberg,H.; Mauger,A.;Julien,C.M.J.Mater.Sci.2012,47,2479.doi: 10.1007/s10853-011-6071-x

    (10) Wang,G.;Shao,G.;Du,J.;Zhang,Y.;Ma,Z.Mater.Chem. Phys.2013,138,108.doi:10.1016/j.matchemphys.2012.11.024

    (11) Dubal,D.P.;Lokhande,C.D.Ceram.Int.2013,39,415.doi: 10.1016/j.ceramint.2012.06.042

    (12) Hashem,A.M.;Abuzeid,H.M.;Narayanan,N.;Ehrenberg,H.; Julien,C.M.Mater.Chem.Phys.2011,130,33.doi:10.1016/j. matchemphys.2011.04.074

    (13) Ryu,W.H.;Han,D.W.;Kim,W.K.;Kwon,H.S.J.Nanopart. Res.2011,13,4777.doi:10.1007/s11051-011-0448-2

    (14) Shanthi,S.;Ravi,S.Int.J.Chem.Tech.Res.2014,6,2066.

    (15) Wang,S.;Liu,Q.;Yu,J.;Zeng,J.Int.J.Electrochem.Sci.2012, 7,1242.

    (16) Kunkalekar,R.K.;Salker,A.V.React.Kinet.Mech.Catal. 2012,106,395.doi:10.1007/s11144-012-0443-3

    (17) Hashem,A.M.;Abdel-Latif,A.M.;Abuzeid,H.M.;Abbas,H. M.;Ehrenberg,H.;Farag,R.S.;Mauger,A.;Julien,C.M. J.Alloy.Compd.2011,509,9669.doi:10.1016/j. jallcom.2011.07.075

    (18) Malankar,H.;Umare,S.S.;Singh,K.Mater.Lett.2009,63, 2016.doi:10.1016/j.matlet.2009.06.044

    (19) Jung,K.N.;Riaz,A.;Lee,S.B.;Lim,T.H.;Park,S.J.;Song, R.H.;Yoon,S.;Shin,K.H.;Lee,J.W.J.Power Sources 2013, 244,328.doi:10.1016/j.jpowsour.2013.01.028

    (20) Zhang,Y.;Liu,H.;Zhu,Z.;Wong,K.W.;Mi,R.;Mei,J.;Lau, W.M.Electrochim.Acta 2013,108,465.doi:10.1016/j. electacta.2013.07.002

    (21) Song,Z.;Liu,W.;Zhao,M.;Zhang,Y.;Liu,G.;Yu,C.;Qiu,J. J.Alloy.Compd.2013,560,151.doi:10.1016/j. jallcom.2013.01.117

    (22) Wang,G.S.;He,S.;Luo,X.;Wen,B.;Lu,M.M.;Guo,L.;Cao, M.S.RSC Adv.2013,3,18009.doi:10.1039/c3ra42412j

    (23) Zhou,M.;Zhang,X.;Wang,L.;Wei,J.;Zhu,K.;Feng,B. J.Nanosci.Nanotechnol.2013,13,904.doi:10.1166/ jnn.2013.5958

    (24) Shan,J.;Zhu,Y.;Zhang,S.;Zhu,T.;Rouvimov,S.;Tao,F. J.Phys.Chem.C 2013,117,8329.doi:10.1021/jp4018103

    (25) Wu,Y.;Lu,Y.;Song,C.;Ma,Z.;Xing,S.;Gao,Y.Catal.Today 2013,201,32.doi:10.1016/j.cattod.2012.04.032

    (26) Umek,P.;Gloter,A.;Pregelj,M.;Dominko,R.;Jagodic,M.; Jaglicic,Z.;Zimina,A.;Brzhezinskaya,M.;Potocnik,A.; Filipic,C.;Levstik,A.;Arcon,D.J.Phys.Chem.C 2009,113, 14798.doi:10.1021/jp9050319

    (27) Sakai,N.;Ebina,Y.;Takada,K.;Sasaki,T.J.Phys.Chem.B 2005,109,9651.doi:10.1021/jp0500485

    (28) Kang,J.L.;Hirata,A.H.;Kang,L.J.;Zhang,X.M.;Hou,Y.; Chen,L.Y.;Li,C.;Fujita,T.;Atagi,K.;Chen,M.W.Angew. Chem.Int.Edit.2013,52,1664.doi:10.1002/anie.v52.6

    Hydrothermal Synthesis of Al-Doped α-MnO2Nanotubes and Their Electrochemical Performance for Supercapacitors

    LI Yang*XIE Hua-Qing LI Jing
    (School of Urban Development and Environmental Engineering,Shanghai Second Polytechnic University, Shanghai 201209,P.R.China)

    α-MnO2and Al-doped α-MnO2were synthesized via a hydrothermal method.The morphologies, structures,and electrochemical performances of as-synthesized un-doped and doped α-MnO2were studied. Scanning electron microscopy(SEM)and high-resolution transmission electron microscopy(HRTEM)show that these un-doped and doped α-MnO2are nanotube shaped.The band gaps of α-MnO2are investigated by ultraviolet-visible absorption spectroscopy,which indicates that the band gap of α-MnO2decreases upon Al doping.The electrochemical performances of un-doped and doped α-MnO2as electrode materials for supercapacitors were measured by cyclic voltammetry(CV)and galvanostatical charge/discharge tests.The specific capacitances of un-doped and Al-doped α-MnO2respectively reach 204.8 and 228.8 F·g-1under a current density of 50 mA·g-1.It was discovered that the electrochemical impedance of Al-doped α-MnO2was decreased byAl doping analyzed using electrochemical impedance spectra(EIS),which provides a beneficial increase to its electrochemical specific capacitance.Enhanced specific capacitance and preferable cycling stability(up to 1000 cycles)forAl-doped α-MnO2mean that these systems are favorable prospects for application in supercapacitors.

    α-MnO2;Al doping;Nanotube;Supercapacitor;Electrochemical capacitor

    O646;TM911

    10.3866/PKU.WHXB201502021www.whxb.pku.edu.cn

    Received:September 9,2014;Revised:January 29,2015;Published on Web:February 2,2015.

    ?Corresponding author.Email:liyang@sspu.edu.cn;Tel/Fax:+86-21-50216301.

    The project was supported by the Key Innovation Foundation of Shanghai Education Commission,China(13ZZ139),Key Discipline Construction (Materials Science)of Shanghai Second Polytechnic University,China(XXKPY1302),and Program for Professor of SpecialAppointment(Eastern Scholar)at Shanghai Institutions of Higher Learning,China.

    上海市教委創(chuàng)新重點(diǎn)項(xiàng)目(13ZZ139),上海第二工業(yè)大學(xué)校級(jí)重點(diǎn)培育學(xué)科(材料科學(xué))建設(shè)(XXKPY1302)及上海市高?!皷|方學(xué)者”崗位計(jì)劃資助

    猜你喜歡
    納米管水熱電容器
    最近鄰弱交換相互作用對(duì)spin-1納米管磁化強(qiáng)度的影響
    電容器的實(shí)驗(yàn)教學(xué)
    物理之友(2020年12期)2020-07-16 05:39:20
    含有電容器放電功能的IC(ICX)的應(yīng)用及其安規(guī)符合性要求
    電子制作(2019年22期)2020-01-14 03:16:28
    無功補(bǔ)償電容器的應(yīng)用
    山東冶金(2019年5期)2019-11-16 09:09:38
    水熱還是空氣熱?
    石墨烯在超級(jí)電容器中的應(yīng)用概述
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    簡述ZSM-5分子篩水熱合成工藝
    一維Bi2Fe4O9納米棒陣列的無模板水熱合成
    TiO2納米管負(fù)載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    中文字幕最新亚洲高清| 丁香六月欧美| 国产精品一国产av| 国产福利在线免费观看视频| 亚洲欧美一区二区三区黑人| 天天添夜夜摸| 免费高清在线观看日韩| 夫妻性生交免费视频一级片| 国产精品.久久久| 看免费成人av毛片| 欧美人与善性xxx| 一二三四社区在线视频社区8| 亚洲精品美女久久久久99蜜臀 | 十八禁网站网址无遮挡| 天天影视国产精品| 99热全是精品| 中文字幕高清在线视频| 久久综合国产亚洲精品| 精品国产一区二区久久| 久久天躁狠狠躁夜夜2o2o | 女人被躁到高潮嗷嗷叫费观| 亚洲一区中文字幕在线| 欧美中文综合在线视频| 国产欧美日韩综合在线一区二区| 亚洲久久久国产精品| 人人妻,人人澡人人爽秒播 | 亚洲中文日韩欧美视频| 婷婷丁香在线五月| 视频区图区小说| 男女下面插进去视频免费观看| 一区二区日韩欧美中文字幕| 亚洲三区欧美一区| 午夜福利视频精品| 婷婷丁香在线五月| 亚洲国产av影院在线观看| 黄频高清免费视频| 午夜福利,免费看| 精品一区二区三卡| 韩国精品一区二区三区| 一级黄色大片毛片| www日本在线高清视频| 久久久久久久久免费视频了| 狂野欧美激情性xxxx| 在线观看免费午夜福利视频| 国产精品 国内视频| 亚洲一码二码三码区别大吗| 视频区欧美日本亚洲| 另类亚洲欧美激情| 天天躁狠狠躁夜夜躁狠狠躁| 热re99久久精品国产66热6| 久久久久网色| 黄网站色视频无遮挡免费观看| 一本大道久久a久久精品| 99久久综合免费| 久久午夜综合久久蜜桃| 最黄视频免费看| 91精品三级在线观看| 色网站视频免费| 大香蕉久久网| 亚洲第一青青草原| 国产精品香港三级国产av潘金莲 | 侵犯人妻中文字幕一二三四区| 欧美日韩国产mv在线观看视频| 高潮久久久久久久久久久不卡| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人一区二区三区免费视频网站 | 老司机影院成人| 最近手机中文字幕大全| 亚洲av片天天在线观看| 亚洲欧美日韩高清在线视频 | 日韩中文字幕欧美一区二区 | 80岁老熟妇乱子伦牲交| 日本91视频免费播放| av天堂在线播放| 新久久久久国产一级毛片| 亚洲伊人色综图| 国产一级毛片在线| 建设人人有责人人尽责人人享有的| 成年人午夜在线观看视频| 在现免费观看毛片| 欧美国产精品va在线观看不卡| 99久久99久久久精品蜜桃| 国产99久久九九免费精品| 男女国产视频网站| 国产成人免费观看mmmm| 久久久精品国产亚洲av高清涩受| 香蕉国产在线看| 美女大奶头黄色视频| 欧美xxⅹ黑人| 亚洲av电影在线进入| 亚洲国产日韩一区二区| 人妻 亚洲 视频| 亚洲第一av免费看| 少妇精品久久久久久久| 亚洲伊人色综图| 亚洲国产欧美日韩在线播放| 热re99久久精品国产66热6| 少妇 在线观看| 亚洲欧美中文字幕日韩二区| 一本久久精品| 久久综合国产亚洲精品| 制服人妻中文乱码| 高清av免费在线| 少妇的丰满在线观看| 精品久久久久久电影网| 亚洲伊人久久精品综合| 国产欧美日韩综合在线一区二区| 欧美日韩福利视频一区二区| 亚洲天堂av无毛| 成人手机av| 欧美精品一区二区免费开放| 久久99精品国语久久久| 国产精品国产三级专区第一集| 中国美女看黄片| 麻豆av在线久日| 免费观看av网站的网址| 久久久国产精品麻豆| 亚洲,欧美,日韩| 亚洲精品美女久久久久99蜜臀 | 性高湖久久久久久久久免费观看| 国产一区二区三区综合在线观看| a级片在线免费高清观看视频| 成人午夜精彩视频在线观看| 亚洲人成网站在线观看播放| 久热这里只有精品99| avwww免费| 国产野战对白在线观看| 十八禁高潮呻吟视频| 亚洲国产成人一精品久久久| 天堂俺去俺来也www色官网| 日韩中文字幕欧美一区二区 | 亚洲国产欧美日韩在线播放| 婷婷色av中文字幕| 欧美+亚洲+日韩+国产| 黑人巨大精品欧美一区二区蜜桃| 韩国高清视频一区二区三区| 亚洲欧美精品综合一区二区三区| 五月天丁香电影| 亚洲午夜精品一区,二区,三区| 曰老女人黄片| 一级黄色大片毛片| 亚洲熟女毛片儿| 午夜两性在线视频| 水蜜桃什么品种好| 97人妻天天添夜夜摸| 欧美国产精品va在线观看不卡| 少妇猛男粗大的猛烈进出视频| 国产精品成人在线| 久久这里只有精品19| 日韩一本色道免费dvd| 黄色一级大片看看| 国产精品九九99| 色94色欧美一区二区| 欧美激情 高清一区二区三区| a级片在线免费高清观看视频| 久久久久精品人妻al黑| 成年人免费黄色播放视频| 成年av动漫网址| 999久久久国产精品视频| 精品国产超薄肉色丝袜足j| 夜夜骑夜夜射夜夜干| 久久ye,这里只有精品| 日韩中文字幕视频在线看片| 国产亚洲午夜精品一区二区久久| 自拍欧美九色日韩亚洲蝌蚪91| 美女扒开内裤让男人捅视频| 国产男人的电影天堂91| 欧美国产精品一级二级三级| 久久国产精品人妻蜜桃| 在线观看国产h片| 人人澡人人妻人| 亚洲,一卡二卡三卡| 国产成人精品久久二区二区免费| av国产久精品久网站免费入址| 手机成人av网站| 亚洲欧美精品综合一区二区三区| 国产亚洲av高清不卡| 亚洲欧美日韩另类电影网站| 啦啦啦啦在线视频资源| 热99国产精品久久久久久7| 日韩 亚洲 欧美在线| 久久人人爽人人片av| 欧美成人午夜精品| 天天躁夜夜躁狠狠躁躁| 亚洲少妇的诱惑av| 精品一区二区三卡| 久久天堂一区二区三区四区| 19禁男女啪啪无遮挡网站| 亚洲av电影在线进入| 叶爱在线成人免费视频播放| 国产成人精品无人区| 亚洲一码二码三码区别大吗| 只有这里有精品99| 亚洲色图 男人天堂 中文字幕| 99热国产这里只有精品6| 成人国产av品久久久| 18禁观看日本| 91精品三级在线观看| 18在线观看网站| 多毛熟女@视频| 男人爽女人下面视频在线观看| 免费黄频网站在线观看国产| 久久久国产精品麻豆| 麻豆国产av国片精品| 欧美精品av麻豆av| 午夜激情av网站| 精品国产一区二区三区四区第35| 大陆偷拍与自拍| 免费观看a级毛片全部| 国产日韩一区二区三区精品不卡| 99国产精品99久久久久| 国产片特级美女逼逼视频| 99热全是精品| 纯流量卡能插随身wifi吗| 97在线人人人人妻| 精品视频人人做人人爽| 熟女av电影| 狠狠婷婷综合久久久久久88av| 性色av乱码一区二区三区2| 日韩人妻精品一区2区三区| 在线观看免费日韩欧美大片| 麻豆国产av国片精品| 一本色道久久久久久精品综合| 亚洲国产中文字幕在线视频| 国产人伦9x9x在线观看| 在线观看免费高清a一片| 高清欧美精品videossex| 日韩一区二区三区影片| 18禁观看日本| 免费少妇av软件| 国产成人一区二区在线| 精品久久久久久久毛片微露脸 | 亚洲国产欧美在线一区| 黑人猛操日本美女一级片| 久久人人爽av亚洲精品天堂| 亚洲成人手机| 97人妻天天添夜夜摸| www.自偷自拍.com| 91字幕亚洲| 国产一区有黄有色的免费视频| 人妻 亚洲 视频| 国产一区二区激情短视频 | 亚洲精品一卡2卡三卡4卡5卡 | 亚洲精品中文字幕在线视频| 国产野战对白在线观看| 亚洲国产精品999| 久久中文字幕一级| 男的添女的下面高潮视频| 建设人人有责人人尽责人人享有的| 亚洲av成人不卡在线观看播放网 | 制服诱惑二区| av片东京热男人的天堂| 国产精品一区二区在线不卡| 日日摸夜夜添夜夜爱| 欧美性长视频在线观看| 亚洲午夜精品一区,二区,三区| 黄色 视频免费看| 天天躁狠狠躁夜夜躁狠狠躁| 久久天堂一区二区三区四区| 性高湖久久久久久久久免费观看| 亚洲av欧美aⅴ国产| 欧美日韩一级在线毛片| 日韩大片免费观看网站| 国产人伦9x9x在线观看| 国产1区2区3区精品| 色婷婷久久久亚洲欧美| 每晚都被弄得嗷嗷叫到高潮| 天天躁狠狠躁夜夜躁狠狠躁| 欧美黑人欧美精品刺激| 成在线人永久免费视频| 久久国产精品大桥未久av| 99国产精品一区二区蜜桃av | 丝袜人妻中文字幕| 国产成人av教育| 欧美日韩亚洲国产一区二区在线观看 | 国产成人a∨麻豆精品| 亚洲精品日本国产第一区| 国产高清视频在线播放一区 | 国产国语露脸激情在线看| 女人精品久久久久毛片| 我的亚洲天堂| 黄色视频在线播放观看不卡| 性色av一级| 日本欧美视频一区| 国产精品.久久久| 国产黄色免费在线视频| 七月丁香在线播放| 欧美日韩视频高清一区二区三区二| www日本在线高清视频| 91字幕亚洲| 1024香蕉在线观看| 美女脱内裤让男人舔精品视频| av网站免费在线观看视频| 亚洲伊人久久精品综合| 最近手机中文字幕大全| 妹子高潮喷水视频| 色综合欧美亚洲国产小说| 尾随美女入室| www.av在线官网国产| 欧美日本中文国产一区发布| 91麻豆av在线| 超碰97精品在线观看| 肉色欧美久久久久久久蜜桃| 中文字幕av电影在线播放| 欧美av亚洲av综合av国产av| 免费观看人在逋| 日本a在线网址| 日韩电影二区| 伊人亚洲综合成人网| 国产精品人妻久久久影院| 一级毛片女人18水好多 | 亚洲av成人不卡在线观看播放网 | 欧美激情 高清一区二区三区| 免费不卡黄色视频| 18禁观看日本| 成人黄色视频免费在线看| 亚洲国产精品成人久久小说| 久久精品国产亚洲av高清一级| 99久久99久久久精品蜜桃| 国产伦理片在线播放av一区| 国产精品 欧美亚洲| 日韩视频在线欧美| av又黄又爽大尺度在线免费看| 免费在线观看影片大全网站 | 日韩免费高清中文字幕av| 在线天堂中文资源库| 欧美大码av| 午夜福利乱码中文字幕| 中文精品一卡2卡3卡4更新| 97在线人人人人妻| 18禁黄网站禁片午夜丰满| 啦啦啦啦在线视频资源| 18在线观看网站| 国产黄色视频一区二区在线观看| cao死你这个sao货| 欧美精品啪啪一区二区三区 | 母亲3免费完整高清在线观看| 超碰成人久久| 亚洲av日韩在线播放| 精品久久久精品久久久| 国产av精品麻豆| 国产成人免费无遮挡视频| 精品少妇黑人巨大在线播放| 久久久久久久久免费视频了| 黄片小视频在线播放| svipshipincom国产片| 国产真人三级小视频在线观看| 国产精品亚洲av一区麻豆| 国产深夜福利视频在线观看| 操出白浆在线播放| 久久久久久久国产电影| 亚洲一卡2卡3卡4卡5卡精品中文| 国产深夜福利视频在线观看| 欧美成狂野欧美在线观看| 国产黄色视频一区二区在线观看| 一级,二级,三级黄色视频| 在现免费观看毛片| 欧美精品人与动牲交sv欧美| 水蜜桃什么品种好| 国产精品久久久久久人妻精品电影 | 狠狠婷婷综合久久久久久88av| 丝袜美足系列| 看十八女毛片水多多多| 欧美日韩国产mv在线观看视频| 九草在线视频观看| 黄色毛片三级朝国网站| 看十八女毛片水多多多| 咕卡用的链子| 人妻一区二区av| 亚洲欧洲国产日韩| av又黄又爽大尺度在线免费看| 两性夫妻黄色片| av在线播放精品| 男人舔女人的私密视频| 69精品国产乱码久久久| 国产高清视频在线播放一区 | 成年女人毛片免费观看观看9 | 亚洲欧洲国产日韩| 极品少妇高潮喷水抽搐| 一本—道久久a久久精品蜜桃钙片| 日本91视频免费播放| 亚洲免费av在线视频| 午夜免费成人在线视频| 一级毛片 在线播放| 日本五十路高清| 国产精品偷伦视频观看了| 日韩一区二区三区影片| 纵有疾风起免费观看全集完整版| 久久久久国产一级毛片高清牌| 交换朋友夫妻互换小说| 久久综合国产亚洲精品| 无遮挡黄片免费观看| 亚洲七黄色美女视频| 人人澡人人妻人| 一个人免费看片子| 日韩av在线免费看完整版不卡| 国精品久久久久久国模美| 18禁观看日本| 国产av精品麻豆| 欧美少妇被猛烈插入视频| 亚洲第一av免费看| 欧美日韩亚洲国产一区二区在线观看 | 天天影视国产精品| 午夜久久久在线观看| 日韩欧美一区视频在线观看| 搡老乐熟女国产| 久久亚洲国产成人精品v| 久久国产精品人妻蜜桃| 国产成人一区二区在线| 高潮久久久久久久久久久不卡| 亚洲久久久国产精品| 久久久久久久久免费视频了| 看十八女毛片水多多多| 欧美人与性动交α欧美软件| 交换朋友夫妻互换小说| 黄网站色视频无遮挡免费观看| 大香蕉久久成人网| 女人被躁到高潮嗷嗷叫费观| 亚洲国产av影院在线观看| 午夜免费成人在线视频| 一级片'在线观看视频| 国产主播在线观看一区二区 | 大香蕉久久网| 亚洲欧美清纯卡通| 人成视频在线观看免费观看| 亚洲熟女毛片儿| 中文欧美无线码| 国产成人欧美| 日本wwww免费看| 日本91视频免费播放| 午夜老司机福利片| 丁香六月天网| 黑人猛操日本美女一级片| 免费看不卡的av| 中国国产av一级| 国产欧美日韩精品亚洲av| 丁香六月欧美| 天堂中文最新版在线下载| 777久久人妻少妇嫩草av网站| 视频在线观看一区二区三区| 亚洲精品中文字幕在线视频| 黄色片一级片一级黄色片| www.自偷自拍.com| 成人三级做爰电影| 欧美黄色片欧美黄色片| 免费一级毛片在线播放高清视频 | 九草在线视频观看| 夜夜骑夜夜射夜夜干| 高清黄色对白视频在线免费看| 狂野欧美激情性bbbbbb| 日本av免费视频播放| 亚洲国产成人一精品久久久| e午夜精品久久久久久久| 高清视频免费观看一区二区| 色视频在线一区二区三区| 中文字幕人妻丝袜一区二区| 91精品伊人久久大香线蕉| 久久人妻福利社区极品人妻图片 | 母亲3免费完整高清在线观看| 久热爱精品视频在线9| 久久天躁狠狠躁夜夜2o2o | 性少妇av在线| 少妇精品久久久久久久| 18禁裸乳无遮挡动漫免费视频| 国产在线观看jvid| 国产高清videossex| 99国产精品免费福利视频| 美女福利国产在线| 天堂中文最新版在线下载| 一级黄片播放器| 精品熟女少妇八av免费久了| tube8黄色片| 男女高潮啪啪啪动态图| 成年人免费黄色播放视频| 亚洲精品国产av成人精品| 日韩av在线免费看完整版不卡| 欧美 日韩 精品 国产| 亚洲免费av在线视频| 成人午夜精彩视频在线观看| 精品少妇久久久久久888优播| 国产成人精品在线电影| 国产精品一区二区精品视频观看| 波多野结衣一区麻豆| 久久精品国产a三级三级三级| 精品欧美一区二区三区在线| 久久毛片免费看一区二区三区| 黄色怎么调成土黄色| 老司机影院毛片| 亚洲精品国产av成人精品| 一级片免费观看大全| 美女视频免费永久观看网站| 亚洲欧美成人综合另类久久久| 日韩 欧美 亚洲 中文字幕| 天堂8中文在线网| 久久鲁丝午夜福利片| 国语对白做爰xxxⅹ性视频网站| 亚洲黑人精品在线| 999精品在线视频| 日韩一卡2卡3卡4卡2021年| 久久精品熟女亚洲av麻豆精品| 亚洲情色 制服丝袜| 波野结衣二区三区在线| 欧美日韩精品网址| 观看av在线不卡| 久久久国产欧美日韩av| 成人影院久久| 国产免费现黄频在线看| 高清欧美精品videossex| av网站免费在线观看视频| 婷婷色av中文字幕| 成人国语在线视频| 人妻一区二区av| av电影中文网址| 亚洲激情五月婷婷啪啪| av线在线观看网站| √禁漫天堂资源中文www| 宅男免费午夜| 国产免费一区二区三区四区乱码| 久久免费观看电影| 国产深夜福利视频在线观看| 精品一区在线观看国产| 天天添夜夜摸| 99热全是精品| 日韩一卡2卡3卡4卡2021年| 另类亚洲欧美激情| 国产成人精品久久二区二区91| 亚洲中文字幕日韩| 中文字幕人妻熟女乱码| 国产又爽黄色视频| 脱女人内裤的视频| 久久精品国产亚洲av高清一级| 国产精品久久久久久精品古装| 女人精品久久久久毛片| 人妻一区二区av| 国产精品久久久久成人av| 香蕉国产在线看| 在线观看一区二区三区激情| 黄色a级毛片大全视频| 成年美女黄网站色视频大全免费| 在线观看www视频免费| 七月丁香在线播放| 尾随美女入室| av不卡在线播放| 久9热在线精品视频| 巨乳人妻的诱惑在线观看| 人人澡人人妻人| 成年美女黄网站色视频大全免费| 美女视频免费永久观看网站| 欧美日韩亚洲国产一区二区在线观看 | 日韩人妻精品一区2区三区| 亚洲欧美精品综合一区二区三区| 国产精品 国内视频| 丰满人妻熟妇乱又伦精品不卡| 777久久人妻少妇嫩草av网站| 天天操日日干夜夜撸| 成年人午夜在线观看视频| 满18在线观看网站| 国产日韩欧美视频二区| 女人精品久久久久毛片| 99re6热这里在线精品视频| 老司机影院成人| 久9热在线精品视频| 一区福利在线观看| 91精品国产国语对白视频| 老鸭窝网址在线观看| 99久久人妻综合| 亚洲精品国产色婷婷电影| 国产精品一区二区在线观看99| 少妇 在线观看| 久久久久久亚洲精品国产蜜桃av| 尾随美女入室| 在线 av 中文字幕| 精品国产乱码久久久久久小说| 男女无遮挡免费网站观看| 精品高清国产在线一区| 久久99精品国语久久久| 少妇精品久久久久久久| 一区二区三区四区激情视频| 伊人亚洲综合成人网| 午夜免费成人在线视频| 国产成人av激情在线播放| 欧美在线一区亚洲| 乱人伦中国视频| 久久影院123| 性色av乱码一区二区三区2| 纯流量卡能插随身wifi吗| 国产高清videossex| 国产伦人伦偷精品视频| 老司机靠b影院| 国产精品免费大片| 色94色欧美一区二区| 一边摸一边做爽爽视频免费| 在线av久久热| 精品人妻熟女毛片av久久网站| 欧美日韩精品网址| 亚洲免费av在线视频| 欧美日本中文国产一区发布| 国产黄色视频一区二区在线观看| 成人国产av品久久久| 狂野欧美激情性bbbbbb| 女人精品久久久久毛片| 成年人免费黄色播放视频| 亚洲欧美日韩另类电影网站| 亚洲成国产人片在线观看| 日韩,欧美,国产一区二区三区| 侵犯人妻中文字幕一二三四区| 首页视频小说图片口味搜索 | 男女边吃奶边做爰视频| 色视频在线一区二区三区| 黄色视频不卡| 五月天丁香电影| 大香蕉久久成人网| 精品人妻1区二区| 中文精品一卡2卡3卡4更新| 亚洲av美国av|