• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spectrum Analysis of Wind Profiling Radar Measurements

    2014-12-14 06:58:12RUANZheng阮征MURuiqi慕瑞琪WEIMing魏鳴andGERunsheng葛潤生
    Journal of Meteorological Research 2014年4期

    RUAN Zheng(阮征),MU Ruiqi(慕瑞琪),WEI Ming(魏鳴),and GE Runsheng(葛潤生)

    1 State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing 100081

    2 Nanjing University of Information Science&Technology,Nanjing 210044

    Spectrum Analysis of Wind Profiling Radar Measurements

    RUAN Zheng1?(阮征),MU Ruiqi2(慕瑞琪),WEI Ming2(魏鳴),and GE Runsheng1(葛潤生)

    1 State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing 100081

    2 Nanjing University of Information Science&Technology,Nanjing 210044

    Unlike previous studies on wind turbulence spectrum in the planetary boundary layer,this investigation focuses on high-altitude(1-5 km)wind energy spectrum and turbulence spectrum under various weather conditions.A fast Fourier transform(FFT)is used to calculate the wind energy and turbulence spectrum density at high altitudes(1-5 km)based on wind profiling radar(WPR)measurements.The turbulence spectrum under stable weather conditions at high altitudes is expressed in powers within a frequency range of 2×10-5-10-3s-1,and the slope b is between-0.82 and-1.04,indicating that the turbulence is in the transition from the energetic area to the inertial sub-range.The features of strong weather are reflected less obviously in the wind energy spectrum than in the turbulence spectrum,with peaks showing up at different heights in the latter spectrum.Cold windy weather appears over a period of 1.5 days in the turbulence spectrum.Wide-range rainstorms exhibit two or three peaks in the spectrum over a period of 15-20 h, while in severe convective weather conditions,there are two peaks at 13 and 9 h.The results indicate that spectrum analysis of wind profiling radar measurements can be used as a supplemental and helpful method for weather analysis.

    wind profiling radar,wind energy spectrum,turbulence spectrum

    1.Introduction

    Wind measurements can be analyzed by using two methods associated with Fourier transforms.The time-domain method studies energy changes with time,while the frequency-domain method studies the distribution of energy with frequency.

    Panofsky(1955)and Griffith et al.(1956)employed the power-spectrum density analysis to study the spectral characteristics of boundary layer wind. Van der Hoven(1957)performed a power-spectrum analysis of horizontal wind over a wide range of frequencies.These studies showed that there appears to be two major eddy-energy peaks in the spectrum:one peak at a period of 4 days and the other at a period of 1 min.Between the two peaks,a broad spectral gap is centered at a frequency ranging from 1 to 10 cycles per hour(Atkinoon,1981).Since the 1970s,spectrum analysis has been applied in boundary layer turbulence studies(Endlich et al.,1969;Bowne and Ball, 1970;Kaimal et al.,1972).H?jstrup(1981)developed a distribution model of the turbulence spectrum in neutral and unstable stratification,and this has since been widely used.Panofsky et al.(1982)showed that the distribution of turbulence spectrum varies for different topographies.Recently,Chellali et al.(2010) proposed that the features of turbulence spectrum are affected by topography and spatial location.

    In-depth research has been carried out on turbulence spectrum analysis,mainly in boundary layer wind measurements.Zhang et al.(1987)used observations of horizontal wind speed from a 320-m meteorological tower to analyze the spectral characteristics and vertical distribution of turbulence in the boundary layer,and concluded that in the atmosphere,under both stable and unstable stratification,there are sev-

    eral cycles at a period of a few minutes to 10 minutes.Bian et al.(2002)discovered that the turbulence spectrum characteristics of the boundary layer are consistent with Kolmogorow’s“-5/3 rate,”(Kolmogorov,1941a,b)and confirmed that the power exponent and exponent function are more appropriate. Wang and Mao(2004)used wavelets to analyze the turbulence spectrum characteristics of a convective βscale weather system.Spectral analysis has also been applied to cold windy weather(Luo and Zhu,1993; Liu and Hong,1996;Tian et al.,2011)and cold fronts (Zhao et al.,1982;Sun and Xu,1997).

    Supported by the National Natural Science Foundation of China(41075023 and 41475029),China Meteorological Administration Special Public Welfare Research Fund(GYHY201306004),and Key Technology Integration and Application Fund of the China Meteorological Administration(CMAGJ2013M74).

    ?Corresponding author:ruanz@cams.cma.gov.cn.

    ?The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2014

    Due to the absence of refined wind measurements,analysis of the energy spectrum and turbulence spectrum in the atmospheric layer above the boundary layer is limited.By applying wind profile radar (WPR)in atmospheric soundings(Liu et al.,2003),it is possible to obtain high-altitude wind data on a continuous basis.Research on the energy spectrum and turbulence spectrum based on high-reliability WPR measurements at altitudes of 1-5 km has thus been developed(Wang et al.,2007;Wei and Zhang,2009;Sun et al.,2012;Yu,2012).This study aims to provide a statistical analysis of wind energy and turbulence spectrum at 1-5-km heights under various weather conditions.

    2.Method

    Spectral analysis,which is expressed by frequency or wavenumber,is a statistical tool to study signal properties.The Parseval equation is as follows:

    where ω is the angular frequency and f is the frequency.Then,S(ω)=|F(ω)|2,where S(ω)is the energy spectrum density,indicating the contribution fluctuation makes to the total energy.

    The energy spectrum density estimates are calculated by using the Fourier transform.The autocorrelation function is defined as

    in which S(f)=|F(f)|2.

    The energy spectrum density estimate is

    To reduce the leakage effect caused by the Fourier transform,an appropriate window should be chosen.

    2.1 Wind energy spectrum analysis

    In this study,the horizontal wind-speed data used in the wind energy spectrum analysis are obtained from WPR measurements.The autocorrelation function of the time-domain data Vh(t)is

    and the Fourier transform for the autocorrelation function is the unit volume energy spectrum density,

    where the unit of frequency f is s-1,the unit of air density ρ is kg m-3,and the unit of horizontal wind speed Vhis m s-1.The change of air density with height must be considered in the wind energy spectrum analysis of high-altitude wind data.Let SVh(f) be the energy density of horizontal wind speed,it can be calculated ass;then,the unit of the unit volume energy spectrum density can be given as(kg m-3)(m2s-1).

    The wind energy spectra are used to characterize the variation of the wind energy density with frequency,and they are considered to be related to various weather systems.

    2.2 Turbulence spectrum analysis

    Irregular fluctuation is the basic characteristic of turbulence.Horizontal wind can be calculated as

    According to Kolmogorov’s theory(Kolmogorov, 1941a,b),the inertial sub-range is a turbulence region where the Reynolds number is large enough to meet local homogeneous isotropic conditions,so its turbulence characteristics only depend on the dissipation rate.The energy spectral function is defined by

    where k is the wavenumber,ε is the turbulence dissipation rate,and C is a constant.The function is called the“-5/3 law.”The inertial sub-range of the turbulence energy spectrum can also be expressed by frequency(Sheng et al.,2003):

    where S(f)is the turbulence spectrum density.The turbulence spectrum analysis using wind tower observations shows that the slope of the turbulence spectrum at frequencies between 10-2and 102is-5/3 in the inertial sub-range(Bian et al.,2002).

    Figure 1 shows the turbulence spectrum changes with wave number(Tian et al.,2011).The spectrum can be divided into five ranges:the dissipation range, the inertial sub-range,the energy range,the largest vortex range,and the large eddy range.The energy range produces turbulent energy,which can neither be generated nor be dissipated but is transferred to smaller scales of motion in the inertial sub-range or changed into internal energy because of the viscosity of the fluid molecules in the dissipative range.In the inertial sub-range,the slope of the turbulence spectrum is-5/3,which is steeper than the slope in the energy range but shallower than in the dissipation range (Kaimal and Finnigan,1994).The turbulence spectrum density is normalized as:whereexpresses the variance of wind fluctuation.

    2.3 The trend in the turbulence spectrum

    The average wind data are usually treated as the mean wind for data collected over a short period.However,the mean wind for wind data collected over long periods changes with time,and is called the trend. The fluctuation of the wind is obtained by using the least-square curve fitting to calculate the trend and deduct it from the wind data.Figure 2 shows the turbulence spectrum with two different methods used for the mean wind calculation.In Fig.2a,the average wind data are treated as the mean wind and in Fig. 2b the trend is calculated as the mean wind.The data are on 23 June 2011.Figure 2b shows a more distinct 28-h eddy energy.

    3.Equipment and data processing

    3.1 Instruments

    The horizontal wind-speed data used in the spectral analysis are obtained from CFL-08 troposphere wind profiler radar,which is located at Yanqing,Beijing(40.45°N,115.96°E;487.90-m elevation).Table 1 summarizes the main properties of the radar.Rigorous calibration and standardization were carried out on the wind profile radar.Compared with air sounding,the accuracy of the wind profile radar corresponds with the specification.Deng et al.(2012)evaluated the detection accuracy of the radar using observations in 2010.

    3.2 Data processing

    Fig.1.Turbulence spectrum changes with wavenumber. (From Tian et al.,2011)

    Fig.2.The turbulent spectra obtained with mean wind derived differently.(a)Average as mean wind and(b)trend as mean wind.

    Table 1.Parameters of the CFL-08(troposphere II) wind profiling radar

    The wind profile radar provides horizontal windspeed data and signal-to-noise ratio(SNR),echo intensity,spectral width,and so on.The data were obtained from December 2010 to October 2012,at a sampling interval of 6 min.Quality control was applied as follows.Wind data that had an SNR of less than -15 dB were removed from the energy spectrum analysis because of their inaccuracy. Data series that had five consecutive missing data points were rejected. When individual missing data occurred in the data sequence,neighboring data were used to fill the gap by using linear interpolation.

    According to the duration of different disastrous weather events,the data length chosen for cold windy weather and summer rainstorms is 7 days,while 3 days is chosen for severe convective weather.The trend is identified in the turbulence spectrum density calculation.Data used for the turbulence spectrum features of the stable weather analysis are detected every 6 min for a period of 24 h.

    4.Characteristics of turbulence spectrum at high altitude

    To examine the characteristics of the turbulence spectrum at high altitude,10 sets of wind data under stable weather conditions are chosen.The data period is 24 h and the frequency range is from 10-5to 10-2s-1.Figure 3 shows the normalized turbulence spectrum on 28 January 2011 at an altitude of 1110 m.The abscissa is frequency and the ordinate is normalized turbulence spectrum density.Logarithmic coordinates have been used.

    Figure 3 shows that the distribution of the turbulence spectrum is linear.By using least-square linear fitting,the turbulence spectrum density in the frequency range 2×10-5-10-3s-1can be expressed as

    where a is the intercept of the abscissa,which is related to the turbulence dissipation rate;and b is the slope.The parameters of the turbulence spectrum for Fig.3 are a=9×10-4,b=-0.93,and the fitting

    Fig.3.Turbulence spectrum features on 28 January 2011. rate is 0.99.

    Table 2 summarizes the values of a and b for the turbulence spectrum of the 10 sets of data under stable weather conditions at different heights:a varies from 4×10-4to 4×10-3and b varies from-0.82 to-1.04,which is less than the value(-5/3)in the inertial sub-range.The turbulence spectrum distributes in power in the frequency ranges of 2×10-5-10-3s-1at heights between 1000 and 5000 m;b is less than -5/3,showing that the turbulence is in the energy region that is transiting to the inertial sub-range.

    The turbulence spectrum density of horizontal wind speed and its two orthogonal components u and v have been calculated.Figure 4 shows the turbulence spectrum of the horizontal wind speed,Vh,u,and v on 1 December 2012 at an altitude of 1110 m.The results indicate that the three variables have a characteristic in common.The slope b is-0.96,-0.97,and-0.97,in the frequency range of 2×10-5-10-3s-1.It can then be concluded that the distribution of the turbulence spectrum in stable weather cases does not depend on the wind direction.

    However,the situation is different for rainy days. Figure 5 shows the distributions of the turbulencespectrum for different variables at an altitude of 1110 m in severe convective weather cases at 0000-2400 BT (Beijing Time)3 June 2012.The slope b is-0.54, -0.79,and-0.76,which are quite different to those for stable weather cases.

    Table 2.Values of the turbulence spectrum parameters a and b and the fitting rate R under stable weather cases

    Fig.4.Turbulence spectrum features of different variables at 1110-m height under stable weather on 1 December 2012. (a)u,(b)v,and(c)Vh.

    Fig.5.Turbulence spectrum features of different variables at 1110-m height under rainy weather on 3 June 2012. (a)u,(b)v,and(c)Vh.

    5.Spectrum characteristics in various weather conditions

    5.1 Wind energy spectrum under stable weather conditions

    The wind energy spectrum in stable weather conditions is calculated as follows.The observations from 0000 BT 5 to 2400 BT 11 December 2010,and 0000 BT 3 to 2400 BT 5 July 2010 are chosen as typical examples of winter and summer weather conditions. Figure 6 shows that there is no peak during these periods,and the distribution of energy spectrum in the whole frequency band is relatively flat.The energy spectrum density decreases with increasing frequency. Figure 6 also shows that at the same height,the wind energy spectrum density in summer is nearly one order of magnitude smaller than in winter.The value decreases homogeneously with the reducing height in winter,while in summer it is dense in the altitude range of 1000-2000 m.The distribution of the spectrum in the two seasons is similar,as is the normalized turbulence spectrum in stable weather cases.

    Table 3 gives a summary of the spectral density of horizontal wind at five heights in stable weather.As the height reduces from 5000 to 1000 m,the wind energy spectrum density decreases by one order of magnitude in winter,which is the same as that shown in Fig.6.In summer,the spectral density decreases by half.Overall,the spectral density change with height is greater in winter than in summer.

    Fig.6.Wind energy spectrum features for stable weather cases.(a)5-11 December 2012 and(b)3-5 July 2010.

    Table 3.Spectral density of horizontal wind at five heights in stable weather

    The turbulence spectrum density accounting for the proportion of wind energy spectrum density increases with frequency,as shown in Table 3.As the height reduces,the ratio becomes greater as well,and this characteristic is more obvious in summer.

    5.2 Spectrum characteristics of cold windy weather

    The data used in the spectrum analysis of cold windy weather are from the Beijing wind profile radar. The sampling interval is 30 min and the data period is 7 days.On 11 November 2012,winds at level 5 or 6 were observed in Beijing;in some local areas,winds even reached level 7,and then weakened to level 3 at night with significant cooling.Figure 7a shows the horizontal wind speed below the altitude of 5000 m, Fig.7b shows the wind energy spectrum,and Fig. 7c shows the turbulence spectrum,for this cold windy weather.The five curves represent the spectrum density at 5070,4110,3150,2190,and 1110 m.

    The different appearance of the wind energy spectrum for cold windy and stable weather in winter can be seen in Fig.7b.At the altitude range of 5070-2190 m,the energy spectrum density only changes a little, while it decreases rapidly in the range of 2190-1110 m. This is different from the changes in stable weather.In the turbulence spectrum(Fig.7c),compared with the stable weather,there is a clear peak at the frequency 3.0×10-5s-1.The intensity of the peak gradually decreases from 5070 to 2190 m.

    Fig.7.(a)Horizontal wind speed,(b)wind energy spectrum of horizontal wind,and(c)turbulent spectrum of horizontal wind,under cold windy weather during 8-14 November 2012.

    Table 4 gives the spectral density of horizontal wind at five heights in cold windy weather.There appears to be a transmission of the energy spectrum density from high to low altitudes.From 5070 to 2190 m,the energy spectrum density decreases quickly and then increases slowly.In the peak area,the turbulence spectrum density accounting for the proportion of the wind energy spectrum density increases rapidly;the higher the height,the higher the proportion.The ratios at the five heights are 22.4%,12.8%,9.6%,8.8%, and 7.3%,respectively.

    Table 4 and Fig.7 show that there is a period of 1.5 days in cold windy weather where the wind energy spectrum from 5070 to 2190 m decreases quickly and then increases slowly.A strong wind shear caused the intense turbulence.The amplitude in the peak area at high altitude is greater than at the lower levels.This may be due to the energy passing from the upper air

    to the lower levels.

    Table 4.Spectral density of horizontal wind at five heights in cold windy weather

    5.3 Spectrum characteristics of summer rainstorms

    Compared with the stable weather,the turbulence spectrum during summer rainstorms has several peaks.This is the turbulence characteristics of the mesoscale rainstorm weather.On 23 June 2011, heavy rain fell in the Beijing area;total 24-h rainfall reached 241 mm.The rainstorm was sudden and intense.It had an uneven spatial distribution and significant mesoscale characteristics.The precipitation was concentrated in the period 16-19 h,with many areas experiencing instantaneous hail.Figure 8a shows the horizontal wind speed below the altitude of 5000 m from 0000 BT 20 to 2400 BT 26 June 2011.Figures 8b and 8c show the wind energy spectrum and the turbulence spectrum for this rainstorm.

    The wind energy spectrum(Fig.8b)shows that the amplitude decreases as the height reduces.In contrast to the spectrum in cold windy weather,the wind energy spectrum becomes more stable with height,and the slope of the wind energy spectrum decreases with decreasing height.The spectrum density is only 20% of that in cold windy weather at the same altitude. There are 2-3 peaks at different heights in Fig.8c. The peaks are located in the frequency range of 7× 10-6-2×10-5s-1,and have a period of about 1 day. It can be seen that at 1110 m,there are two peaks located at 5×10-6and 2×10-5s-1,while there are no peaks at 2190 m.

    Table 5 gives the spectral density of horizontal wind at five heights in the summer rainstorm case. The characteristic of spectral density changing with height is similar to that in stable weather.The turbulence spectrum density accounting for the proportion of wind energy spectrum density significantly increases

    in peak areas,which reflects that there are several disturbances in the rainstorm which occurred in the warm sector and there was no cold air at upper levels.The occurrence of the peaks may be because of the vertical movement of precipitation clouds.

    Fig.8.As in Fig.7,but for summer rainstorms during 8-14 June 2011.

    Table 5.Spectral density of horizontal wind at five heights in the summer rainstorm case

    5.4 Spectrum characteristics of severe convective weather

    On 3 June 2012,hailstorms,possibly due to trough-line activities,occurred in Beijing,with more than 20 mm of precipitation.Figure 9a shows the horizontal wind speed below the altitude of 5000 m during 3-5 June 2012. Figure 9b shows the wind energy spectrum and Fig.9c shows the turbulence spectrum for this severe convective weather case.

    Fig.9.As in Fig.7,but for the severe convective weather case during 3-5 June 2012.

    In Fig.9b,the spectrum is smooth and there are no peaks.The amplitude is four times bigger than in the summer rainstorm,and is close to that in cold windy weather.From 5070 to 3150 m,the spectrum

    density decreases only a little,while it reduces rapidly below 3150 m,showing that the wind energy transmits faster at the lower level.The spectrum characteristics are similar to those of cold windy weather because the two cases are both related to a cold front.The spectrum of turbulence has two peaks at all the heights except 2190 m;one at a frequency of 2×10-5s-1and the other at 6×10-5s-1.These peaks occur at about 13 and 9 h.The amplitude of the peaks is stronger at low altitude.The maximum amplitude is at 3150 m and the minimum is at 5070 m,which shows that the turbulence is more vigorous at 3000 m. This may be because of the activity of the trough-line. The amplitude at 1110 m is larger than that at 5070 m,mainly because of the activity of turbulence in the warm sector.

    Table 6 is a summary of the spectral density of horizontal wind at five heights in this severe convective weather case.The spectral density decreases with decreasing altitude.The amplitude of the spectrum at the same altitude and the same frequency in severe convective weather is larger than that in stable weather.The higher the frequency,the less the spectrum density,and the larger the turbulence spectrum density accounting for the proportion of the wind energy spectrum density,indicating that the energy in the high energy scale at low frequency transmits to the low energy scale at high frequency.In peak areas,the turbulence spectrum density accounting for the proportion of the wind energy spectrum density is larger than other areas,especially at 3150 and 2190 m. This may be because of the intense vertical movementat the middle level.

    Table 6.Spectral density of horizontal wind at five heights in the case of severe convective weather

    6.Summary and conclusions

    In this study,spectral analysis of wind profiling radar observations at heights of 1-5 km has been made.The wind energy and turbulence spectrum in different weather conditions shows different characteristics,which are helpful to the analysis and research of weather systems.

    Turbulence spectrum in stable weather conditions at high altitude is expressed in powers in the frequency range 2× 10-5-10-3s-1.The slope b is between -0.82 and-1.04,indicating that the turbulence is in the transition zone from the energetic range to the inertial sub-range.Wind shear and convective activity may enhance the turbulence.

    The peaks seen in the turbulence spectrum show the period of the weather system.Cold windy weather appears at a period of 1.5 days in the turbulence spectrum,and the amplitude at 5 km is the largest.The wide-range summer rainstorm exhibits two or three peaks in the spectrum over 15-20 h.In the severe convective weather conditions there are two peaks at 13 and 9 h.

    Compared with stable weather,the turbulence spectrum density accounting for the proportion of the wind energy spectrum density increases rapidly,especially in peak areas,in severe weather conditions.

    Atkinoon,B.W.,1981:Mesoscale Atmospheric Circulations.Academic Press,495 pp.

    Bian Jianchun,Qiao Jinsong,and Lu Daren,2002:Laboratory for middle atmosphere and global environment observation.Chinese J.Atmos.Sci.,26,474-480.(in Chinese)

    Bowne,N.E.,and J.T.Ball,1970:Observational comparison of rural and urban boundary layer turbulence.J.Appl.Meteor.,9,862-873.

    Chellali,F.,A.Khellaf,and B.Adel,2010:Application of time-frequency representation in the study of the cyclical behavior of wind speed in Algeria:Wavelet transform.Stochastic Environmental Research and Risk Assessment,24,1233-1239.

    Deng Chuang,Ruan Zheng,Wei Ming,et al.,2012:The evaluation of wind measurement accuracy by wind profile radar.J.Appl.Meteor.Sci.,23,523-533. (in Chinese)

    Endlich,R.M.,R.C.Singleton,and J.W.Kaufman, 1969:Spectral analysis of detailed vertical wind speed profiles.J.Atmos.Sci.,26,1030-1041.

    Griffith,H.L.,H.A.Panofsky,and I.van der Hoven., 1956:Power-spectrum analysis over large ranges of frequency.J.Atmos.Sci.,13,279-282.

    H?jstrup,J.,1981:A simple model for the adjustment of velocity spectra in unstable conditions downstream of an abrupt change in roughness and heat flux. Bound.-Layer Meteor.,21,341-356.

    Kaimal,J.C.,J.C.Wyngaard,Y.Izumi,et al,1972: Spectral characteristics of surface layer turbulence. Quart.J.Roy.Meteor.Soc.,98,563-589.

    —-,and J.J.Finnigan,1994:Atmospheric Boundary Layer Flows:Their Structure and Measurement. Oxford University Press,1-279.

    Kolmogorov,A.N.,1941a:The local structure of turbulence in incompressible viscous fluid for very large Reynolds number.Math.Phys.Sci.,434,9-13.

    —-,1941b:Dissipation of energy in the locally isotropic turbulence.Math.Phys.Sci.,434,15-17.

    Liu Shuyuan,Zheng Yongguang,and Tao Zuyu,2003: The analysis of the relationship between pulse of land heavy rain using wind profiler data.J.Trop. Meteor.,19,285-290.(in Chinese)

    Liu Xiaohong and Hong Zhongxiang,1996:A study of the structure of a strong wind event in the atmospheric boundary layer in Belting area. Scientia Meteor.Sinica,20,223-228.(in Chinese)

    Luo Jianyuan and Zhu Ruizhao,1993:The analysis of wind spectrum characteristics in surface layer in Badaling area of Beijing. Acta Energiae Solaris Sinica,14,279-287.(in Chinese)

    Panofsky,H.A.,1955:Meteorological applications of power—Spectrum analysis.Bull.Amer.Mcteor. Soc.,36,163-166.

    —-,D.Larko,R.Lipschutz,et al.,1982:Spectra of velocity components over complex terrain.Quart.J. Roy.Meteor.Soc.,108,215-230.

    Sheng Peixuan,Mao Jietai,Li Jianguo,et al.,2003: Atmospheric Physics.Beijing University Press,Beijing,227-228.(in Chinese)

    Sun Aidong and Xu Yumao,1997:Spectral characteristic and multi-scale analysis of a wet cold front in boundary-layer atmosphere. Scientia Atmos. Sinica,17,18-27.(in Chinese)

    Sun Jisun,He Na,Wang Guorong,et al.,2012:Preliminary analysis on synoptic configuration evolvement and mechanism of a torrential rain occurring in Beijing on 21 July 2012.Torrential Rain and Disasters, 31,218-225.(in Chinese)

    Tian Yuji,Yang Qingshan,Yang Na,et al.,2011:Beijing meteorological tower statistical model of turbulent wind velocity spectrum.Scientia Sinica(Technologica),41,1460-1468.(in Chinese)

    Van der Hoven,I.,1957:Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour.J.Meteor.,14,160-164.

    Wang Hua,Sun Jisong,and Li Jin,2007:A comparative analysis on two severe hail events in Beijing urban district in 2005.Meteor.Mon.,33,49-56.(in Chinese)

    Wang Xinyan and Mao Jietai,2004:The wavelet application in the research of mesoscale convective activity features.J.Trop.Meteor.,20,549-560.(in Chinese)

    Wei Fengying and Zhang Ting,2009:Frequency distribution of drought intensity in Northeast China and relevant circulation background.Journal of Natural Disasters,18,1-7.(in Chinese)

    Yu Xiaoding,2012: Investigation of Beijing extreme flooding event on 21 July 2012.Meteor.Mon.,38, 1313-1329.(in Chinese)

    Zhang Xiaoping,L¨u Naiping,and Zhou Mingyu,1987: The characteristics of vertical distribution of lowfrequency spectra for horizontal wind velocity in the atmospheric boundary layer.Chinese J.Atmos. Sci.,11,31-39.(in Chinese)

    Zhao Deshan,Wang Lizhi,and Hong Zhongxiang,1982: Analysis on the structure of gust in boundary layer when a cold front passing.Chinese J.Atmos.Sci., 6,324-332.(in Chinese)

    :Ruan Zheng,Mu Ruiqi,Wei Ming,et al.,2014:Spectrum analysis of wind profiling radar measurements.J.Meteor.Res.,28(4),656-667,

    10.1007/s13351-014-3171-y.

    (Received November 12,2013;in final form May 19,2014)

    视频区图区小说| 中文欧美无线码| 黑人欧美特级aaaaaa片| 97在线人人人人妻| 婷婷色麻豆天堂久久| 丝袜喷水一区| 亚洲欧美精品综合一区二区三区 | 99国产综合亚洲精品| 国产成人aa在线观看| 如日韩欧美国产精品一区二区三区| kizo精华| 伊人久久国产一区二区| 日本欧美国产在线视频| 我的亚洲天堂| 国产一区二区在线观看av| 久久久亚洲精品成人影院| 免费看不卡的av| 久久人人97超碰香蕉20202| 777久久人妻少妇嫩草av网站| 天堂8中文在线网| 国产男人的电影天堂91| 中文欧美无线码| 狠狠婷婷综合久久久久久88av| kizo精华| 日韩制服丝袜自拍偷拍| 午夜激情av网站| 天天躁日日躁夜夜躁夜夜| av一本久久久久| 免费播放大片免费观看视频在线观看| 久久久久久久久久久久大奶| 国产成人一区二区在线| 美女视频免费永久观看网站| 丰满少妇做爰视频| 精品午夜福利在线看| 一级毛片黄色毛片免费观看视频| 国产精品麻豆人妻色哟哟久久| 亚洲成人手机| 成人国语在线视频| 久久久国产精品麻豆| 一个人免费看片子| 午夜老司机福利剧场| 国产男人的电影天堂91| 亚洲人成电影观看| 欧美日本中文国产一区发布| 三上悠亚av全集在线观看| 亚洲精品日本国产第一区| 精品第一国产精品| 亚洲色图 男人天堂 中文字幕| 国产成人一区二区在线| 久久人人97超碰香蕉20202| 免费在线观看视频国产中文字幕亚洲 | 国产精品熟女久久久久浪| 看免费成人av毛片| 久久久久久伊人网av| 天天躁日日躁夜夜躁夜夜| 永久网站在线| 不卡视频在线观看欧美| 久久精品aⅴ一区二区三区四区 | 国产精品.久久久| 十八禁网站网址无遮挡| 另类亚洲欧美激情| 亚洲国产看品久久| 日日啪夜夜爽| 日日啪夜夜爽| 99久久人妻综合| 免费黄网站久久成人精品| 亚洲三区欧美一区| 秋霞在线观看毛片| 97人妻天天添夜夜摸| 久久久精品区二区三区| 欧美国产精品va在线观看不卡| 热re99久久国产66热| 免费观看无遮挡的男女| 国产亚洲午夜精品一区二区久久| 精品午夜福利在线看| 日韩中文字幕视频在线看片| 精品一区二区三区四区五区乱码 | 亚洲欧洲精品一区二区精品久久久 | 久久 成人 亚洲| 97在线视频观看| 精品久久久久久电影网| 久久99精品国语久久久| 999精品在线视频| 免费播放大片免费观看视频在线观看| 高清黄色对白视频在线免费看| 精品国产露脸久久av麻豆| 国产在线视频一区二区| kizo精华| 日韩欧美一区视频在线观看| 国产日韩欧美亚洲二区| 国产精品一二三区在线看| 好男人视频免费观看在线| 久久久久人妻精品一区果冻| 中文精品一卡2卡3卡4更新| 人人妻人人澡人人看| 美女主播在线视频| 久久精品亚洲av国产电影网| 亚洲精品美女久久av网站| av在线app专区| 99热全是精品| 国产片特级美女逼逼视频| 亚洲色图综合在线观看| 国产男女内射视频| 欧美bdsm另类| 亚洲一区二区三区欧美精品| 精品国产乱码久久久久久男人| 中文字幕人妻丝袜一区二区 | 2021少妇久久久久久久久久久| 日本猛色少妇xxxxx猛交久久| 国产黄频视频在线观看| 日本-黄色视频高清免费观看| 在线精品无人区一区二区三| 美女午夜性视频免费| 麻豆精品久久久久久蜜桃| 天天躁日日躁夜夜躁夜夜| 黑人欧美特级aaaaaa片| 一区在线观看完整版| 国产不卡av网站在线观看| 精品一区二区三卡| 老女人水多毛片| 久久人人97超碰香蕉20202| 如何舔出高潮| 黄网站色视频无遮挡免费观看| 下体分泌物呈黄色| 狂野欧美激情性bbbbbb| 精品国产国语对白av| xxxhd国产人妻xxx| 日本猛色少妇xxxxx猛交久久| 少妇的丰满在线观看| 中国三级夫妇交换| 性少妇av在线| av又黄又爽大尺度在线免费看| 亚洲内射少妇av| 亚洲av电影在线观看一区二区三区| 久久ye,这里只有精品| 美女xxoo啪啪120秒动态图| 丰满迷人的少妇在线观看| 观看美女的网站| 啦啦啦视频在线资源免费观看| 国产片内射在线| 天美传媒精品一区二区| 啦啦啦中文免费视频观看日本| 国产综合精华液| 国产成人a∨麻豆精品| 9191精品国产免费久久| 咕卡用的链子| 2021少妇久久久久久久久久久| 最近2019中文字幕mv第一页| 三级国产精品片| 丝袜在线中文字幕| 婷婷色av中文字幕| 中文字幕亚洲精品专区| 999久久久国产精品视频| 伊人久久国产一区二区| 亚洲精品一区蜜桃| 老女人水多毛片| 国产xxxxx性猛交| 国产精品香港三级国产av潘金莲 | 一级,二级,三级黄色视频| 叶爱在线成人免费视频播放| 在线天堂中文资源库| 国产在线免费精品| 看免费成人av毛片| 美女脱内裤让男人舔精品视频| 久久国产精品大桥未久av| 99精国产麻豆久久婷婷| 高清黄色对白视频在线免费看| 国产女主播在线喷水免费视频网站| 亚洲欧美一区二区三区黑人 | 日韩制服骚丝袜av| 欧美精品一区二区免费开放| 超色免费av| 欧美日韩成人在线一区二区| 久久久亚洲精品成人影院| 1024视频免费在线观看| 91午夜精品亚洲一区二区三区| 制服人妻中文乱码| 成人国产av品久久久| 亚洲欧美日韩另类电影网站| 9191精品国产免费久久| 99久久综合免费| 欧美日韩国产mv在线观看视频| 校园人妻丝袜中文字幕| 亚洲成人手机| 9191精品国产免费久久| 一本大道久久a久久精品| 免费在线观看视频国产中文字幕亚洲 | 高清不卡的av网站| 一级片'在线观看视频| 亚洲av福利一区| 爱豆传媒免费全集在线观看| 99热国产这里只有精品6| 国产精品一国产av| 满18在线观看网站| 天天躁夜夜躁狠狠久久av| 久久久久久久久久久久大奶| 久久99蜜桃精品久久| 日韩伦理黄色片| 成人国产麻豆网| 久久久久久伊人网av| 国产视频首页在线观看| 制服人妻中文乱码| 综合色丁香网| 亚洲欧美一区二区三区久久| 女性被躁到高潮视频| 国产精品久久久久久精品古装| 97在线人人人人妻| 人妻系列 视频| 另类精品久久| 美国免费a级毛片| 久久精品国产综合久久久| 五月天丁香电影| 久久久久国产精品人妻一区二区| 妹子高潮喷水视频| 天天躁夜夜躁狠狠躁躁| 欧美97在线视频| 欧美黄色片欧美黄色片| 国产精品二区激情视频| 亚洲人成77777在线视频| 国产免费福利视频在线观看| 国产精品偷伦视频观看了| 国产精品一国产av| 国产97色在线日韩免费| 亚洲精品国产一区二区精华液| 中文字幕最新亚洲高清| 免费观看无遮挡的男女| 热99国产精品久久久久久7| 久久久久网色| 少妇 在线观看| 青春草国产在线视频| 一级a爱视频在线免费观看| 欧美亚洲日本最大视频资源| 国产精品免费视频内射| 国产精品久久久久久久久免| 欧美日韩一级在线毛片| 日本wwww免费看| 日本vs欧美在线观看视频| 最近最新中文字幕免费大全7| av天堂久久9| 夜夜骑夜夜射夜夜干| 97人妻天天添夜夜摸| 在线亚洲精品国产二区图片欧美| 欧美av亚洲av综合av国产av | 日日啪夜夜爽| 精品视频人人做人人爽| 精品人妻熟女毛片av久久网站| 大香蕉久久网| 在线看a的网站| 国产极品粉嫩免费观看在线| 午夜久久久在线观看| 国产老妇伦熟女老妇高清| 韩国av在线不卡| 成年av动漫网址| 亚洲三级黄色毛片| 五月开心婷婷网| 纵有疾风起免费观看全集完整版| 国产一区二区三区av在线| 一本—道久久a久久精品蜜桃钙片| 精品一区在线观看国产| 久久精品国产综合久久久| 免费看av在线观看网站| 日本91视频免费播放| 亚洲在久久综合| 精品福利永久在线观看| 成人国产麻豆网| 国产精品一区二区在线不卡| 一本大道久久a久久精品| 成人二区视频| 美女午夜性视频免费| 欧美日本中文国产一区发布| 人体艺术视频欧美日本| 伦精品一区二区三区| 久久鲁丝午夜福利片| 99国产综合亚洲精品| 1024视频免费在线观看| 亚洲欧洲国产日韩| 久久ye,这里只有精品| 亚洲精品国产av成人精品| 亚洲精品成人av观看孕妇| 精品亚洲成国产av| 不卡视频在线观看欧美| 亚洲精品aⅴ在线观看| 日韩中字成人| 男女国产视频网站| 国产精品 欧美亚洲| 美女午夜性视频免费| 热99久久久久精品小说推荐| av在线观看视频网站免费| 卡戴珊不雅视频在线播放| 国产亚洲欧美精品永久| 久久综合国产亚洲精品| a级毛片黄视频| 免费黄网站久久成人精品| 亚洲男人天堂网一区| 在线天堂最新版资源| 国产精品偷伦视频观看了| www.精华液| 亚洲精品国产av成人精品| 女人被躁到高潮嗷嗷叫费观| 亚洲人成网站在线观看播放| 国产免费现黄频在线看| freevideosex欧美| 国产男人的电影天堂91| 久久97久久精品| 日韩 亚洲 欧美在线| 91成人精品电影| 国产一区二区三区综合在线观看| 日韩人妻精品一区2区三区| 搡女人真爽免费视频火全软件| 久久综合国产亚洲精品| 久久精品国产综合久久久| 97精品久久久久久久久久精品| tube8黄色片| videosex国产| 成人黄色视频免费在线看| 亚洲精品国产一区二区精华液| 99久久综合免费| 国产成人欧美| 亚洲精品一二三| 国产免费福利视频在线观看| 久久久久精品久久久久真实原创| 91久久精品国产一区二区三区| 国产精品久久久久成人av| 国产成人欧美| 国产毛片在线视频| 超色免费av| 伦理电影免费视频| 免费日韩欧美在线观看| av线在线观看网站| 欧美激情极品国产一区二区三区| 中文欧美无线码| 亚洲av电影在线观看一区二区三区| 黄色视频在线播放观看不卡| 国产xxxxx性猛交| 夫妻性生交免费视频一级片| 成人黄色视频免费在线看| 欧美中文综合在线视频| 亚洲国产欧美网| 久久久久久久大尺度免费视频| 人人妻人人爽人人添夜夜欢视频| 天天躁夜夜躁狠狠久久av| 各种免费的搞黄视频| 美女福利国产在线| 亚洲精品在线美女| 国产午夜精品一二区理论片| 亚洲欧美一区二区三区黑人 | 色婷婷久久久亚洲欧美| 亚洲av在线观看美女高潮| 性高湖久久久久久久久免费观看| 亚洲人成电影观看| 搡老乐熟女国产| 一边摸一边做爽爽视频免费| 欧美成人午夜免费资源| 美女高潮到喷水免费观看| 欧美日韩一级在线毛片| 91在线精品国自产拍蜜月| 国产精品久久久久久精品古装| 日韩电影二区| 永久免费av网站大全| 国产成人精品婷婷| 午夜老司机福利剧场| 午夜福利视频在线观看免费| 久久女婷五月综合色啪小说| 日韩伦理黄色片| 精品少妇内射三级| 美女中出高潮动态图| 欧美日韩成人在线一区二区| 国产精品欧美亚洲77777| 啦啦啦在线免费观看视频4| 日韩中文字幕欧美一区二区 | 性高湖久久久久久久久免费观看| 叶爱在线成人免费视频播放| 视频在线观看一区二区三区| 色哟哟·www| 午夜老司机福利剧场| 王馨瑶露胸无遮挡在线观看| 久久精品国产亚洲av高清一级| 26uuu在线亚洲综合色| 国产av国产精品国产| 亚洲av综合色区一区| 免费看不卡的av| av.在线天堂| 国产精品无大码| 9热在线视频观看99| 亚洲国产精品国产精品| a级毛片在线看网站| 一区二区三区四区激情视频| 看免费成人av毛片| 国产精品久久久久久av不卡| 亚洲人成77777在线视频| 久久 成人 亚洲| 美女高潮到喷水免费观看| 久久国产亚洲av麻豆专区| 91精品三级在线观看| 丰满迷人的少妇在线观看| 亚洲第一青青草原| 一区二区三区四区激情视频| 国产伦理片在线播放av一区| 国产一区二区 视频在线| 亚洲人成网站在线观看播放| 天堂8中文在线网| 亚洲在久久综合| 天堂8中文在线网| 亚洲久久久国产精品| 最近中文字幕高清免费大全6| 亚洲久久久国产精品| 国产亚洲午夜精品一区二区久久| 亚洲精品久久成人aⅴ小说| 熟女少妇亚洲综合色aaa.| 精品一品国产午夜福利视频| 国产精品 欧美亚洲| 另类亚洲欧美激情| 看免费av毛片| 国产在线免费精品| 午夜福利视频精品| 久久国产精品大桥未久av| 亚洲综合精品二区| 亚洲av日韩在线播放| 老司机亚洲免费影院| 大话2 男鬼变身卡| 一级黄片播放器| 亚洲精品视频女| 少妇 在线观看| 亚洲精品视频女| 三级国产精品片| 青草久久国产| 国产成人欧美| 免费播放大片免费观看视频在线观看| 日本91视频免费播放| 国产精品人妻久久久影院| 午夜影院在线不卡| √禁漫天堂资源中文www| 黄片小视频在线播放| 9色porny在线观看| 老汉色av国产亚洲站长工具| 大片免费播放器 马上看| 丝袜美腿诱惑在线| 女性被躁到高潮视频| 亚洲av欧美aⅴ国产| 国产日韩欧美视频二区| 观看av在线不卡| 中文字幕制服av| 人人妻人人澡人人看| 免费黄频网站在线观看国产| 国产亚洲欧美精品永久| 欧美变态另类bdsm刘玥| 天美传媒精品一区二区| 久久女婷五月综合色啪小说| 春色校园在线视频观看| 国产精品 国内视频| 啦啦啦啦在线视频资源| 99热国产这里只有精品6| 在线亚洲精品国产二区图片欧美| 亚洲av.av天堂| 国产淫语在线视频| 亚洲精品国产色婷婷电影| 中文字幕人妻丝袜一区二区 | 亚洲国产欧美日韩在线播放| 日韩制服骚丝袜av| 亚洲三级黄色毛片| 久久ye,这里只有精品| 亚洲精品美女久久久久99蜜臀 | 日本爱情动作片www.在线观看| 免费久久久久久久精品成人欧美视频| 精品亚洲成a人片在线观看| 18禁裸乳无遮挡动漫免费视频| 久久精品aⅴ一区二区三区四区 | 美女午夜性视频免费| 国产精品三级大全| 亚洲视频免费观看视频| 男男h啪啪无遮挡| 精品国产露脸久久av麻豆| av不卡在线播放| 久久久久久久久久久久大奶| 香蕉精品网在线| 日韩一卡2卡3卡4卡2021年| 国产一区有黄有色的免费视频| 久久久国产一区二区| 国产精品不卡视频一区二区| 少妇猛男粗大的猛烈进出视频| 色网站视频免费| 曰老女人黄片| 国产 一区精品| 韩国精品一区二区三区| 久久久久国产一级毛片高清牌| 亚洲精华国产精华液的使用体验| 最近中文字幕高清免费大全6| 国产精品一区二区在线观看99| 亚洲国产色片| 亚洲美女黄色视频免费看| 国产在线一区二区三区精| 国产成人精品婷婷| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 男人添女人高潮全过程视频| 国产日韩一区二区三区精品不卡| videosex国产| 国产 精品1| 91aial.com中文字幕在线观看| 亚洲图色成人| 夫妻午夜视频| 国产在线视频一区二区| 热99国产精品久久久久久7| freevideosex欧美| 韩国精品一区二区三区| 欧美另类一区| 久久鲁丝午夜福利片| 亚洲综合精品二区| 免费人妻精品一区二区三区视频| 国产深夜福利视频在线观看| 欧美日韩国产mv在线观看视频| 黑丝袜美女国产一区| 国产精品免费视频内射| 免费在线观看黄色视频的| 国产成人精品一,二区| 国产精品女同一区二区软件| 香蕉丝袜av| 三级国产精品片| 美女国产视频在线观看| 秋霞伦理黄片| 国产精品久久久久久av不卡| 亚洲av欧美aⅴ国产| 中文字幕制服av| xxx大片免费视频| 人妻一区二区av| 最近手机中文字幕大全| 国产精品国产三级专区第一集| 乱人伦中国视频| 多毛熟女@视频| 久久久久久久久久久免费av| 下体分泌物呈黄色| 最新中文字幕久久久久| 精品视频人人做人人爽| 高清不卡的av网站| 亚洲精品aⅴ在线观看| 侵犯人妻中文字幕一二三四区| 街头女战士在线观看网站| 国产日韩欧美亚洲二区| 黑人欧美特级aaaaaa片| 国产熟女欧美一区二区| 妹子高潮喷水视频| 一本色道久久久久久精品综合| 亚洲男人天堂网一区| 人妻人人澡人人爽人人| 成人手机av| 老女人水多毛片| 亚洲av电影在线观看一区二区三区| 丝袜美腿诱惑在线| 韩国高清视频一区二区三区| 亚洲av.av天堂| 1024香蕉在线观看| 亚洲国产欧美网| 亚洲人成电影观看| 国产亚洲av片在线观看秒播厂| 两个人看的免费小视频| 中文字幕另类日韩欧美亚洲嫩草| 成人二区视频| xxx大片免费视频| 看免费成人av毛片| 丝袜脚勾引网站| 少妇人妻 视频| 欧美变态另类bdsm刘玥| 一级毛片我不卡| 久久精品亚洲av国产电影网| 国产日韩欧美在线精品| 最近中文字幕高清免费大全6| 男女免费视频国产| 999久久久国产精品视频| 欧美中文综合在线视频| 免费高清在线观看日韩| 日韩一区二区三区影片| 日韩大片免费观看网站| 久久精品国产亚洲av涩爱| 色婷婷久久久亚洲欧美| av福利片在线| 午夜免费男女啪啪视频观看| 99九九在线精品视频| 欧美日韩成人在线一区二区| 国产成人精品一,二区| xxxhd国产人妻xxx| 纵有疾风起免费观看全集完整版| 黑人巨大精品欧美一区二区蜜桃| 伦理电影免费视频| 免费女性裸体啪啪无遮挡网站| 精品国产超薄肉色丝袜足j| 国产日韩一区二区三区精品不卡| 香蕉丝袜av| 如何舔出高潮| 丰满乱子伦码专区| av.在线天堂| 香蕉精品网在线| 丰满乱子伦码专区| 性高湖久久久久久久久免费观看| 久久精品夜色国产| 成人国语在线视频| 捣出白浆h1v1| 在现免费观看毛片| 精品一区二区三区四区五区乱码 | 天堂俺去俺来也www色官网| 爱豆传媒免费全集在线观看| 美女高潮到喷水免费观看| 曰老女人黄片| 国产一区二区在线观看av| 亚洲,欧美,日韩| 欧美国产精品va在线观看不卡| 最黄视频免费看| 亚洲精品一二三| 夜夜骑夜夜射夜夜干| 26uuu在线亚洲综合色| 久久久欧美国产精品| 日韩免费高清中文字幕av| 观看av在线不卡| 在线观看免费视频网站a站| 亚洲 欧美一区二区三区| 婷婷色麻豆天堂久久| 精品亚洲成国产av|