方黎明
(國網(wǎng)安徽桐城市供電有限責(zé)任公司,安徽桐城 231400)
綜合負荷動靜比例對電網(wǎng)傳輸功率的影響探究
方黎明
(國網(wǎng)安徽桐城市供電有限責(zé)任公司,安徽桐城 231400)
對于電力系統(tǒng)中進行定量計算,負荷模型是非常重要的。同時,電力系統(tǒng)的仿真計算過程中,對于電網(wǎng)暫態(tài)極限的影響而言,綜合負荷動態(tài)以及靜態(tài)的比例具有很重要的關(guān)系?;陔娋W(wǎng)的實際特征以及電網(wǎng)的結(jié)構(gòu),對綜合負荷模型不同感應(yīng)電動機比例對某店面斷面功率傳輸極限的影響進行了深入研究。分析了靜態(tài)負荷模型以及感應(yīng)電動機負荷模型;深入探討了輸電極限受不同感應(yīng)電動機比例的影響,最后給出了電網(wǎng)運行的建議。
綜合負荷模型 動靜態(tài)比例 暫態(tài)極限
當(dāng)前,我國正在大力推進電網(wǎng)全國性互聯(lián),使得電網(wǎng)的規(guī)模日益增加,同時增加了復(fù)雜的程度。因此,電網(wǎng)中存在著突出電網(wǎng)的動態(tài)穩(wěn)定性以及電壓穩(wěn)定性的問題,對于電力系統(tǒng)的定量計算而言,負荷模型具有非常重要的作用。對基于實際電網(wǎng)的負荷模型進行深入的研究與探討,能夠使得電網(wǎng)仿真計算的精度得到提高,使得電網(wǎng)穩(wěn)定的水平得到改進,從而使得電網(wǎng)輸電的能力不斷提高。
目前我國電網(wǎng)調(diào)度對于電力系統(tǒng)的仿真計算,通常使用的是負荷模型。負荷模型通常采用的是靜態(tài)負荷模型以及具有感應(yīng)電動機動態(tài)負荷模型。圖1表示綜合負荷系統(tǒng)構(gòu)成。其中,負荷母線電壓是u, u= ux+ juy;綜合負荷吸收電網(wǎng)電流為i;s表示綜合負荷系統(tǒng)在電網(wǎng)中吸收的功率;綜合負荷靜態(tài)等值導(dǎo)納用Y表示。
綜合負荷靜態(tài)模型對負荷不進行計算的動態(tài)過程內(nèi),通過方程進行描述。通常情況下,對于電力系統(tǒng)機電暫態(tài)過程內(nèi),電網(wǎng)變化頻率比較小,所以一般在進行穩(wěn)定計算的過程中只是對于負荷功率隨著電壓變化的特征進行考慮。對于靜態(tài)負荷模型其數(shù)學(xué)表達式如下:
其中,實際電壓用U表示;基準(zhǔn)電壓用U0表示;端電壓等于實際電壓U時,負荷吸收功率用P,Q表示;端電壓等于基準(zhǔn)電壓U0時,負荷吸收功率用P0,Q0表示;各類負荷占比例用系數(shù)a,b,c表示。
1.2 感應(yīng)電動機負荷模型
動態(tài)負荷與靜態(tài)負荷并聯(lián)構(gòu)成了綜合負荷,其中恒定導(dǎo)納等值表示靜態(tài)部分,感應(yīng)電動機等值表示動態(tài)部分。模型中輸入變量是負荷電壓,輸出變量是功率或者綜合負荷。負荷電壓是系統(tǒng)的激勵,而功率或者綜合負荷是系統(tǒng)的響應(yīng)。針對綜合負荷ixtapa建立感應(yīng)電動機動態(tài)方程如下:
圖1 綜合負荷系統(tǒng)構(gòu)成示意圖
和電力系統(tǒng)的其他定量計算相比,電壓的穩(wěn)定計算更加依賴于負荷模型。事實上,對于電壓穩(wěn)定影響因素以及仿真模型的過程中,首先要對負荷模型以及負荷特性進行選擇。這是由于電壓的失穩(wěn)過程中,最關(guān)鍵的因素就是電壓?;谪摵晒β孰S著電壓功率的變化對于發(fā)動機轉(zhuǎn)子過剩轉(zhuǎn)矩表現(xiàn)出負荷模型輸電極限的影響。換句話說,因為在負荷消耗的功率因為電壓的變化而變化,從而使得發(fā)動機輸入與輸出的功率不平衡受到了影響,也就是使得功角偏移受到了影響。
進行某電網(wǎng)負荷模型的仿真模擬計算,感應(yīng)電動機比例從65%降低到50%。當(dāng)把XX電網(wǎng)負荷模型改變成恒阻抗和恒功率靜態(tài)負荷模型時,極大的提高了系統(tǒng)穩(wěn)定極限。如果將恒阻抗比例控制到25%的時候,電網(wǎng)端面輸電極限大約是3600MW,相當(dāng)于使用50%感應(yīng)電動機綜合負荷模型輸電極值。當(dāng)電網(wǎng)中某機組關(guān)閉,利用地區(qū)負荷使得輸電斷面極限輸電增加,此時,系統(tǒng)的平衡機的出力已經(jīng)達到了上限,因此,進行恒阻抗比例更高的靜態(tài)負荷模型輸電極限的計算沒有意義。因此,電網(wǎng)控制斷面極限為3680MW,電網(wǎng)的負荷模型使用40%恒阻抗與60%恒功率靜態(tài)負荷模型相結(jié)合的方式。
第一,當(dāng)降低感應(yīng)電動機的比例時,能夠顯著提高斷面輸電極限。這是因為當(dāng)系統(tǒng)出現(xiàn)故障時,降低了節(jié)點的電壓,從而造成了感應(yīng)電動機負荷在系統(tǒng)的電流以及無功功率增加,當(dāng)感應(yīng)電動機在負荷模型中的比例越高,那么就會使得電動機負荷吸收的無功功率增加,從而使得系統(tǒng)存在無功不足的問題,造成了系統(tǒng)電壓恢復(fù)出現(xiàn)問題,也就使得系統(tǒng)具有不穩(wěn)定性。
第二,當(dāng)?shù)蛪焊袘?yīng)時,增加了電動機轉(zhuǎn)差率,也就減小了轉(zhuǎn)子等值電阻,增加了定子電流,從而也就增加了電動機機端無功的功率,從而造成了由于缺乏無功,系統(tǒng)的電壓持續(xù)變低。但是對于恒阻抗與恒功率靜態(tài)負荷模型來說,當(dāng)故障發(fā)生時,恒功率進行功率的吸收不變,而恒阻抗部分對于功率的吸收,則是隨著電壓的升高而升高,基于此,當(dāng)發(fā)生故障的時候,對于無功的需求靜態(tài)負荷模型相對于綜合感應(yīng)電動機模型而言更少,因此,系統(tǒng)的穩(wěn)定性更強。
第三,對于恒阻抗與恒功率靜態(tài)負荷模型而言,系統(tǒng)隨著阻抗比例的增加而變得更加的穩(wěn)定。這是由于當(dāng)系統(tǒng)發(fā)生故障的時候,降低了恒阻抗吸收功率,但是恒功率負荷的吸收功率卻保持不變,表明該負荷模型在恒阻抗越大時,其負荷吸收無功功率則越小,因此,對于靜態(tài)負荷模型而言,系統(tǒng)隨著阻抗的增加而變得更加穩(wěn)定。
第四,針對綜合負荷模型而言,不同感應(yīng)電動機比例變低,那么電壓失穩(wěn)向功角失穩(wěn)轉(zhuǎn)變的能力就會增強。對于綜合負荷模型而言,當(dāng)進行穩(wěn)定計算時能夠?qū)嶋H的情況進行更加準(zhǔn)確的反應(yīng)?;诖?由于綜合負荷模型對于感應(yīng)電動機比例更能影響斷面輸電的極限,所以,通過對負荷模型的研究,使得電網(wǎng)實際運行下的感應(yīng)電動機比例得到優(yōu)化。
[1]張紅斌,李黎,賀仁睦.動靜態(tài)負荷模型在電網(wǎng)暫態(tài)穩(wěn)定計算中的應(yīng)用[J].電力自動化設(shè)備,2013(6)23:49-53.
[2]董存,徐斌,賈宏杰.基于感應(yīng)電動機的暫態(tài)電壓失穩(wěn)分析[J].電網(wǎng)技術(shù),2009(4)35:5-8.
[3]劉代剛,劉滌塵,張文嘉,等.基于自適應(yīng)BP網(wǎng)絡(luò)的廣義負荷動靜比例辨識[J].電工技術(shù)學(xué)報,2013(8):68-72.