• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Capital injections with negative surplus and delays:models and analysis

    2014-12-07 08:00:22ZhuoJINGeorgeYIN
    Control Theory and Technology 2014年2期

    Zhuo JIN,George YIN

    1.Centre for Actuarial Studies,Department of Economics,The University of Melbourne,VIC 3010,Australia;

    2.Department of Mathematics,Wayne State University,Detroit,Michigan 48202,U.S.A.

    Capital injections with negative surplus and delays:models and analysis

    Zhuo JIN1?,George YIN2

    1.Centre for Actuarial Studies,Department of Economics,The University of Melbourne,VIC 3010,Australia;

    2.Department of Mathematics,Wayne State University,Detroit,Michigan 48202,U.S.A.

    This work develops a new model to deal with the scenario that some companies can still run business even the surplus falls below zero temporarily.With such a scenario in mind,we allow the surplus process to continue in this negative-surplus period,during which capital injections will be ordered to assist in the stabilization of financial structure,until the financial status becomes severe enough to file bankruptcy.The capital injections will be modeled as impulse controls.By introducing the capital injections with time delays,optimal dividend payment and capital injection policies are considered.Using the dynamic programming approach,the value function obeys a quasi-variational inequality.With delays in capital injections,the company will be exposed to the risk of bankruptcy during the delay period.In addition,the optimal dividend payment and capital injection strategies should balance the expected cost of the possible capital injections and the time value of the delay periods.This gives rise to a stochastic control problem with mixed singular and delayed impulse controls.Under general assumptions,the lower capital injection barrier is determined,where bankruptcy occurs.The closed-form solution to the value function and corresponding optimal policies are obtained.

    Stochastic control;Capital injection;Dividend policy;Delayed impulse control;Singular control

    1 Introduction

    Designing dividend payment policies has long been an important issue in finance and actuarial sciences.Because of the nature of their products,insurers tend to accumulate relatively large amounts of cash,cash equivalents,and investments in order to pay future claims and avoid insolvency.The payment of dividends to shareholders may reduce an insurer's ability to survive adverse investment and underwriting experience.A practitioner will manage the reserve and dividend payment against asset risks so that the company can satisfy itsminimum capital requirement.

    Stochastic optimal control problems on dividend strategies for an insurance corporation have drawn increasing attention since the introduction of the optimal dividend payment model proposed in[1].There have been increasing efforts on using advanced methods of stochastic control to study the optimal dividend policy;see[2-4].As an extension of the previous work,dividend is assumed to be paid out with the constraint that a transaction cost must be paid.The studies related to optimal dividend problems with transaction costs and compound Poisson process can be referred to[5].To maximize the expected total discounted dividend payments,the company will bankrupt almost surely if the dividend payment is paid out as a barrier strategy.In practice,reference[6]suggested that capital injections can be taken into account to maintain the business when cashflow is insufficient.Furthermore,penalty will be paid when surplus falls below zero,which can be considered as the transaction cost of capital injection;see also[7-9].Whenever the company is on the verge of bankruptcy,the company has the opportunity to raise sufficient funds to survive.A natural payoff function is to maximize the difference between the expected total discounted dividend payment and the capital injections with costs until bankruptcy under the optimal controls.

    In this work,we develop a model to deal with the scenario that some companies are not necessary to file bankruptcy with temporary negative surplus.In our model,negative surplus is not the end,and the shareholder will evaluate if it is profitable enough to rescue the company.If the financial deficit is severe enough,the shareholders will let the company go to bankruptcy to cut the losses.Otherwise,strategies will be taken to save the company such as capital injections,refinancing,or merger etc.With such a practice in mind,we distinguish between temporary deficit and bankruptcy,where bankruptcy occurs at a sufficiently low capital level.Recently,there have been surging work related to the optimal dividend and refinance policies after ruin.Reference[10]analyzed the absolute ruin probabilities in a jump diffusion risk,where companies will be not allowed to continue their business when surplus is below certain negative critical value.Reference[11]introduced the Omega model to distinguish between ruin and bankruptcy.Companies can still run the business normally until the financial status is severe enough to file bankruptcy.Reference[12]determined the expected discounted value of a penalty at bankruptcy and computed the probability of bankruptcy under the assumption of Brownian motion for the surplus.On the other hand,there have been resurgent efforts devoted to the study of time delay on stochastic models.Reference[13]considered the problem of a bank's optimal strategy of recapitalization with a fixed delay period.Reference[14]proposed a direct solution method for delayed impulse control problems of one-dimensional diffusions and solve an optimal labor force problem with firing delay.Reference[15]studied the optimal reinsurance strategy under fixed cost and delay.Considering such a delay in the capital injection makes our formulation more general and realistic.

    With the classical capital injection policies,the company could run the business in the absence of risk of bankruptcy.However,empirical studies indicate that traditional surplus models with capital injections fail to capture the impact of regulatory processes of capital raising transactions.To better reflect reality,we have to consider the factor that the transactions of capital injections need certain amount of time to be carried out after the decision of injecting extra capitals is made.The time needed can be modeled by using delays.In the real world,the capital injections can never happen instantaneously.Time delays cannot be ignored and are unavoidable.

    Time delays occur naturally in insurance decisionmaking problems such as improving the capital reserve to a nonnegative capital buffer level by capital injections.Many corporations face regulatory delays(e.g.,preparatory and administrative work),which need to be taken into account when the corporations make decisions under uncertainty of insolvency during the delays.The problem of finding the optimal strategy under the condition of delayed capital injections involves a stochastic delay system with impulse controls.In the presence of delay,the corporations will be exposed to a strictly positive probability of bankruptcy during the waiting period.The threshold of bankruptcy can be determined by the barrier where payoff function approaches zero.In addition,the dividend payment is not allowed during this waiting period.Unlike the models where capital injections can be implemented instantaneously to avoid the bankruptcy completely,the positive probability of liquidation risk in our model leads to the decision of capital injections with delays more realistic but more complicated.

    This paper reveals clearly the difference of the strategies with and without delays for our model.In traditional models,negative surplus is not allowed,and capital injections without delays will only be implemented when surplus hits 0.The size of the capital injections is always a constant to increase the surplus to a positive capital buffer level,and payoff function will be positive even with zero initial surplus(see[9]).However,when temporary negative-surplus situation is allowed,capital injections without delays could always improve the surplus status instantaneously to avoid severe financial condition.Thus,payoff function or value function will always be positive and bankruptcy will never occur.

    One of the novel contributions of the current paper is:Taking into account of the time delays,the impulse controls of capital injections depend on the surplus and can be very large.Together with the unrestricted dividend payment policy,using a quasi-variational inequality approach,we demonstrate that these state-dependent capital injections lead to the formulation of a free boundary problem.Under general assumptions,the analytic solution to the free boundary problem and the optimal statedependent 'threshold' strategies are obtained in this paper.Comparing with work of[13],our work further considers the case of negative reserve,which is naturally proposed when capital injections are included.The lower barrier of the capital injection region is a negative free parameter,which shows that the surplus status can only worsen up to atolerable status.With aflexible 'capital injection stop'-barrier,we fix the 'call for help'-state at 0 surplus.Choosing the newly constructed strategies will significantly effect the capital injection sizes and termination thresholds.

    In addition,one of the new findings indicates that capital injections with delays are crucial in our model.Note that for the case of capital injection without delays,bankruptcy can be completely avoided.Thus,the company could run the business with negative capital reserve forever,which is not realistic.When delays are considered,the threshold of the bankruptcy can be determined and when surplus approaches the threshold of bankruptcy,the optimal capital injection goes to zero.It demonstrates that even capital injections are available,the insurance company will be unlikely to avoid the bankruptcy due to the delay when the surplus is sufficiently low.To the best of our knowledge,this has not been considered to date.

    The model we constructed involves the consideration of an important factor-the delay in the capital injection process.It can be clearly seen that the delay factor leads to state-dependent optimal strategies,which provide insights for the insurance company in their decision making process and risk analysis.Not only are such results theoretically sound,but they are crucial in the insurance practice.Capital injections and dividend payment policies with transaction costs are introduced as impulse and singular stochastic controls.The imposed time delay on the capital injections makes the problem more complicated.By adopting a diffusion model,we obtain a quasi-variational inequality(QVI)in this paper.The closed-form solution to the QVI is obtained under certain general assumptions.The value function is verified to be a concave function and defined separately in three regions,which are capital injection region,continuation region,and dividend payment region.The capital injection barrier and dividend payment barrier are also given.The threshold of bankruptcy is also the lower barrier of capital injection region.Finally,the optimal capital injection and dividend payment strategies are obtained.

    The rest of the paper is organized as follows.A formulation of optimal capital injection strategies and dividend payment policies is presented in Section 2.Section 3 deals with the construction of the value function and dividend payment strategy.Section 4 deals with the verification of the solution to the value function.Some limiting case of the solution is also considered.Finally,Section 5 gives some further remarks to conclude the paper.

    2 Formulation

    The surplus process is described by a Brownian motion.That is,

    wherexis the initial surplus,μ is the expected return rate,σ represents the volatility,andW(t)is a standard Brownian motion.We are working with a filtered probability space(Ω,F,{Ft},P),where Ftis the σ-algebra generated byandis the associated filtration.

    A dividend strategyZ(.)is an Ft-adapted process{Z(t):t≥0}corresponding to the accumulated amount of dividends paid up to timetsuch thatZ(t)is a nonnegative and nondecreasing stochastic process that is right continuous with left limits.Throughout the paper,we use the convention thatZ(0-)=0.The jump size ofZat timet≥0 is denoted by

    denotes the continuous part ofZ(t).In this work,we assume the company could still work in the negativesurplus situation.That is,while the company is short of capital,the company is still able to run the business until bankruptcy occurs.When the surplus hits the threshold of disastrous financial status,bankruptcy is unavoidable.Note that the surplus levelX(t)=x0describes the severe financial condition leading to 'certain bankruptcy'.

    On the other hand,capital injections will trigger the improvement of the capital structure.For the time cost of the money,extra capital will only be injected until surplus process falls below zero.LetX(t)=x0for allt> τx0,where τx0=inf{t≥ 0:X(t)

    for allt<τx0.

    We assume that the shareholders need to payK+ζ to meet the capital injection of ζ.K>0 is the fixed transaction costs.We omit the fixed transaction costs in the dividends payout process.Denote byr>0 the discounting factor.For an arbitrary admissible pairu=(Z,L),the performance function is

    The pairu=(Z,L)is said to be admissible ifZandLsatisfy

    i)Z(t)andL(t)are nonnegative for anyt≥0;

    ii)Zis c`adl`ag(that is,it is right continuous and has left limits),nondecreasing and adapted to Ft;

    iii)τnis a sequence of stopping time w.r.t.Ft,and 0≤ τ1<...< τn<...a.s.;

    iv)ζnis measurable w.r.t.Ft;

    vi)J(x,u)<∞for anyxand admissible pairu=(Z,L),whereJis the functional defined in(3).

    In addition,we assume the admissible controlusatisfies

    b)dZ(t)=0 for allt∈ [τn,τn+ Δ],n≥ 1.

    Condition a)tells us a new capital injection should not be placed during the waiting period of the previous capital injection.Condition b)states the dividends may not be paid during the waiting periods of the capital injections.

    Suppose that A is the collection of all admissible pairs.Define the value function as

    When the surplus hits barrierthe financial condition is too severe to maintain the business and extra capital injections are useless.We imposex0=inf{x:V(x)≥0}.Intuitively,in the absence of time delay,on the boundary of the capital injection region,the value function obeys

    then the optimal payoff or the value functionV(x)will not be 0 with the instantaneous capital injections,which could always guarantee the stability of the company's capital structure.However,with the capital injection delays,the company will violate the capital adequacy if the capital injection is hold while the surplus hits 0.Thus,taking into account the delay of the capital injection,the value of theV(x)on the boundary can be obtained as

    For alldefine an operator L by

    whereVxandVxx(x)denotes the first and second derivatives with respect tox.Define another capital injection operator M by

    whereXΔis the value at time Δ ofXdefined by dX(t)= μdt+σdW(t),withX(0)=x.If the value functionVdefined in(4)is sufficiently smooth,by applying the dynamic programming principle([16]),we formally derive the following QVI:

    Similar to[9],we divide the set of the surplus to three regions i)continuation region:C:{LV(x)-rV(x)=0,1

    Boundary conditionsThe capital injection will be taken into account when there is not enough solvency capital to maintain the business.To make the company run continuously,the capital injections will definitely occur at the moments whenx<0.In addition,the capital injections also occur whenever the surplus is sufficiently low.The impulse control of the capital injections depends on the surplus states and leads to a free boundary of the capital injection region.We consider the dividend payout strategy with the delayed capital injection.Combing(9)and(6),the QVI with the boundary conditions follows

    Remark 1The value functionV(x)is not necessarily smooth.In fact,the second derivative of the value function is not always continuous.In the absence of a classical solution to the QVI,one alternative definition for a solution to the quasi-variational inequalities(10)is the notion of a viscosity solution.However,we can interpret the differential generator in terms of left or right derivatives;see[13].

    3 Value function and dividend strategy

    To solve the quasi-variational inequality,we guess the form of a solution and verify the validation of the constructed solution in a general case.The solution can be formulated based on the strategies in each of the regions.Referring to[17],we consider the dividend payout strategy with the capital injection as a band strategy.The decision maker will take no action until the surplus hits 0,where an impulse control of capital injection will be taken.The dividend will be paid out immediately when the surplus reaches the upper barrier.Furthermore,the capital injections will only be considered withX(t)≥x0.That is,suppose there exist three thresholdsx0,0 andb0separating the four regions,where-∞

    To proceed,we construct the solutions in the continuation region when the equality holds.Denoting the candidate solution in the continuation region byf(x).The equality in the continuation region then becomes

    The solution to(11)is

    Letg(x)be the solution to(13).It can easily be obtained that

    whereacan be determined by the boundary condition of the dividend payment region.Based on the form of the solution,b0is the threshold to separate the continuation region and dividend payout region.Thus,the solution should satisfy both(11)and(13)atb0.On the other hand,the twice continuous differentiability ofg(x)atb0requires thatfx(b0)=1 andfxx(b0)=0.Imposing these boundary conditions on(12)yields

    where

    Note that we have usedf(x;b0)to denote the dependence on the parameterb0.Furthermore,substitutingfx(b0)=1 andfxx(b0)=0 into(11)yields

    Moreover,subject to the boundary condition atb0,ais determined andg(x)becomes

    Finally,we need only construct the solution in capital injection region.Assume a concave function denoted bythat satisfiesand(16).Because of the concavity of the functionh(x;b0),the supremum is achieved whens=b0-XΔ.Thus,(8)is simplified to

    where τρ+x0represents the hitting time of ρ+x0.That is,

    Define a Markov transition probability density functionp(Δ,x+ ρ,y)withy∈ [x0,∞),which is the density of the processthat starts atx+ ρ.Then,we have

    Hence,(19)follows

    Finally,we obtain the constructed function as follows:

    where Φ(.)and φ(.)are the cumulative standard normal distribution and its density function,respectively.It is obvious that

    On the other hand,the boundary condition ofh(x;x0,b0)on the boundary of the capital injection regionx0can be formulated as

    The explicit expression of the region boundariesx0andb0are not easy to obtain because of the nonlinearity of the QVI.However,the existence ofx0andb0will be verified in the next section under conditions.Combining(15),(17)and(21),given the existence ofx0andb0,the value functionV(x)can be written as

    4 Properties of the solution

    4.1 Verification theorem

    In this section,we will first verify the existence the boundaries of the capital injection and continuation regionsx0andb0.Under the general conditions,sufficient conditions of the existence ofx0andb0will be given.Moreover,the value functionV(x)defined in(24)will be verified as the solution to(10).Some limiting cases will also be discussed at last.

    Lemma 1Letwe have

    Proof

    Hence,the equality is obtained.

    Lemma 2If ρ+x0≥ 0,then ?x>0,we have that the constructed function in(21)follows

    ProofIn view of(19),we have

    For the first and second order derivatives ofh(x;x0,b0),we have

    Sinceits derivatives satisfy

    We obtain that

    when ρ>-x0.This lemma shows the concavity of the value function in the capital injection region,which means the new capital issues can be optimized when ρ+x0>0.

    Now,we will consider the barrier of continuation region.Define the functionas

    Denoted a positive barrierb1which satisfies0.The we can deduce that

    ProofDifferentiating(25)onb,we obtain

    Moreover,it is shown that

    Lemma 4If

    ProofReferring to(18),by using Lemmas 1 and 2,we have

    Thus,the inequality is verified.

    Define a two component function?h(x,b)∈R+XR+as

    Proof

    Step 1In view of the expression(27),we haveAlso,from the definition.Suppose the conditionit implies that there exist some pointsuch thatOn the other hand,from Lemma 4,substitutinginwe haveThis shows thatmust crossfrom above at some pointx2in the interval(x0,b1).

    Step 2For allsincewe haveIn addition,by Lemma 4.From(25)and(27),we getBy Lemma 2,ρ+x0≥ 0 implies thatis increasing and concave,so iswith respect tois also increasing inx.Thus,combining the previous inequality,we can always find a positiveb0in the interval(x0,b1)such that

    Step 3In view of the results in Steps 1 and 2,following from the continuity ofandwith respect toxandb,there will exist ab0in the intervalsuch thatfor somewherefor allFor the(b2,b0)we have chosen,the continuous differentiability ofandwith respect toxyieldsThe equality is established because the two continuously differentiable lines have the same derivative if they coincide but not cross at some point.On the other hand,the capital will be injected with surplus hitting 0.Thus,b2=0.In view of the definition of the two functionsandwe find that(22)and(23)holds.

    Theorem 1Assume a solution to(22)and(23)as defined in Lemma 5 exists andV(x)is defined in(24).ThenV(x)is a concave solution to(10).

    ProofWe will prove the concavity ofV(x)in the three regions,respectively.In the dividend payout region,Vxx(x)= 0.In the capital injection region,h(x;x0,b0)is concave following from Lemma 2.In the continuation region,differentiatingf(x;b0)three times,it is shown thatonx∈[0,b0).Combining with the value of the second order derivative on the boundary thatwe havefxx(b0;b0)<0 for allx∈[0,b0).Hence,V(x)is concave in the continuation region[x0,b0).Thus,V(x)is concave.

    To proveV(x)satisfying(10),we have four steps.

    Step 1

    Step 2Forx∈ [b0,∞),Vx(x)=1 by construction.Forx∈[0,b0),Vx(x)>1 following from the concavity ofV(x).

    Step 3forx∈[x0,0)by construction.Forx∈[0,b0),we havefollowing from Lemma 5.Finally,forx∈ [b0,∞),we haveHence,V(x)≥M(x)globally.

    Step 4ForDenote τ?= τε∧efor somee>0 such thatandFollowing from Dynkin's formula,we have

    Thus,in the capital injection regionx∈[x0,0),we obtain

    Taking the limit yields

    whereForby construction.Forthen we have

    4.2 Limiting case

    In this section,we analyze the limiting case of immediate capital injections.That is,Δ=0.In the absence of any capital delays,the optimal dividend payout strategy is a barrier strategy,where the extra surplus will be paid out as dividend beyond some barrier level.To maximize the performance,the capital injection time will be postponed as much as possible because the capital injections can be effective immediately and always guarantee the continuity of the business even with the sufficient low surplus.Thus,the threshold of bankruptcy will be arbitrarily low if bankruptcy only occurs when payoff function hits zero.

    Since the capital injection region is reduced to one arbitrarily low point,we only have one barrier in this limiting case.This barrier will separate the continuation region and dividend payout region.The value function is concave and monotone increasing.Furthermore,starting as a curve,the value function increases linearly after some barrier level,which means that the extra surplus will all be paid out as the dividend reaching certain barrier.

    5 Conclusions

    In this paper,we studied the optimal dividend and capital injection strategies with constant time delays.The time delay in this work is crucial not only because of its reality in modeling the capital injection process but also it provides practical criteria to determine the bankruptcy threshold.Under general assumptions,a closed-form solution to the value function and the optimal strategies are obtained.

    The delayed capital injections are studied in this work.The time delays describe the regulatory process when extra capital is ordered to improve the company's financial status.Although the delay duration is generally uncertain and varies for different capital sources,the time delay is unlikely to vary in large range.We aim to find the closed-form solutions and ignore the impact of time-varying character of the delays in this paper.Treating time-varying delays is both theoretically interesting and practically useful.Considering a time-varying delay will make the model more realistic and versatile but more complicated,resulting in essential difficulty in finding the analytic solutions.The current paper focuses on obtaining closed-form solutions,whereas treating timevarying delay requires developing appropriate numerical algorithms,which is an important topic in the future study.

    In addition to delayed capital injections,to better reflect the reality,regime-switching models for the asset can be considered.The regime-switching models are known to able to capture the extreme price movement such as market changes,which can be described by a continuous-time Markov chain.Using the dynamic programming approach,the value function obeys a coupled system of quasi-variational inequalities.Thus,the model becomes more versatile but more complicated.Together with the time delays of the impulse control,it is virtually impossible to obtain a closed-form solution.Nevertheless,numerical approximation can provide a viable alternative.

    [1]B.De Finetti.Su un 'impostazione alternativa della teoria collettiva del rischio.Proceedings of Transactions of the 15th International Congress of Actuaries.New York:The Econometric Society,1957:433-443.

    [2]S.Asmussen,M.Taksar.Controlled diffusion models for optimal dividend pay-out.Insurance:Mathematics and Economics,1997,20(1):1-15.

    [3]G.Yin,Z.Jin,H.Yang.Asymptotically optimal dividend policy for regime-switching compound poisson models.Acta Mathematicae Applicatae Sinica(English Series),2010,26(4):529-542.

    [4]Z.Jin,G.Yin,C.Zhu.Numerical solutions of optimal risk control and dividend optimization policies under a generalized singular control formulation.Automatica,2012,48(8):1489-1501.

    [5]S.Thonhauser,H.Albrecher.Optimal dividend strategies for a compound Poisson process under transaction costs and power utility.Stochastic Models,2011,27(1):859-889.

    [6]D.C.M.Dickson,H.R.Waters.Some optimal dividends problems.ASTIN Bulletin,2004,34(1):49-74.

    [7]S.P.Sethi,M.Taksar.Optimal financing of a corporation subject to random returns.Mathematical Finance,2002,12(2):155-172.

    [8]N.Kulenko,H.Schimidli.Optimal dividend strategies in a Cramer-Lundberg model with capital injections.Insurance:Mathmatics and Economics,2008,43(2):270-278.

    [9]D.Yao,H.Yang,R.Wang.Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs.European Journal of Operational Research,2011,211(3):568-576.

    [10]H.Gerber,H.Yang.Absolute ruin probabilities in a jump diffusion risk model with investment.North American Actuarial Journal,2007,11(3):159-169.

    [11]H.Albrecher,H.Gerber,S.Shiu.The optimal dividend barrier in the Gamma-Omega model.European Actuarial Journal,2011,1(1):43-55.

    [12]H.Gerber,E.Shiu,H.Yang.The Omega model:from bankruptcy to occupation times in the red.European Actuarial Journal,2012,2(2):259-272.

    [13]S.Peura,J.Keppo.Optimal bank capital with costly recapitalization.Journal of Bussiness,2006,79(4):2163-2201.

    [14]E.Bayraktar,M.Egami.The effects of implementation delay on decision-making under uncertainty.Stochastic Processes and Their Applications,2007,117(3):333-358.

    [15]M.Egami,V.Young.Optimal reinsurance strategy under fixed cost and delay.Stochastic Process and their Applications,2009,119(3):1015-1034.

    [16]W.Fleming,H.Soner.Controlled Markov Processes and Viscosity Solutions.New York:Springer-Verlag,2004.

    [17]Z.Jin,H.Yang,G.Yin.Numerical methods for optimal dividend payment and investment strategies of regime-switching jump diffusion models with capital injections.Automatica,2013,49(8):2317-2329.

    22 April 2013;revised 26 February 2014;accepted 27 February 2014

    DOI10.1007/s11768-014-0061-x

    ?Corresponding author.

    E-mail:zjin@unimelb.edu.au.Tel.:+61 3 8344 4655;fax:+61 3 8344 6899.

    The research of Z.Jin was supported by the Faculty Research Grant of University of Melbourne,and the research of G.Yin was partially supported by the National Science Foundation(No.DMS-1207667).

    ?2014 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Zhuo JINreceived the B.S.degree in Mathematics from the Huazhong University of Science and Technology in 2005,and Ph.D.in Mathematics from Wayne State University in 2011.He joined the Centre for Actuarial Studies,Department of Economics,The University of Melbourne as a Lecturer in September2011.His research interests include numerical methods for stochastic systems,actuarial science and mathematical finance.Email:zjin@unimelb.edu.au.

    George YINjoined Wayne State University in 1987 and became a professor in 1996.Working on stochastic systems,he is Chair of SIAM Activity Group in Control and Systems Theory and is one of the Board of Directors of American Automatic Control Council.He was Co-Chair of SIAM Conference on Control&Its Application,2011,Co-Chair of 1996 AMS-SIAM Summer Seminar and 2003 AMS-IMS-SIAM Summer Research Conference,Coorganizer of 2005 IMA Workshop on Wireless Communications.He chaired the SIAM W.T.and Idalia Reid Prize Committee,the SIAG/Control and Systems Theory Prize Committee,and the SIAM SICON Best Paper Prize Committee.He is an associate editor of Control Theory and Technology,SIAM Journal on Control and Optimization,and on the editorial board of many other journals and book series.He was an associate editor of Automatica and IEEE T-AC.He was President of Wayne State University's Academy of Scholars.He is a Fellow of IEEE.Email:gyin@math.wayne.edu.

    一本久久精品| 一级黄色大片毛片| 午夜视频国产福利| 精品久久久噜噜| 成人午夜精彩视频在线观看| 成年版毛片免费区| 精品一区二区三区人妻视频| 国产三级中文精品| 国产精品av视频在线免费观看| 亚洲国产欧洲综合997久久,| 最近视频中文字幕2019在线8| 69av精品久久久久久| 亚洲国产色片| 免费看av在线观看网站| 女人被狂操c到高潮| 国产人妻一区二区三区在| 久久久色成人| 一边摸一边抽搐一进一小说| 99久久无色码亚洲精品果冻| 国语对白做爰xxxⅹ性视频网站| 欧美成人a在线观看| 男人的好看免费观看在线视频| 美女内射精品一级片tv| 两个人视频免费观看高清| 嫩草影院入口| videossex国产| 能在线免费看毛片的网站| 欧美色视频一区免费| 99热6这里只有精品| 午夜爱爱视频在线播放| 欧美另类亚洲清纯唯美| 久久久久性生活片| 三级国产精品片| 老司机福利观看| 一级毛片aaaaaa免费看小| 国产 一区 欧美 日韩| 直男gayav资源| 国产色婷婷99| 国产又色又爽无遮挡免| 久久久久久久久久成人| 国产伦一二天堂av在线观看| 亚洲经典国产精华液单| 国产精品综合久久久久久久免费| 亚洲精品久久久久久婷婷小说 | 亚洲最大成人中文| 亚洲色图av天堂| 九九在线视频观看精品| 国产精品一区二区性色av| 国产极品精品免费视频能看的| 欧美一区二区精品小视频在线| av在线蜜桃| 久久欧美精品欧美久久欧美| av在线观看视频网站免费| 精华霜和精华液先用哪个| 97人妻精品一区二区三区麻豆| 日韩精品有码人妻一区| 日韩欧美三级三区| eeuss影院久久| 国产精品av视频在线免费观看| 国产亚洲午夜精品一区二区久久 | 亚洲在久久综合| 欧美不卡视频在线免费观看| 国产极品精品免费视频能看的| 在线观看av片永久免费下载| 中文天堂在线官网| 免费观看a级毛片全部| 99热网站在线观看| 搡女人真爽免费视频火全软件| 国产成人精品婷婷| 国产精品日韩av在线免费观看| 激情 狠狠 欧美| 97热精品久久久久久| 乱系列少妇在线播放| 99久国产av精品| 又爽又黄a免费视频| 一级毛片aaaaaa免费看小| 内射极品少妇av片p| 亚洲三级黄色毛片| 久久久久久久久久成人| 国产三级中文精品| 天堂√8在线中文| 卡戴珊不雅视频在线播放| 亚洲四区av| 欧美3d第一页| 国产成人a区在线观看| 日韩国内少妇激情av| 我的老师免费观看完整版| 婷婷色麻豆天堂久久 | 水蜜桃什么品种好| 久久久国产成人精品二区| 中文字幕制服av| 青春草视频在线免费观看| 黄色日韩在线| 亚洲成人中文字幕在线播放| 亚洲av免费在线观看| 成年女人永久免费观看视频| 久久99热这里只频精品6学生 | 观看免费一级毛片| 伊人久久精品亚洲午夜| 日本黄大片高清| 日本色播在线视频| 长腿黑丝高跟| 色播亚洲综合网| 国产真实乱freesex| 国产精品久久久久久久久免| 国产成人精品一,二区| 亚洲欧美日韩东京热| 99视频精品全部免费 在线| 麻豆久久精品国产亚洲av| 亚洲伊人久久精品综合 | 99热全是精品| 蜜桃亚洲精品一区二区三区| 男女那种视频在线观看| 日韩,欧美,国产一区二区三区 | 国产真实乱freesex| 久热久热在线精品观看| 国产av一区在线观看免费| 国产精品电影一区二区三区| 欧美日本视频| 在线天堂最新版资源| 日韩中字成人| 五月玫瑰六月丁香| 一区二区三区四区激情视频| 国产亚洲一区二区精品| 国产大屁股一区二区在线视频| 日韩欧美在线乱码| 久久精品91蜜桃| 日韩欧美精品v在线| 99在线人妻在线中文字幕| 免费观看性生交大片5| 插阴视频在线观看视频| 欧美极品一区二区三区四区| 国产大屁股一区二区在线视频| 欧美变态另类bdsm刘玥| 国产毛片a区久久久久| 寂寞人妻少妇视频99o| 亚洲精品成人久久久久久| 69人妻影院| 嫩草影院入口| 非洲黑人性xxxx精品又粗又长| 天堂影院成人在线观看| 高清视频免费观看一区二区 | 国产精品一区二区三区四区免费观看| 国内精品美女久久久久久| 人人妻人人澡欧美一区二区| 亚洲成人中文字幕在线播放| 国产色婷婷99| 一级黄色大片毛片| 22中文网久久字幕| 成人三级黄色视频| 综合色丁香网| 特大巨黑吊av在线直播| 亚洲最大成人中文| 在线观看一区二区三区| 一级二级三级毛片免费看| 秋霞在线观看毛片| 97超碰精品成人国产| 国产精品综合久久久久久久免费| 3wmmmm亚洲av在线观看| 久久久久久国产a免费观看| 亚洲最大成人手机在线| 欧美另类亚洲清纯唯美| 天堂av国产一区二区熟女人妻| 观看免费一级毛片| 国产老妇女一区| 久久久久精品久久久久真实原创| 亚洲国产精品成人综合色| 一二三四中文在线观看免费高清| 久99久视频精品免费| 亚洲一区高清亚洲精品| 99热这里只有是精品50| 1000部很黄的大片| 97在线视频观看| a级毛色黄片| 国产免费男女视频| 久久精品国产自在天天线| 嫩草影院入口| 又黄又爽又刺激的免费视频.| 寂寞人妻少妇视频99o| 国产一区二区亚洲精品在线观看| 非洲黑人性xxxx精品又粗又长| 高清视频免费观看一区二区 | 亚洲av日韩在线播放| 天堂√8在线中文| 久久精品夜色国产| 欧美日韩国产亚洲二区| www日本黄色视频网| 国模一区二区三区四区视频| 男人和女人高潮做爰伦理| 韩国高清视频一区二区三区| 麻豆成人av视频| 亚洲国产精品sss在线观看| 毛片一级片免费看久久久久| 男女那种视频在线观看| 1000部很黄的大片| 国产av不卡久久| 国产老妇伦熟女老妇高清| 天堂网av新在线| 亚洲第一区二区三区不卡| 日韩欧美三级三区| 一本久久精品| 国产亚洲av片在线观看秒播厂 | 中文字幕av在线有码专区| 国内少妇人妻偷人精品xxx网站| 亚洲国产欧美人成| 国产黄色视频一区二区在线观看 | 久久久久久久午夜电影| 国产精品美女特级片免费视频播放器| 看片在线看免费视频| 久久热精品热| 亚洲最大成人av| 三级国产精品片| 精品少妇黑人巨大在线播放 | 又爽又黄无遮挡网站| 两性午夜刺激爽爽歪歪视频在线观看| 又粗又爽又猛毛片免费看| 精品久久久久久久久亚洲| 亚洲欧洲日产国产| av国产久精品久网站免费入址| 99久国产av精品| 亚洲性久久影院| 亚洲精品自拍成人| 一边亲一边摸免费视频| 午夜福利视频1000在线观看| 蜜桃亚洲精品一区二区三区| 国产成人午夜福利电影在线观看| 日本黄大片高清| 久久人人爽人人爽人人片va| 亚洲欧美日韩高清专用| 男女那种视频在线观看| 亚洲第一区二区三区不卡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品久久久久久久久久久久久| 免费av不卡在线播放| 菩萨蛮人人尽说江南好唐韦庄 | 欧美成人午夜免费资源| 黄色一级大片看看| 久久这里只有精品中国| 日韩av在线大香蕉| 天堂√8在线中文| 久久久久久久久久黄片| 久久久久九九精品影院| av黄色大香蕉| 麻豆久久精品国产亚洲av| 在线观看美女被高潮喷水网站| 成人鲁丝片一二三区免费| 小说图片视频综合网站| 国产一区亚洲一区在线观看| 毛片女人毛片| 美女被艹到高潮喷水动态| 国产午夜精品久久久久久一区二区三区| 色播亚洲综合网| 国产色婷婷99| 汤姆久久久久久久影院中文字幕 | 神马国产精品三级电影在线观看| 成人漫画全彩无遮挡| 国产精品伦人一区二区| 久久久久国产网址| 亚洲美女视频黄频| 春色校园在线视频观看| 青春草视频在线免费观看| 久久久亚洲精品成人影院| 国产精品日韩av在线免费观看| a级毛色黄片| 成人高潮视频无遮挡免费网站| 亚洲欧美成人综合另类久久久 | 天堂中文最新版在线下载 | 亚洲丝袜综合中文字幕| 亚洲真实伦在线观看| 女人十人毛片免费观看3o分钟| 国产乱人偷精品视频| 精品熟女少妇av免费看| 亚洲欧洲日产国产| 男人狂女人下面高潮的视频| 三级男女做爰猛烈吃奶摸视频| 亚洲熟妇中文字幕五十中出| 秋霞在线观看毛片| 女人久久www免费人成看片 | 美女高潮的动态| 国产伦理片在线播放av一区| 2022亚洲国产成人精品| 久久综合国产亚洲精品| 如何舔出高潮| 美女脱内裤让男人舔精品视频| 国产精品人妻久久久影院| 午夜精品在线福利| 可以在线观看毛片的网站| 神马国产精品三级电影在线观看| 在线观看美女被高潮喷水网站| 精品99又大又爽又粗少妇毛片| 国产高清不卡午夜福利| 国产成人福利小说| 国产视频内射| 亚洲国产精品合色在线| 免费电影在线观看免费观看| 亚洲成人久久爱视频| 国产伦一二天堂av在线观看| 热99在线观看视频| 国产片特级美女逼逼视频| 欧美激情国产日韩精品一区| 亚洲精品色激情综合| 久热久热在线精品观看| 亚洲中文字幕日韩| 亚洲欧洲日产国产| 久久人妻av系列| 久久亚洲精品不卡| 精品99又大又爽又粗少妇毛片| 自拍偷自拍亚洲精品老妇| 国产精品嫩草影院av在线观看| 精品酒店卫生间| 美女xxoo啪啪120秒动态图| 美女被艹到高潮喷水动态| 在线免费观看的www视频| 欧美高清性xxxxhd video| 精品人妻视频免费看| 国产三级在线视频| 好男人在线观看高清免费视频| 一个人看的www免费观看视频| 免费观看人在逋| 亚洲av中文字字幕乱码综合| 日本猛色少妇xxxxx猛交久久| av黄色大香蕉| 亚洲av.av天堂| 中文字幕亚洲精品专区| 看非洲黑人一级黄片| 成人鲁丝片一二三区免费| 国内少妇人妻偷人精品xxx网站| 国产亚洲精品久久久com| 欧美最新免费一区二区三区| 日韩av在线大香蕉| 国产伦精品一区二区三区四那| 亚洲欧美成人综合另类久久久 | 高清av免费在线| 日韩成人av中文字幕在线观看| 超碰97精品在线观看| 国产精品久久电影中文字幕| 日本熟妇午夜| www.色视频.com| 卡戴珊不雅视频在线播放| 免费看av在线观看网站| 国产毛片a区久久久久| 看非洲黑人一级黄片| 春色校园在线视频观看| 亚洲欧美成人精品一区二区| 国产精品一区二区性色av| 中文精品一卡2卡3卡4更新| 国产久久久一区二区三区| 插逼视频在线观看| 国产精品爽爽va在线观看网站| 嘟嘟电影网在线观看| 国产午夜福利久久久久久| 日韩强制内射视频| 亚洲天堂国产精品一区在线| 波野结衣二区三区在线| 婷婷六月久久综合丁香| 国产精品国产三级国产专区5o | 国产黄a三级三级三级人| 99久久人妻综合| 中文亚洲av片在线观看爽| 深爱激情五月婷婷| 夜夜爽夜夜爽视频| 亚洲欧洲国产日韩| 人妻少妇偷人精品九色| 国产精品.久久久| 国产成年人精品一区二区| 成人鲁丝片一二三区免费| 国产熟女欧美一区二区| av在线天堂中文字幕| 老师上课跳d突然被开到最大视频| 婷婷色麻豆天堂久久 | av天堂中文字幕网| 嫩草影院精品99| 午夜精品国产一区二区电影 | 国产黄色视频一区二区在线观看 | 一边摸一边抽搐一进一小说| 小蜜桃在线观看免费完整版高清| 日韩精品有码人妻一区| 国产精品久久久久久精品电影小说 | a级毛片免费高清观看在线播放| 久久精品国产亚洲av天美| 亚洲中文字幕一区二区三区有码在线看| 18禁在线播放成人免费| 国产精品永久免费网站| 日本与韩国留学比较| 亚洲欧美日韩高清专用| 人妻制服诱惑在线中文字幕| 精品久久国产蜜桃| 久久人妻av系列| 寂寞人妻少妇视频99o| 亚洲伊人久久精品综合 | 内地一区二区视频在线| 国产精品福利在线免费观看| 九九热线精品视视频播放| 国产片特级美女逼逼视频| 国产色婷婷99| 日本黄色视频三级网站网址| 99久久中文字幕三级久久日本| 18禁在线无遮挡免费观看视频| 午夜久久久久精精品| 免费无遮挡裸体视频| 免费看a级黄色片| 久久精品久久精品一区二区三区| 国产成人a区在线观看| 国产成人精品久久久久久| 国产一区二区亚洲精品在线观看| 午夜精品国产一区二区电影 | 午夜亚洲福利在线播放| 欧美一级a爱片免费观看看| 久久亚洲精品不卡| 色视频www国产| 两个人的视频大全免费| av视频在线观看入口| av在线老鸭窝| 1000部很黄的大片| 国产精品爽爽va在线观看网站| 国产69精品久久久久777片| 一级毛片我不卡| 爱豆传媒免费全集在线观看| 久久精品夜色国产| 少妇熟女aⅴ在线视频| 日韩大片免费观看网站 | 好男人在线观看高清免费视频| 成人一区二区视频在线观看| 91午夜精品亚洲一区二区三区| 青春草亚洲视频在线观看| 免费看av在线观看网站| 国产精品.久久久| 亚洲熟妇中文字幕五十中出| 日本黄色片子视频| 成人欧美大片| 欧美日本亚洲视频在线播放| av国产久精品久网站免费入址| 黄色欧美视频在线观看| 久久99精品国语久久久| 欧美成人一区二区免费高清观看| 中文在线观看免费www的网站| 22中文网久久字幕| 女人十人毛片免费观看3o分钟| 波野结衣二区三区在线| 国产精品一区二区三区四区久久| 91精品国产九色| 日本五十路高清| 亚洲国产色片| 日本黄大片高清| 亚洲欧美日韩高清专用| 亚洲国产高清在线一区二区三| 国产精品久久视频播放| 亚洲,欧美,日韩| 乱人视频在线观看| 一级毛片aaaaaa免费看小| 99久久精品热视频| 国产精品伦人一区二区| 男的添女的下面高潮视频| 一本久久精品| 网址你懂的国产日韩在线| 午夜亚洲福利在线播放| 午夜免费男女啪啪视频观看| 欧美精品国产亚洲| 久久精品国产鲁丝片午夜精品| 美女大奶头视频| 青春草国产在线视频| 日本免费一区二区三区高清不卡| 毛片女人毛片| 在线a可以看的网站| 一夜夜www| 欧美日韩国产亚洲二区| 九色成人免费人妻av| 男女那种视频在线观看| 久久久成人免费电影| 国产91av在线免费观看| 少妇人妻一区二区三区视频| 在线免费观看不下载黄p国产| 中文天堂在线官网| 成人av在线播放网站| 网址你懂的国产日韩在线| 久久韩国三级中文字幕| 国产精品一区二区性色av| 三级国产精品片| 久久久久精品久久久久真实原创| 精品久久久噜噜| 国产亚洲最大av| 人妻制服诱惑在线中文字幕| 久久国内精品自在自线图片| 国产乱人视频| 国产精品久久久久久久久免| 高清日韩中文字幕在线| 成人午夜精彩视频在线观看| 91久久精品国产一区二区三区| 内射极品少妇av片p| 亚洲婷婷狠狠爱综合网| 寂寞人妻少妇视频99o| 国产中年淑女户外野战色| 91av网一区二区| 日本三级黄在线观看| 国产男人的电影天堂91| 欧美高清成人免费视频www| 观看美女的网站| av福利片在线观看| 亚洲国产精品成人久久小说| 91aial.com中文字幕在线观看| 九九爱精品视频在线观看| 国产一区亚洲一区在线观看| 免费av观看视频| 亚洲aⅴ乱码一区二区在线播放| 夜夜看夜夜爽夜夜摸| 狂野欧美白嫩少妇大欣赏| 97人妻精品一区二区三区麻豆| 国产乱人偷精品视频| 麻豆国产97在线/欧美| 久久久久免费精品人妻一区二区| 性插视频无遮挡在线免费观看| 大话2 男鬼变身卡| 欧美3d第一页| 七月丁香在线播放| 国产又色又爽无遮挡免| 精品久久久久久久末码| 欧美一区二区精品小视频在线| 久久精品国产99精品国产亚洲性色| 国产成人免费观看mmmm| 亚洲人成网站在线观看播放| 毛片一级片免费看久久久久| 在线观看av片永久免费下载| 免费黄网站久久成人精品| 99在线人妻在线中文字幕| 不卡视频在线观看欧美| 男人和女人高潮做爰伦理| 黄片无遮挡物在线观看| 十八禁国产超污无遮挡网站| 18禁在线播放成人免费| 国产精品久久久久久久电影| 99热这里只有是精品在线观看| 热99在线观看视频| 欧美变态另类bdsm刘玥| av卡一久久| 中文字幕av成人在线电影| 国产91av在线免费观看| 成年女人永久免费观看视频| 三级经典国产精品| 久99久视频精品免费| 26uuu在线亚洲综合色| 天堂网av新在线| 国产黄色小视频在线观看| 亚洲第一区二区三区不卡| 久久久国产成人精品二区| 爱豆传媒免费全集在线观看| 欧美激情国产日韩精品一区| 99久国产av精品国产电影| 精品人妻视频免费看| 亚洲在线观看片| 免费观看性生交大片5| 麻豆久久精品国产亚洲av| 蜜桃亚洲精品一区二区三区| 欧美精品国产亚洲| 国产毛片a区久久久久| 亚洲欧美中文字幕日韩二区| 日本午夜av视频| 国产成人a区在线观看| 日本av手机在线免费观看| 亚洲电影在线观看av| 国内精品宾馆在线| 亚洲色图av天堂| 国产高潮美女av| 久久精品人妻少妇| 国产高清有码在线观看视频| 免费观看精品视频网站| 日本色播在线视频| 三级毛片av免费| 两个人的视频大全免费| 女人十人毛片免费观看3o分钟| 欧美日本视频| 国产一区二区在线观看日韩| 国产成人aa在线观看| 美女脱内裤让男人舔精品视频| 最近中文字幕高清免费大全6| 亚洲三级黄色毛片| 亚洲综合色惰| 国产精品伦人一区二区| 午夜日本视频在线| 1024手机看黄色片| 在线天堂最新版资源| 99久久无色码亚洲精品果冻| 国产精品国产高清国产av| 超碰av人人做人人爽久久| 亚洲无线观看免费| 中国国产av一级| 美女被艹到高潮喷水动态| 久久人人爽人人爽人人片va| 大又大粗又爽又黄少妇毛片口| 日韩大片免费观看网站 | 黄色欧美视频在线观看| 国产精品爽爽va在线观看网站| 尾随美女入室| 免费观看性生交大片5| 国产精品1区2区在线观看.| 99久久精品国产国产毛片| av在线蜜桃| 国产美女午夜福利| 日日啪夜夜撸| 免费看av在线观看网站| 九九久久精品国产亚洲av麻豆| 国产激情偷乱视频一区二区| 在线观看美女被高潮喷水网站| 免费av不卡在线播放| 99久久精品国产国产毛片| 欧美一区二区精品小视频在线| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品sss在线观看| 欧美丝袜亚洲另类| 国产午夜精品久久久久久一区二区三区| 久久精品国产亚洲网站| 91av网一区二区| 中文在线观看免费www的网站| 国产av不卡久久| 国产伦一二天堂av在线观看| 男女视频在线观看网站免费|