• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of synchronization in a supermarket refrigeration system

    2014-12-07 08:00:17RafaelWISNIEWSKIJohnLETHJakobRASMUSSEN
    Control Theory and Technology 2014年2期

    Rafael WISNIEWSKI,John LETH,Jakob G.RASMUSSEN

    1.Department of Electronic Systems,Aalborg University,Fredrik Bajers Vej 7C,9220 Aalborg,Denmark;

    2.Department of Mathematical Sciences,Aalborg University,Fredrik Bajers Vej 7G,9220 Aalborg,Denmark

    Analysis of synchronization in a supermarket refrigeration system

    Rafael WISNIEWSKI1?,John LETH1,Jakob G.RASMUSSEN2

    1.Department of Electronic Systems,Aalborg University,Fredrik Bajers Vej 7C,9220 Aalborg,Denmark;

    2.Department of Mathematical Sciences,Aalborg University,Fredrik Bajers Vej 7G,9220 Aalborg,Denmark

    In a supermarket refrigeration,the temperature in a display case,surprisingly,influences the temperature in other display cases.This leads to a synchronous operation of all display cases,in which the expansion valves in the display cases turn on and off at exactly the same time.This behavior increases both the energy consumption and the wear of components.Besides this practical importance,from the theoretical point of view,synchronization,likewise stability,Zeno phenomenon,and chaos,is an interesting dynamical phenomenon.The study of synchronization in the supermarket refrigeration systems is the subject matter of this work.For this purpose,we model it as a hybrid system,for which synchronization corresponds to a periodic trajectory.To examine whether it is stable,we transform the hybrid system to a single dynamical system defined on a torus.Consequently,we apply a Poincar'e map to determine whether this periodic trajectory is asymptotically stable.To illustrate,this procedure is applied for a refrigeration system with two display-cases.

    Synchronization;Hybrid systems;Stability;Limit cycles;Stochastic approximation

    1 Introduction

    The foodstuffs in supermarkets are typically stored in open display cases in the sales areas.By utilizing a refrigeration cycle,heat is transported from the display cases to the outdoor surroundings[1].The refrigeration cycle is coordinated by a number of dedicated controllers,which are distributed within the refrigeration hardware such as display cases,compressors,and cold storage rooms.This concept has many practical advantages;for instance,it is flexible and yet simple.However,it neglects the cross-coupling between the subsystems,and the interplay between continuous and discrete dynamics.These effects may cause the degradation of refrigeration quality.A case in point is the synchronization of display cases.Each display case is equipped with a hysteresis controller that opens and closes an expan-sion valve.It adjusts the flow of refrigerant such that the desired temperature is reached.Practical experience shows that the temperature in one display case influences the temperature in the neighboring ones.These interactions frequently lead to a synchronous operation of the display cases in which the expansion valves in the display cases turn on at the same time.As discussed in[1],this synchronization causes high wear of the compressors,inferior control performance,and increased energy consumption.

    A number of inspiring publications have addressed the problem of synchronization in supermarket systems.In particular,references[2,3]suggest a centralized controller based on hybrid model predictive control that by design avoids synchronization.Recently,a patent has been issued that proposes to adjust the cut-in and cut-out temperatures for the refrigeration entities to desychronize them[4].

    In this article,we leave the feedback design problem and focus entirely on the synchronization dynamics as a mathematically intricate phenomenon.We assume that the hysteresis control has been designed and ask whether synchronization takes place.Although,we do not consider any implementation issues at the current stage,we stress that the work is relevant for the reduction of energy consumption in supermarkets.Indeed,detecting a tendency to synchronize will eventually lessen the energy consumed.Our standpoint is that a deep insight into synchronization is important in general for understanding dynamical systems with discrete transitions.

    The phenomenon of synchronization in dynamical systems has been studied before;the definitions of synchronizations have been formulated in[5],and numerous examples of synchronization have been analyzed in[6].As for studying any phenomena in dynamical systems,the very first challenge is to establish a convenient definition of a state space and the notion of a trajectory.What immediately follows is the examination whether the existing methods from the theory of dynamical systems can be adapted for the analysis of synchronization.This approach has been taken in this work.In the study of synchronization,we model the supermarket refrigeration system as a hybrid system.The hybrid system in this work consists of several linear subsystems and a rule that orchestrates the discrete transitions among them[7].The state space is a disjoint union of polyhedral sets,and the discrete transitions are realized by reset maps defined on the facets of the polyhedral sets.The reset maps are regarded as generators of an equivalence relation allowing 'gluing' the polyhedral sets together.The result of this construction is a quotient space.This idea has been used before in[8-10].The original contribution of this work is to show that by the process of gluing,a hybrid system is transformed to a dynamical system that is defined on a single state space,a smooth manifold with boundary.Ifnis the number of display cases,then this manifold is the product of a 2n-torus and the non-negative reals.Consequently,the trajectories are continuous,piecewise smooth paths.A novelty of the current approach is that this construction allows the application of standard method from analysis of differential equations for the study of a refrigeration system.In particular,(asymptotic)synchronization corresponds to an asymptotically stable periodic trajectory.

    The stability analysis of periodic trajectories can be completed by applying a Poincar'e map.The Poincar'e map has previously been used for the stability analysis of switched systems[11-14]and control synthesis of these[15,16].It was assumed in these works that switchings took place on a family of hyperplanes that are disjoin subsets of the state space.Thereby,small perturbations of the state contribute to small changes in system behavior.Whereas in this work,we generalize the discrete transitions to take also place at intersection points of hyperplanes.This is an important generalization as at a corner point small perturbations yield conceptually different system behavior.As mentioned above,this phenomenon cannot be captured in the concepts presented in previous works.Allowing mode switching to take place on the boundaries of polyhedral sets complicates the Poincar'e map.In particular,we explicitly calculate the Poincar'e map for a refrigeration system consisting of two display cases and a compressor.

    2 Refrigeration system

    In majority of supermarket refrigeration systems,the display cases and the compressors,which maintain the flow of refrigerant,are connected in parallel.The compressors compress refrigerant drained from the suction manifold.Subsequently,the refrigerant passes through the condenser and flows into the liquid manifold.Each display case is equipped with an expansion valve,through which the refrigerant flows into the evaporator in the display case.In the evaporator,the refrig-erant absorbs heat from the foodstuffs.As a result,it changes its phase from liquid to gass.Finally,the vaporized refrigerant flows back into the suction manifold.The process described above is called a refrigeration cycle.

    2.1 Motivation for the study

    In a typical supermarket refrigeration system,the temperature in each display case is controlled by a hysteresis controller that opens the expansion valve when the air temperatureT(measured near to the foodstuffs)reaches a predefined upper temperature limitTu.The valve stays open untilTdecreases to the lower temperature limitTl.At this point,the controller closes the valve again.Practice reveals that if the display cases are similar,the hysteresis controllers have tendency to synchronize the display cases[1].It means that the air temperaturesTifori∈{1,...,N},whereNis the number of display cases,tend to match as time progresses.

    2.2 Model for synchronization

    For simplicity of this exposition,the model of a refrigeration system consists of two identical display cases and a compressor.

    The dynamics of the air temperatureTifor display casei∈{1,2}and the suction pressurePfor the system of two display cases are governed by the following system of equations,which is further discussed in the appendix,

    wherea,b,c,d,e,α and β are constants(their specific values are provided by equations(a3)in the appendix),and δi∈ {0,1}is the switching parameter for the display casei;it indicates whether the expansion valve is closed for δi=0 or open for δi=1.The switching law is given by the hysteresis control:

    whereandare respectively the predefined upper and lower temperature limits for the display casei.By convention,δi=0 for any initial conditionof(1a)with[.Such an initial condition is assumed throughout this paper;hence,(2)is well defined.

    We write equations(1)simply as

    where

    ,andwith2={0,1}.Hence,for δ∈22,we study a Cauchy problem of the form

    Proposition 1For anys∈ {l,u},the vector field ξδ,δ∈22,is transversal toand

    ProofWith 〈.,.〉the standard inner product in R3andNi=(2-i,i-1,0),i=1,2,we find that

    We note that the sign of(1b)determines whether the coordinate functionTiofxis increasing or decreasing.For two display cases,this information is provided in Fig.1.

    Fig.1 The state space of the refrigeration system consisting of two display cases is illustrated.Here,the pressure axis is suppressed,andThe direction of the vector field ξδis indicated by the dark shaded triangles.

    3 Supermarket systems as a hybrid system

    In order to represent(2)in a mathematically satisfactory way,we will use the modeling formalism of hybrid systems on polyhedral sets with state-dependent switching.It is seen as a subclass of hybrid systems of[7];and yet,it is rich enough to model any system with multiple hysteresis control.

    3.1 Hybrid systems

    We writeF?PifFis a face of the polyhedral setP.A mapf:P→P′is polyhedral if

    1)it is a continuous injection,and

    2)for anyF?Pthere isF′?P′with dim(F)=dim(F′)such thatf(F)?F′.

    Definition 1(Hybrid systems on polyhedral sets with state-dependent switching) For finite index setsJandD,a hybrid systems on polyhedral sets with state-dependent switching(of dimensionn)is a triple(P,S,R)=(PD,S,RJ),where

    1)P={Pδ? Rn|Pδa polyhedral set,dim(Pδ)=n,δ∈D}is a family of polyhedral sets.

    2)S={ξδ:Pδ→ Rn|Pδ∈P,δ∈D}is a family of smooth vector fields.

    3)R={Rj:F→F′|F?P∈P,F′?P′∈P,dim(F)=dim(F′)=n-1,j∈J}is a family of polyhedral maps,called reset maps.

    Next,we shall refer to hybrid systems with statedependent switching simply as hybrid systems.

    Remark 1After identifyingDwith a finite subset of R,we can rewrite the hybrid system(PD,S,RJ)as

    for(x,q)∈ˉC,and

    for(x,q)∈ˉD,where

    and

    This is precisely the hybrid system in[7].

    After this remark,we will show that a refrigeration system with two display cases furnished with a hysteresis control is a hybrid system.To begin with,we consider the following scenario.Letand δ=(0,0);thereby,both display cases are initially switched off.Suppose that at timet,the air temperatureTiof theith display case reaches the upper temperature limitTui,then theith display case is switched on,and δi=1.This scenario indicates that the refrigeration system comprises four dynamical systemsdefined on the polyhedral set

    A discrete transition between these four systems takes place whenever a trajectory reaches the boundary ofQ.The polyhedral setQhas five facets;four of them will be instrumental in the sequel,

    where α ∈2and δ0[a,b]={a},δ1[a,b]=.

    To sum up,the set P consists of four copies of a polyhedral setQin(5)

    Formally,in(6),we have separated(made disjoint)each of the copies ofQ.

    The set S consists of four dynamical systems given by(3)for δ∈22.To characterize the set R,we define

    where the results of the summation are computed modulo 2.Intuitively,the mapltakes a polyhedral set enumerated by δ to the future polyhedral set.The variableiindicates that the discrete transition takes place when the temperatureTireaches its upper or lower boundary.The set R consists of eight reset maps R={Ri(δ)|(i,δ) ∈ {1,2}X22},where the mapsare defined byObserve that the reset maps are identities in the first argument.By abuse of notation,we frequently identify(x,δ)withx.

    Remark 2For a supermarket refrigeration system withNdisplay cases,the definition of the facets on the polyhedral setis generalized tofori∈ {1,...,N}and α ∈2.The facet operators commute in the following sense

    As a consequence,the set R of the reset maps is

    For the maplgiven by

    the mapsRi(δ):are defined by

    The hybrid refrigeration system with two display cases is illustrated in Fig.2.Here,each element ofPhas been(orthogonally)projected onto the(T1,T2)-space.Hence,the polyhedral setsPδare represented by cubes.The three cubesP(0,1),P(1,0),P(1,1)have been vertically and/or horizontally reflected(compare with Fig.1).The stippled lines in the drawing indicate the reset maps in R.

    Fig.2 The T1T2-state space of the refrigeration system consists of two display cases.The reset maps are indicated by the stippled lines(see Fig.1 and its caption for further explanation).The pressure axis has been suppressed;thus,each Pδ =QX{δ}is illustrated by a square.By abuse of notation,the facets of Pδare denoted by(instead of

    3.2 Trajectories of a refrigeration system

    We bring in a concept of a(hybrid)time domain[7].Letk∈N∪{∞};a subset Tk?R+XZ+will be called a time domain if there exists an increasing sequencein R+∪ {∞}such that

    where,and

    Note thatTi=[ti-1,ti]for alliifk=∞.We say that the time domain is infinite ifk=∞ortk=∞.The sequencecorresponding to a time domain will be called a switching sequence.

    Definition 2(Trajectory) A trajectory of the hybrid system(PD,S,RJ)is a pair(Tk,γ)wherek∈ N∪{∞}is fixed,and

    ?Tk? R+XZ+is a time domain with corresponding switching sequence{ti}i∈{0,...,k},

    1)For eachi∈ {1,...,k-1},there exist δ ≠ δ′∈Dsuch that γ(ti;i) ∈ bd(Pδ),and γ(ti;i+1) ∈ bd(Pδ′),where bd(P)is the boundary ofP.

    3)For eachi∈{1,...,k-1},there existsj∈Jsuch that

    A trajectory atxis a trajectory(Tk,γ)with γ(t0;1)=x.

    The next definition formalizes the notion of a periodic trajectory,which will be used in defining synchronization of the refrigeration system.

    Definition 3((T,l)-periodic trajectory) Let(T,l)∈R+XZ+.A trajectory(Tk,γ)is(T,l)-periodic(or just periodic)if 1)Tkis an infinite time domain,and 2)for anyi∈{1,...,k}andt∈p(Tk),wherep:Tk→ [t0,∞[is the projectionp(t,i)=t,we have γ(t+T;i+l)= γ(t;i).

    In particular,if(Tk,γ)is a(T,l)-periodic trajectory,andTis nonzero thenp:Tk→ [t0,∞[is surjective.

    3.3 State space of the refrigeration system

    To study any dynamical system,the starting point is a convenient definition of the state space.It was suggested in[9,10]to glue the state spaces of respective subsystems of a hybrid system together along the subsets identified by the reset maps.

    Let R-1={R-1|R∈R}.Then,the equivalence class ofx∈Xis denoted by

    In particular,for a refrigeration system with two display cases,letx=(T1,T2,P)∈X.Ifxis in the interior ofPδfor some δ ∈22,the equivalence class[x]={(T1,T2,P;δ)}.Ifxis in the interior ofthen[x]={(T1,T2,P;0,0),(T1,T2,P;1,0)},and if{(0,0)},we have[x]={(T1,T2,P;0,0),(T1,T2,P;1,0),(T1,T2,P;0,1),(T1,T2,P;1,1)}.Furthermore,X?is the product of a 2-torus with the non-negative reals,X?=T2XR+,i.e.,a smooth manifold with boundary.We note that the system consisting ofNdisplay cases will give rise toX?=TNXR+.In[18],we have explicitly constructed a differentiable structure on the state spaceX?of a system withNhystereses,thereby of a refrigeration system withNdisplay cases.Whereas,in[19],we have studied local stability of such a system.

    4 Periodic trajectory and stability

    We direct our attention to the subject matter-the synchronization of refrigeration systems.A refrigeration system is said to exhibit asymptotic synchronization if there exists a(T,l)-periodic trajectory which is asymptotically stable inX?[20,Definition 13.3].We remark that asymptotic synchronization is described in a more general setting in[5],and that the above definition is local as only trajectories sufficiently close to the periodic trajectory are considered.Using the Poincar'e map[20,Theorem 13.1],we prove the following theorem.

    Theorem 1The refrigeration system with two display cases exhibits asymptotic synchronization.

    Theorem 1 is a direct consequence of Lemmas1and 2 below.

    Lemma 1There exist initial temperatures on the diagonal,and initial pressure which give rise to a(Tp,2)-periodic trajectory.

    ProofFori∈N,the analytic expression for a trajectory

    atof the system(3)is

    forj=1,2,where

    with all constants given in the appendix.We observe from equation(8)that the projection of a trajectory on theT1T2-plane is(Tp,2)-periodic if its initial conditionx0is of the formwithand initial δ is(0,0).As a consequence,the trajectory is on the diagonalT1=T2of the polyhedral setsP(0,0)andP(1,1).Using the aboveT1T2-plan analysis as a guideline,we find an initial conditionof a(Tp,2)-periodic trajectory in the state spaceX.Indeed,by choosing,the initial pressureˉP0is determined by solving,forandt2,the system of equations

    With the notation as in the proof above,letand(T∞,γˉx0)denote the(Tp,2)-periodic trajectory atˉx0;thus,

    Lemma 2The(Tp,2)-periodic trajectory atis asymptotically stable inX?.

    ProofWe remark that stability of a periodic trajectory can be determined by a Poincar'e map.Indeed,asymptotic stability of a periodic trajectory(inX?)is equivalent to asymptotic stability of the fixed point of a corresponding Poincar'e map[20,Theorem 13.1].

    Next,we describe the Poincar'e map.For this purpose,the evolution of a trajectory starting at a point nearby the(Tp,2)-periodic trajectory γˉx0is outlined.

    Letx0denote any of the two pointsfor some ?>?′>0.Thus,whereis the max-norm.We show that for sufficiently small ?,wherex1∈P(0,0)is the point at which the trajectory γx0atx0meets the hyperplaneT1=0(inP(0,0))for the first time.From this,we will conclude that this Poincar'e map is a contraction.

    Forx=(x′;δ)andy=(y′;δ′),both inX,we writex?y(resp.x?y)wheneverFurthermore,letBelow,we describe one period of the trajectory γx0in the following four steps.

    1)From the choice of initial conditionx0,and from(8),it follows thafor someandforNote thatfor

    3)Since γx0(t1;3)∈P(1,1),we conclude that there exists asuch thatandforNote thatfo

    Having described one period of the trajectory γx0,we are now ready to prove thatSince δ=(1,1)andwe conclude by(8)thatFrom symmetry of the systems(3)for δ =(0,1)and δ =(1,0),itfollowsthatMoreover,since γx0(.;1)and γˉx0(.;1)are solutions to the stable affine linear system(3),with δ=(0,0),starting(t=t0)at a distancewe conclude thatTogether with item 1)and 2),this implies thathence,Therefore,we only need to show thatwhich follows by straightforward computations involving the explicit expression(7)ofP.The case withis conceptually the same as above and is,therefore,left to the reader.

    As shown in Section 3.3,the dynamics of the refrigeration system carries over to the manifoldX?;thus,the above procedure defines a standard Poincar'e map.Using the fact that the periodic trajectory can be covered by charts,the results in[20]applies.The Poincar'e map takes a pointx0with|x0-ˉx0|m=? to the pointx1with|x1-ˉx0|m

    We numerically investigated a subset B of the basin of attraction of the stable limit cycle corresponding to synchronization that contains the pointˉx0.We determined that

    5 Conclusions

    In this paper,we have studied the synchronization phenomenon in supermarket refrigeration systems.We have associated synchronization with a periodic trajectory in a hybrid system.To determine whether asymptotic synchronization occurs,i.e.,the periodic trajectory is asymptotically stable,we have used a Poincar'e map.This approach has been carried out for a refrigeration system with two display cases.

    [1]L.F.S.Larsen,C.Thybo,R.Wisniewski,et al.Synchronization and desynchronizing control schemes for supermarket refrigeration systems.The 16th IEEE International Conference on Control Applications.Part of IEEE Multi-conference on Systems and Control.Piscataway:IEEE,2007:1414-1419.

    [2]C.Sonntag,A.Devanathan,S.Engell.Hybrid nmpc of a supermarket refrigeration system using sequential optimization.Proceedings of the 17th IFAC World Congress.Seoul:Elsevier,2008.

    [3]D.Sarabia,F.Capraro,L.F.S.Larsen,et al.Hybrid NMPC of supermarket display cases.Control Engineering Practice,2009,17(4):428-441.

    [4]C.Thybo,L.F.S.Larsen.Method of Analysing a Refrigeration System and a Method of Controlling a Refrigeration System.US patent Application,2011:US7992396 B2.

    [5]I.Blekhman,A.Fradkov,H.Nijmeijer,et al.On selfsynchronization and controlled synchronization.Systems&Control Letters,1997,31(5):299-305.

    [6]A.Pikovsky,Y.Maistrenko,eds.Synchronization:Theory and Application.NATO Science Series II:Mathematics,Physics and Chemistry.Dordrecht:Kluwer Academic Publishers,2003.

    [7]R.Goebel,R.G.Sanfelice,A.R.Teel.Hybrid dynamical systems.IEEE Control Systems Magazine,2009,29(2):28-93.

    [8]A.Ames,S.Sastry.A homology theory for hybrid systems:Hybrid homology.Proceedings of the 8th International Workshopon Hybrid Systems:Computation and Control.Berlin:Springer-Verlag,2005:86-102.

    [9]S.Simis,K.Johansson,S.Sastry,et al.Towards a geometric theory of hybrid systems.Proceedings of the 3rd International Workshop on Hybrid Systems:Computation and Control.Berlin:Springer-Verlag,2000:421-436.

    [10]R.Wisniewski.Towards modelling of hybrid systems.Proceedings of the 45th IEEE Conference on Decision and Control.Piscataway:IEEE,2006:911-916.

    [11]T.Kousaka,T.Ueta,H.Kawakami.Bifurcation of switched nonlinear dynamical systems.IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing.New York:IEEE,1999:878-885.

    [12]I.Hiskens,P.Reddy.Switching-induced stable limit cycles.Nonlinear Dynamics,2007,50(3):575-585.

    [13]J.M.Goncalves,A.Megretski,M.Dahleh.Global stability of relay feedback systems.IEEE Transactions on Automatic Control,2001,46(4):550-562.

    [14]J.M.Goncalves,A.Megretski,M.A.Dahleh.Global analysis of piecewise linear systems using impact maps and surface Lyapunov functions.IEEE Transactions on Automatic Control,2003,48(12):2089-2106.

    [15]A.Schild,J.Lunze.Stabilization of limit cycles of discretely controlled continuous systems by controlling switching surfaces.Hybrid Systems:Computation and Control.Berlin:Springer-Verlag,2007:515-528.

    [16]A.Schild,J.Lunze.Switcheing surface design for periodically operated discretely controlled continuous systems.Hybrid Systems:Computation and Control.Berlin:Springer-Verlag,2008:471-485.

    [17]G.E.Bredon.Topology and Geometry.Graduate Texts in Mathematics.New York:Springer-Verlag,1997.

    [18]R.Wisniewski,J.Leth.Convenient model for systems with hystereses-control.The 50th IEEE Conference on Decision and Control and European Control Conference.New York:IEEE,2011:6140-6145.

    [19]J.Leth,R.Wisniewski.On formalism and stability of switched systems.Journal of Control Theory and Application,2012,10(2):176-183.

    [20]W.M.Haddad,V.Chellaboina,S.G.Nersesov.Impulsive and Hybrid Dynamical Systems.Princeton Series in Applied Mathematics.Princeton:Princeton University Press,2006.

    [21]R.Wisniewski,L.F.S.Larsen.Method for analysis of synchronization applied to supermarket refrigeration system.Proceedings of the 17th IFAC World Congress.Seoul:IFAC,2008.

    23 May 2013;revised 29 November 2013;accepted 29 November 2013

    DOI10.1007/s11768-014-0077-2

    ?Corresponding author.

    E-mail:raf@es.aau.dk.Tel.:+45 9940 8762.

    This work was supported by the Danish Council for Technology and Innovation.

    ?2014 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Appendix

    Model of refrigeration systemThe mathematical model presented here is a summary of the model developed in[21].For theith display case,dynamics of the air temperatureTair,ican be formulated as

    where the process parameters are specified in Table a1,and δi∈ {0,1}is the switch parameter for theith display case.When δi=0,theith expansion valve is switched off,whereas when δi=1 it is switched on.The suction manifold dynamics is governed by the differential equation

    whereNis the number of display cases,andfor

    We denoteTi=Tair,iandP=Psucand write the dynamics of the air temperature and suction pressure in the concise form(with the process constants in(a1a)collected ina,b,c,d,e,α,β and then replaced by their numerical values)

    Table a1 Parameters for a simplified supermarket refrigeration system.

    Rafael WISNIEWSKIis a professor in the Section of Automation&Control,Department of Electronic Systems,Aalborg University.He receives his Ph.D.in Electrical Engineering in 1997,and Ph.D.in Mathematics in 2005.In 2007-2008,he was a control specialist at Danfoss A/S.His research interestis in system theory,particularly in hybrid systems.E-mail:raf@es.aau.dk.

    John LETHreceived his M.S(2003)and Ph.D.(2007)degrees from the Department of Mathematical Sciences,Aalborg University,Denmark.Currently,he is employed as Assistant Professor at the Department of Electronic Systems,Aalborg University.His research interests include mathematical control theory and(stochastic)hybrid systems.E-mail:jjl@es.aau.dk.

    Jakob Gulddahl RASMUSSENis an associate professor at the Department of Mathematical Sciences,Aalborg University,Denmark.He received his Ph.D.in Statistics in 2006 also at the Department of Mathematical Sciences.His research interests include spatial statistics and stochastic processes(including stochastic hybrid systems).E-mail:jgr@math.aau.dk.

    av天堂在线播放| 午夜日韩欧美国产| av在线老鸭窝| 男人狂女人下面高潮的视频| 亚洲不卡免费看| 亚洲av电影不卡..在线观看| 午夜精品久久久久久毛片777| 美女高潮喷水抽搐中文字幕| 麻豆av噜噜一区二区三区| 亚洲最大成人av| 变态另类丝袜制服| www.色视频.com| 国产高清激情床上av| 亚洲成人精品中文字幕电影| 色在线成人网| 99热只有精品国产| 一区二区三区四区激情视频 | 在线a可以看的网站| 免费av观看视频| 熟女电影av网| 亚洲自偷自拍三级| 日日干狠狠操夜夜爽| 97超级碰碰碰精品色视频在线观看| 国产综合懂色| 亚洲专区国产一区二区| 亚洲真实伦在线观看| 免费高清视频大片| 日本一二三区视频观看| 尤物成人国产欧美一区二区三区| 亚洲中文字幕日韩| 美女高潮喷水抽搐中文字幕| 高清毛片免费观看视频网站| 日日夜夜操网爽| 亚洲最大成人中文| 精品一区二区三区av网在线观看| 国产成人啪精品午夜网站| 国产免费男女视频| 91字幕亚洲| 免费电影在线观看免费观看| 欧美成人一区二区免费高清观看| 久久久久久久亚洲中文字幕 | 亚洲精华国产精华精| 欧美色欧美亚洲另类二区| 日韩大尺度精品在线看网址| 在线天堂最新版资源| 国内揄拍国产精品人妻在线| 久久6这里有精品| 如何舔出高潮| 少妇熟女aⅴ在线视频| 久久精品人妻少妇| 午夜亚洲福利在线播放| 欧美中文日本在线观看视频| 757午夜福利合集在线观看| 亚洲av成人不卡在线观看播放网| 波多野结衣高清作品| 国产亚洲av嫩草精品影院| 亚洲久久久久久中文字幕| 亚洲色图av天堂| 久久国产乱子伦精品免费另类| 18禁在线播放成人免费| 别揉我奶头~嗯~啊~动态视频| 欧美国产日韩亚洲一区| 757午夜福利合集在线观看| 日本五十路高清| 18禁在线播放成人免费| 日本撒尿小便嘘嘘汇集6| 一本精品99久久精品77| 一进一出抽搐gif免费好疼| 免费av毛片视频| 一边摸一边抽搐一进一小说| 国产在视频线在精品| 少妇熟女aⅴ在线视频| 少妇丰满av| 美女xxoo啪啪120秒动态图 | 国产主播在线观看一区二区| 两个人视频免费观看高清| 又爽又黄无遮挡网站| 赤兔流量卡办理| 国产一区二区三区视频了| www.999成人在线观看| 国产精品久久视频播放| 日韩欧美在线二视频| 变态另类成人亚洲欧美熟女| 九九久久精品国产亚洲av麻豆| 久久午夜福利片| 欧美成人免费av一区二区三区| 亚洲欧美日韩高清在线视频| 午夜福利18| 午夜福利免费观看在线| 少妇人妻精品综合一区二区 | 91久久精品电影网| ponron亚洲| 91久久精品电影网| 少妇人妻一区二区三区视频| 麻豆av噜噜一区二区三区| 精品久久久久久久末码| 日本 欧美在线| 能在线免费观看的黄片| 亚洲男人的天堂狠狠| 天堂影院成人在线观看| 久久久久国产精品人妻aⅴ院| 99视频精品全部免费 在线| 中文字幕av成人在线电影| 一a级毛片在线观看| a级毛片a级免费在线| 日韩av在线大香蕉| 精品一区二区三区视频在线| 欧美日韩福利视频一区二区| av黄色大香蕉| 赤兔流量卡办理| 欧美+日韩+精品| 99久久九九国产精品国产免费| 网址你懂的国产日韩在线| 久久精品91蜜桃| 3wmmmm亚洲av在线观看| 亚洲av电影在线进入| 国产成人av教育| 成人亚洲精品av一区二区| 国内精品久久久久精免费| 国产精品亚洲一级av第二区| 欧美+亚洲+日韩+国产| 日韩免费av在线播放| 国产精品av视频在线免费观看| 有码 亚洲区| 国产精华一区二区三区| 亚洲成a人片在线一区二区| 精品久久久久久久久久免费视频| 国产毛片a区久久久久| 久久久久久九九精品二区国产| 美女大奶头视频| 淫秽高清视频在线观看| 午夜精品久久久久久毛片777| 可以在线观看的亚洲视频| x7x7x7水蜜桃| 一级作爱视频免费观看| 国产三级中文精品| 免费看a级黄色片| 亚洲精品粉嫩美女一区| 在线观看午夜福利视频| 亚洲精品乱码久久久v下载方式| 九色国产91popny在线| 免费看光身美女| 少妇高潮的动态图| 午夜免费成人在线视频| 欧美黄色片欧美黄色片| 最近视频中文字幕2019在线8| 午夜老司机福利剧场| 99热6这里只有精品| 亚洲人成网站在线播| 夜夜躁狠狠躁天天躁| 天天一区二区日本电影三级| 成人av一区二区三区在线看| 久久精品人妻少妇| 最新中文字幕久久久久| 国产不卡一卡二| 国产私拍福利视频在线观看| 美女xxoo啪啪120秒动态图 | 久久国产精品人妻蜜桃| 欧美日本视频| 老熟妇乱子伦视频在线观看| 亚洲精品亚洲一区二区| 国产高清激情床上av| or卡值多少钱| 禁无遮挡网站| 成年女人毛片免费观看观看9| 尤物成人国产欧美一区二区三区| 免费看光身美女| 欧美在线黄色| 中亚洲国语对白在线视频| 成熟少妇高潮喷水视频| 午夜日韩欧美国产| 日韩免费av在线播放| 韩国av一区二区三区四区| 午夜久久久久精精品| 国产精品一区二区免费欧美| 高潮久久久久久久久久久不卡| 国产黄片美女视频| 成人毛片a级毛片在线播放| 国产男靠女视频免费网站| 少妇丰满av| 日韩欧美一区二区三区在线观看| 自拍偷自拍亚洲精品老妇| 亚洲av.av天堂| 一区二区三区免费毛片| 首页视频小说图片口味搜索| 欧美成人免费av一区二区三区| 99热这里只有是精品50| 亚洲国产精品久久男人天堂| 色综合婷婷激情| 757午夜福利合集在线观看| 一级a爱片免费观看的视频| www日本黄色视频网| 国产一区二区在线观看日韩| 国产精品久久久久久人妻精品电影| 日本一二三区视频观看| 丰满人妻熟妇乱又伦精品不卡| 别揉我奶头~嗯~啊~动态视频| 久久久国产成人精品二区| 国产精品不卡视频一区二区 | 久久久久久大精品| 日本三级黄在线观看| 天堂av国产一区二区熟女人妻| 亚洲专区国产一区二区| 久久精品91蜜桃| 色噜噜av男人的天堂激情| 国产精品免费一区二区三区在线| 在线观看美女被高潮喷水网站 | 乱人视频在线观看| 亚洲精品粉嫩美女一区| 国内毛片毛片毛片毛片毛片| 国产美女午夜福利| 蜜桃久久精品国产亚洲av| 国产精品国产高清国产av| 我的老师免费观看完整版| 国产精品1区2区在线观看.| 丁香欧美五月| 精品久久国产蜜桃| 免费人成视频x8x8入口观看| 美女高潮的动态| 真实男女啪啪啪动态图| 少妇熟女aⅴ在线视频| 五月伊人婷婷丁香| 十八禁人妻一区二区| 色综合欧美亚洲国产小说| 91久久精品电影网| 超碰av人人做人人爽久久| 又黄又爽又刺激的免费视频.| .国产精品久久| 亚洲av美国av| 久久久国产成人免费| 激情在线观看视频在线高清| 色综合亚洲欧美另类图片| 亚洲欧美清纯卡通| 色综合婷婷激情| 最好的美女福利视频网| 亚洲精品影视一区二区三区av| 国产精品野战在线观看| 18禁黄网站禁片免费观看直播| 亚洲国产色片| 国产亚洲精品av在线| 深夜a级毛片| 日本a在线网址| 91麻豆av在线| 人人妻人人看人人澡| 久久香蕉精品热| 国产精品久久久久久精品电影| 成年女人永久免费观看视频| 麻豆av噜噜一区二区三区| 欧美国产日韩亚洲一区| 亚洲中文日韩欧美视频| 91麻豆精品激情在线观看国产| 男插女下体视频免费在线播放| 精品久久久久久久久久免费视频| 此物有八面人人有两片| 亚洲av一区综合| 精品无人区乱码1区二区| 免费av观看视频| 婷婷精品国产亚洲av在线| 一区二区三区免费毛片| av专区在线播放| 久久热精品热| 国产主播在线观看一区二区| 亚洲欧美清纯卡通| 小蜜桃在线观看免费完整版高清| 最新中文字幕久久久久| 99久国产av精品| 精品福利观看| 五月玫瑰六月丁香| 两人在一起打扑克的视频| 国产aⅴ精品一区二区三区波| 小说图片视频综合网站| 五月玫瑰六月丁香| 欧美色欧美亚洲另类二区| 欧美激情国产日韩精品一区| 日本 av在线| a在线观看视频网站| 国产亚洲欧美98| 可以在线观看毛片的网站| 香蕉av资源在线| 简卡轻食公司| 国产伦在线观看视频一区| 国产视频一区二区在线看| 国产精品一及| 亚洲片人在线观看| 久久午夜亚洲精品久久| 精品99又大又爽又粗少妇毛片 | 亚洲午夜理论影院| 国产一区二区三区视频了| 中亚洲国语对白在线视频| 人妻丰满熟妇av一区二区三区| 中文字幕av成人在线电影| av在线天堂中文字幕| 精品日产1卡2卡| 在线观看66精品国产| 村上凉子中文字幕在线| 免费观看人在逋| 国产精品久久电影中文字幕| 欧美日韩黄片免| 国产三级黄色录像| 成人亚洲精品av一区二区| 亚洲经典国产精华液单 | 99久久成人亚洲精品观看| 在线a可以看的网站| 亚洲国产欧洲综合997久久,| 很黄的视频免费| 国产毛片a区久久久久| 久久亚洲精品不卡| 欧美成人a在线观看| 国产精品乱码一区二三区的特点| 久久99热这里只有精品18| 1024手机看黄色片| 伊人久久精品亚洲午夜| 午夜福利18| 在线免费观看不下载黄p国产 | 国产精品一区二区三区四区免费观看 | 日韩 亚洲 欧美在线| 国产成+人综合+亚洲专区| 男女下面进入的视频免费午夜| 日本一二三区视频观看| 9191精品国产免费久久| 久久久成人免费电影| 男人和女人高潮做爰伦理| 亚洲人成网站在线播放欧美日韩| 精品乱码久久久久久99久播| a级毛片a级免费在线| 99热这里只有精品一区| 日韩免费av在线播放| 欧美黑人巨大hd| 午夜日韩欧美国产| 丰满的人妻完整版| 欧洲精品卡2卡3卡4卡5卡区| 国产极品精品免费视频能看的| 少妇的逼好多水| 97超级碰碰碰精品色视频在线观看| 大型黄色视频在线免费观看| 亚洲精华国产精华精| 国产激情偷乱视频一区二区| 久久精品国产亚洲av香蕉五月| 亚洲欧美清纯卡通| 一级av片app| 日本熟妇午夜| 长腿黑丝高跟| 免费av毛片视频| 免费搜索国产男女视频| 欧美一级a爱片免费观看看| 精品人妻偷拍中文字幕| 日本 欧美在线| 搞女人的毛片| 国产私拍福利视频在线观看| 精品无人区乱码1区二区| 变态另类成人亚洲欧美熟女| 老鸭窝网址在线观看| 小蜜桃在线观看免费完整版高清| 国产精品久久久久久精品电影| 别揉我奶头~嗯~啊~动态视频| 日韩欧美在线二视频| 精品人妻视频免费看| 99在线视频只有这里精品首页| 亚洲国产日韩欧美精品在线观看| 亚洲综合色惰| 蜜桃亚洲精品一区二区三区| 日韩中文字幕欧美一区二区| 九九热线精品视视频播放| x7x7x7水蜜桃| 亚洲国产高清在线一区二区三| 中文字幕熟女人妻在线| 亚洲av不卡在线观看| 日本黄大片高清| 欧美日韩乱码在线| 精品国内亚洲2022精品成人| 亚洲欧美日韩无卡精品| 蜜桃亚洲精品一区二区三区| 成人欧美大片| 国产精品亚洲一级av第二区| 日本a在线网址| 国内精品久久久久精免费| 精品久久久久久久久亚洲 | 九九热线精品视视频播放| 人妻久久中文字幕网| 一进一出抽搐gif免费好疼| 男女视频在线观看网站免费| 九九在线视频观看精品| 偷拍熟女少妇极品色| 国产在线精品亚洲第一网站| 少妇人妻一区二区三区视频| 18禁黄网站禁片午夜丰满| 国产亚洲精品av在线| 欧美一区二区亚洲| 亚洲人成网站高清观看| 亚洲国产精品sss在线观看| 日韩亚洲欧美综合| 少妇熟女aⅴ在线视频| 亚洲激情在线av| 午夜激情欧美在线| av福利片在线观看| 免费看美女性在线毛片视频| 啦啦啦韩国在线观看视频| 美女大奶头视频| 99久久无色码亚洲精品果冻| 网址你懂的国产日韩在线| 亚洲狠狠婷婷综合久久图片| 99热这里只有是精品50| 亚洲精品成人久久久久久| 精品99又大又爽又粗少妇毛片 | 亚洲成人精品中文字幕电影| 99在线视频只有这里精品首页| 亚洲最大成人中文| 嫩草影院精品99| 国产亚洲欧美98| 精品福利观看| 99国产综合亚洲精品| 中文字幕久久专区| 日本 av在线| 亚洲成a人片在线一区二区| 亚洲中文字幕一区二区三区有码在线看| 免费观看人在逋| 丁香六月欧美| 亚洲美女视频黄频| 99热6这里只有精品| 一区二区三区激情视频| а√天堂www在线а√下载| 人妻丰满熟妇av一区二区三区| 男人舔女人下体高潮全视频| 欧美3d第一页| avwww免费| 免费在线观看成人毛片| 人妻夜夜爽99麻豆av| 国产精品久久久久久人妻精品电影| 亚洲男人的天堂狠狠| 国产精品一及| 色尼玛亚洲综合影院| 久久人人精品亚洲av| 午夜老司机福利剧场| 三级国产精品欧美在线观看| 欧美黑人巨大hd| 色5月婷婷丁香| 亚洲av成人av| 欧美日韩亚洲国产一区二区在线观看| 男人舔奶头视频| 日韩高清综合在线| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲黑人精品在线| 99国产精品一区二区三区| 波多野结衣高清作品| 久久精品国产亚洲av天美| 亚洲国产精品999在线| 国产精品嫩草影院av在线观看 | 日韩国内少妇激情av| 午夜福利18| 精品免费久久久久久久清纯| 成熟少妇高潮喷水视频| .国产精品久久| 国产免费av片在线观看野外av| 一本一本综合久久| 欧美绝顶高潮抽搐喷水| 五月伊人婷婷丁香| 我要搜黄色片| 最近在线观看免费完整版| 免费在线观看亚洲国产| 国产免费男女视频| 精品久久久久久,| 亚洲av熟女| 国产aⅴ精品一区二区三区波| 精品人妻偷拍中文字幕| 午夜福利免费观看在线| 男插女下体视频免费在线播放| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 成人性生交大片免费视频hd| 精品一区二区三区av网在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲熟妇中文字幕五十中出| 免费看美女性在线毛片视频| 国产精品久久久久久久久免 | 尤物成人国产欧美一区二区三区| 观看免费一级毛片| 身体一侧抽搐| 亚洲av电影在线进入| 校园春色视频在线观看| 女同久久另类99精品国产91| 亚洲18禁久久av| 熟女人妻精品中文字幕| 亚洲欧美日韩高清在线视频| 日韩人妻高清精品专区| 性色avwww在线观看| 亚洲最大成人中文| 超碰av人人做人人爽久久| 成人精品一区二区免费| 变态另类丝袜制服| 一本精品99久久精品77| 99久久久亚洲精品蜜臀av| a在线观看视频网站| 又黄又爽又免费观看的视频| 欧美成人性av电影在线观看| 精品国产亚洲在线| 亚洲精品久久国产高清桃花| 黄色一级大片看看| 日日干狠狠操夜夜爽| 久久国产精品人妻蜜桃| 日韩中字成人| 真实男女啪啪啪动态图| 丰满的人妻完整版| 亚洲第一电影网av| 草草在线视频免费看| 桃色一区二区三区在线观看| av在线蜜桃| 成年免费大片在线观看| 欧美又色又爽又黄视频| 久久久久性生活片| 亚洲精品亚洲一区二区| 18美女黄网站色大片免费观看| 每晚都被弄得嗷嗷叫到高潮| 国产精品嫩草影院av在线观看 | 欧美日本视频| 成人特级av手机在线观看| 午夜福利成人在线免费观看| 村上凉子中文字幕在线| 最新在线观看一区二区三区| 成人国产一区最新在线观看| 简卡轻食公司| 日韩精品中文字幕看吧| 日本免费a在线| 91狼人影院| 一个人免费在线观看的高清视频| 中文字幕av在线有码专区| 女生性感内裤真人,穿戴方法视频| 淫妇啪啪啪对白视频| 日韩中字成人| 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产自在天天线| 亚洲欧美清纯卡通| 在线观看66精品国产| 亚洲精品久久国产高清桃花| 夜夜看夜夜爽夜夜摸| 国产亚洲精品久久久com| 熟妇人妻久久中文字幕3abv| 久久久色成人| 亚洲国产精品合色在线| 国产一区二区在线av高清观看| 真实男女啪啪啪动态图| 欧美精品国产亚洲| 国产av麻豆久久久久久久| 国产精品日韩av在线免费观看| 淫妇啪啪啪对白视频| а√天堂www在线а√下载| 日韩精品中文字幕看吧| 欧美在线一区亚洲| 婷婷亚洲欧美| 日日干狠狠操夜夜爽| 日韩欧美 国产精品| 高清毛片免费观看视频网站| 不卡一级毛片| 日韩亚洲欧美综合| 身体一侧抽搐| 国产成人影院久久av| 色在线成人网| 色av中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 亚洲人成网站在线播| 色综合站精品国产| 国产精品不卡视频一区二区 | 久久99热6这里只有精品| 亚洲av.av天堂| 又黄又爽又刺激的免费视频.| 精品乱码久久久久久99久播| 啦啦啦观看免费观看视频高清| 亚洲最大成人av| 亚洲国产日韩欧美精品在线观看| 美女xxoo啪啪120秒动态图 | 久久久久久久久久黄片| 尤物成人国产欧美一区二区三区| 十八禁网站免费在线| 欧美一级a爱片免费观看看| 最新中文字幕久久久久| 在线播放国产精品三级| 男人舔女人下体高潮全视频| 亚洲精品456在线播放app | 亚洲美女黄片视频| 欧美黄色淫秽网站| 国产午夜精品久久久久久一区二区三区 | 久99久视频精品免费| 午夜福利在线在线| 久久午夜福利片| av天堂中文字幕网| 欧美黄色淫秽网站| 五月伊人婷婷丁香| 午夜激情福利司机影院| 亚洲精品日韩av片在线观看| 色av中文字幕| 久久久久久久久大av| 国产免费男女视频| 老鸭窝网址在线观看| 国产精品久久久久久久电影| 成年人黄色毛片网站| 一区福利在线观看| 精品人妻一区二区三区麻豆 | 天堂动漫精品| 又黄又爽又免费观看的视频| 毛片一级片免费看久久久久 | 欧美成人a在线观看| 国产黄片美女视频| 乱人视频在线观看| 国产免费一级a男人的天堂| 久99久视频精品免费| 欧美日本亚洲视频在线播放| 蜜桃亚洲精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 欧美日韩国产亚洲二区| 免费人成视频x8x8入口观看| 免费av不卡在线播放| 男人狂女人下面高潮的视频| 成年女人永久免费观看视频| 午夜两性在线视频| 欧美另类亚洲清纯唯美| 一个人免费在线观看的高清视频| 亚洲一区二区三区色噜噜|