• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Capture condition for endo-atmospheric interceptors steered by ALCS and ARCS

    2014-12-07 05:13:49YanfangLIUNaimingQiTianyeWANG
    Control Theory and Technology 2014年1期

    Yanfang LIU,Naiming Qi,Tianye WANG

    1.Department of Aerospace Engineering,Harbin Institute of Technology,Harbin Heilongjiang,150001,China;

    2.Department of Earth and Space Science and Engineering,York University,Toronto,Canada

    Capture condition for endo-atmospheric interceptors steered by ALCS and ARCS

    Yanfang LIU1,2?,Naiming Qi1,Tianye WANG1

    1.Department of Aerospace Engineering,Harbin Institute of Technology,Harbin Heilongjiang,150001,China;

    2.Department of Earth and Space Science and Engineering,York University,Toronto,Canada

    This contribution deals with capture condition for interceptor missiles steered by aero-lift control system(ALCS)and attitude reaction-jet control system (ARCS). With the guidance law derived from bounded differential game formulation, existence condition of capture zone is studied for the case that the interceptor has advantage on maneuverability and disadvantage on agility.For the existence of the open capture zone,ARCS can only close after the engagement terminates.Moreover,ARCS also needs to contribute to maneuverability over the minimum required value.More fuel will be required if ARCS increases its contribution to maneuverability.The minimum required fuel occurs at the tangent point of two curves:the curve of critical parameters and a candidate constraint curve,which is also true even for the complex propellant constrain.The validity of these results is also demonstrated by simulations.

    Capture condition;Differential game;Guidance law;Interceptor missile;Dual control

    1 Introduction

    Successfully intercepting the future uninhabited aerial vehicles is a tough task.A very small miss distance or even direct hit[1]is required as these targets are less vulnerable.Worse still,only marginal maneuverability the interceptor missile has over the targets.There are two approaches to improve homing performance[2]:1)utilizing advance guidance laws to improve guidance performance and 2)introducing reaction-jet control system(RCS)to increase the maneuverability and/or agility(the maximum lateral acceleration divided by the first order time constant)[3].

    The major advanced missile guidance laws are developed by using optimal control theory.In developing these guidance laws,assumptions about future target maneuvers are needed[4–8].If these assumptions are wrong,very large miss distance is created[9,10].

    Differential game guidance laws are less sensitive tothe estimation error of target acceleration[9]and provide an improved guaranteed(robust)homing accuracy[11].In game formulation,the interceptor(pursuer)aims to minimize the miss distance,while the target(evader)tries to maximize it.The game solution provides the optimal pursuer strategy(the interceptor’s guidance law),the optimal evasion strategy(the worst target’s maneuver),and the game value(the guaranteed miss distance).If the game value is zero,the pursuer victories and the interception terminates by capture.The set of initial conditions from where capture is guaranteed is called the capture zone.Two game formulations are mainly addressed:linear quadratic differential game(LQDG)formulation[12–15]and bounded differential game(BDG)formulation[1,10,16–19].The BDG guidance laws obtain larger capture zone[13]and a much improved homing performance [20]. Capture conditions for players(pursuer and evader)with bi-proper dynamics were also studied in[21–24].

    When RCS is introduced,the combination of aero-lift control system(ALCS)and RCS requires special consideration in guidance system.Guidance laws based on BDG[24]and LQDG[15]were suggested for an interceptor having forward canards and aft tails.A feedback strategy combined BDG and LQDG was studied in[25].The forward RCS effects were investigated in[26]using BDG approach.A logic based guidance law was developed for interceptors steered by aerodynamic-fins and divert-thrusters in[27].In[28],capture conditions were studied for the interceptor steered by ALCS and divert thrusters control system(DTCS).

    In this paper, the study in [28] is extended to the interceptor steered by ALCS and attitude RCS(ARCS).Divert thrusters locate near the center of gravity(CG)and generate lateral acceleration directly.However,attitude thrusters locate ahead of the interceptor and generate lateral acceleration by changing the interceptor’s attitude.Compared with DTCS,ARCS requires less propellant,however,it contributes little to the interceptor’s maneuverability.The main contributions of this paper are as follows:1)capture conditions are derived by using BDG formulation;2)the approach for obtaining the minimum ARCS thrust and propellant is given;and 3)propellant quantity is suggested for the worst case–the target has ideal dynamics.

    The reminder of this paper is organized as follows.Section 2 outlines the engagement between the dual controlled interceptor and the target.Section3describes the game solution and game space structure.The existence condition of the capture zone is derived in Section4.The propellant limit effects are studied in Section5.The validity of the analytical results is demonstrated by simulation in Section 6.This paper is concluded in Section 7.

    2 Problem statement

    The engagement between an interceptor missile(pursuer)and its target(evader)is considered.The pursuer is dual-controlled by ALCS and ARCS.A schematic view of the planar end-game geometry is shown in Fig.1.TheX-axis is aligned with the initial line-of-sight(LOS).V,a,and φ are velocity,lateral acceleration,and flightpath angle,respectively;λ andrare LOS angle and range between both players,respectively;y=yE?yPis the relative separation normal to the initial LOS;and subscripts P and E denote the pursuer and the evader,respectively.

    Fig.1 Planar end-game geometry.

    The interception time can be computed for any given initial condition:

    The relative motion normal to the initial LOS is expressed by[1,18,19,24,28,29]

    where u and amaxare commanded and maximum lateral acceleration,respectively;τ is the time constant;and additive subscripts A and R denote ALCS and ARCS,respectively.

    The attitude-thrusters locate in front of the interceptor and work from tRSto tREwith operation time

    The ARCS realizes the acceleration commands by changing interceptor’s attitude.It increases the interceptor’s response speed,but contributes little to the maximum lateral acceleration.Thus,the pursuer’s total lateral acceleration

    is bounded by

    Thus,control commands of the pursuer is assumed to satisfy

    with ARCS contribution ratio on maneuverability defined as

    Remark 1Letting β(t)≡ 0 results in ALCS-only controlled pursuer and letting β(t)≡ 1 results in ARCS-only controlled pursuer.

    The evader’s acceleration command is also bounded

    Non-dimensional parameters, pursuer/evader maneuverability ratio μ,evader/pursuer dynamics ratio ε,and ARCS/ALCS dynamics ratio α,are respectively defined as

    As ARCS has a smaller time constant than the ALCS,thus

    The time-to-go and its normalized form are

    Moreover,denotations θ0=tf/τP,A,θf=0,θRS=(tf?tRS)/τP,A,and θRE=(tf? tRE)/τP,Aare made.Thus,equation(2)is reduced and normalized to

    where single prime denotes the first derivative,z(θ)is normalized zero-effort-miss(ZEM)

    and F(tf,t)is the transition matrix of the original homogeneous system in equation(2).

    The natural cost function is the miss distance

    The situation that the pursuer achieves zero miss distance,i.e.,J=0,is called capture.The domain of initial positions(θ0,z(θ0))from which a guidance law guarantees capture is called the capture zone of this guidance law.The open capture zone is a capture zone that extends to all θ>0.

    3 Game space structure

    In this section,the game solution for ALCS-only controlledpursuer is briefly reviewed and the possible game space structure for dual-controlled pursuer is presented.In the sequel,the games for ALCS-only controlled pursuer and for the dual-controlled pursuer are referred to as aero-controlled game(ACG)and dual-controlled game(DCG),respectively.

    3.1 ACG solution

    If condition μ > 1 and μ ε < 1 holds,no capture zone exists in game space D:={(θ,z):θ > 0,z ∈ R}[1,10,18].As shown in Fig.2,the game space decom-poses into two regions by the border optimal trajec-regiongame value(guaranteed miss distance)is constant

    Fig.2 Typical game space decomposition.

    3.2 Possible game space structure for DCG

    By virtue of the fact that ψ(θ)> 0 for θ > 0,the optimal strategies of DCG are solved to be[1,10,18,25,28]

    The game space is obtained by integrating Γ(θ)backward from different end conditions z(θf).Such a candidate trajectory,starting at(θ,z)=(0,z(θf)),is

    Typical game space is shown in Fig.2 with0.4s,1.The game space decomposes into two parts by border optimal trajectories zDand?zD(solid lines),if the family of candidate optimal trajectories does not fill it.The region filled with optiamal trajectories is the regular region,in which the optimal feedback strategies are

    by virtue of the fact that along an optimal trajectory,z(θ)has the same sign[28].

    The remainder of the game space is the singular regionIn the singular region,the game value is constant.If it is zero,this region becomes the capture zone.

    It is not surprised to find that the dual control system enlarges the singular region and reduces the guaranteed miss distance as ARCS increases the pursuer’s response speed.However,Fig.2 also shows that,even when ARCS is utilized,the capture zone does not always exist.The existence condition of the capture zone is studied in following sections.

    4 Capture condition

    In this section,the existence condition of the capture zone for DCG is derived under the conditions

    Thus,we suppose the pursuer has advantages on maneuverability and agility when it is ARCS-only controlled.However,it has agility disadvantage when it is ALCS-only controlled.

    For the case that ARCS works all over the engagement,a new function is defined as

    which is used to derive the existence condition of the capture zone.

    4.1Properties ofˉΓ(θ)

    In proving properties ofˉΓ(θ),two new functions are defined as the facts:1)

    4.2 Existence condition for capture zone

    In this subsection,the conditions of μ,ε,α,β,θRE,and θRSenabling capture will be obtained analytically.

    Lemma 1The necessary and sufficient condition for the existence of a capture zone in the game space is that there existsv> 0 such that Γ(θ)> 0 for θ ∈ (0,v).

    ProofSee proof of Theorem 4.1 in[23].

    Theorem 1Given μ ε < 1 and θRE> θf,a capture zone cannot exist in the game space.

    ProofUsing l’Hpital rule yieldsμ ε.Since θRE> θfand μ ε < 1,then Γ(θ) < 0 for sufficiently small θ ∈ (θf,θRE).By using Lemma 1,the theorem is proved.

    Remark 2Theorem 1 indicates that,if ARCS closes before the interception terminates,the pursuer will not able to secure capture as it has agility disadvantage when it is ALCS-only controlled.

    Theorem 2Given θRE≤ θf,for the existence of a capture zone in the game space,a sufficient condition is β and the necessary condition is

    ProofIf condition θRE≤ θfholds,one obtains Γ(θ)=?!?θ)for θ ∈[θf,θRS).Meanwhile,we have

    Remark 3This theorem has following physical interceptions.Capture is guaranteed for some initial conditions if ARCS has a sufficient large contribution on maneuverability.However,the pursuer will not be able to secure capture for any initial condition if this contribution is smaller than the required value.

    Theorem 3Given(30),necessary and sufficient condition for a capture zone,if it exists,to be open is that one of following conditions

    Remark 4Theorem 3 gives the necessary and sufficient condition for a capture zone to be open by assuming that ARCS works all over the engagement.However,in reality,it only works for a designed duration,considering which the existence condition is given in the next theorem.

    Theorem 4Given(30),the necessary and sufficient conditions for the existence of the open capture zone in the game space are

    1)θRE≤ θf,

    3)one of conditions(38)–(39)holds if θRS< θ1;one of conditions(38)–(40)holds if θRS∈ [θ1,θ3);one of conditions(38)–(41)holds if θRS∈ [θ3,θ5);one of conditions(38)–(42)holds if θRS∈ [θ5,θ7);and one of conditions(38)–(43)holds if θRS∈ [θ7,∞).The parameters θ1,θ3,θ5and θ7are given in Propositions 2–5.

    Proof(Sufficient condition) Since θRE≤ θf,thenThus,z?(θ)>0 for θ ∈ (θf,θRS],which is proved similarly to the sufficient condition of Theorem 3 by using conditions 3)and(30).For the caseusing(26)yieldFor the caseμ β?(1,α,θRS)+ μ β?(1,α,θRE).Using(15),(17),and condition 2)and noting from ?(1,α,θRE)> ?(1,α,θRS)and,consequently,the region between z?(θ)and ?z?(θ)guarantees capture and is open.The sufficient condition is proved.

    (Necessary condition) If condition 1)does not hold,using Theorem 1 yields that there does not exist a capture zone.If condition 2)does not hold,we have a)z?(θ)will intersect θ-axis atand the capture zone enclosed by z?(θ)and ?z?(θ)can only be closed for the case ?v > 0:Ψ(θ)|0<θ<v> 0,or b)there does not exist a capture zone otherwise.If condition 3)does not hold,using Theorem 3 yields the open capture zone does not exist.Hence,all of conditions 1)–3)are necessary for the existence of the open capture zone.

    Remark 5In Theorem 4,condition 1)gives the ending time of ARCS,and conditions 2)and 3)indicate that different initial time of ARCS will cause different parameter requirement for existence of the open capture zone.

    4.3 Parameter effects

    In Fig.3,the parameter requirement for existence of the open capture zone is given based on Theorem 4.

    The capture-guaranteed parameter space(β,θRS)is shown in top left subfigure with gray color with θRE=0.Thus,the working duration of ARCS is fixed if θRSis given.In the figure,the curve shows the critical β value guaranteeing existence of the open capture zone for a given θRS.For example,β1is the minimum requirement of β if ARCS starts at θRS,1.It means that ARCS should contributes sufficient large lateral acceleration if its initial time is fixed.On the other hand,if the thrust of ARCS is fixed,β = β1for example,then the initial time of ARCS should be not later than θRS,1.Two meaning fulvalues,β0and Δθ0are also shown in the figure.The former is the minimum required β.If ARCS can not generates larger enough thrust to make β ≥ β0,the engagement can not be guaranteed to be terminated by capture.The latter one is the normalized form of minimum required ARCS working duration.The evader can survive if ARCS work duration is shorter than this value,even the pursuer is ARCS-only controlled when ARCS is on.

    Fig.3 The required β value for existence of the open capture zone.

    Actually,the values β0and Δθ0are determined by μ,ε and α,as shown in other three subfingures.Both β0and Δθ0decrease with μ, ε.Thus,if the agility of the pursuer increases by increasing the maximum lateral acceleration or decreasing the time constant,the requirement of the minimum thrust and/or working duration of ARCS will decrease.However,both β0and Δθ0increase with α,which indicates that if ARCS’s response speed decreases,the working duration and/or the thrust of ARCS should increase to guarantee capture.

    5 Effects of propellant limits

    In reality,the propellant of ARCS is actually restricted by the pursuer’s configuration,such as weight and size.The propellant limit is approximated by

    To simplify the analysis,equation(45)is further reduced as

    The physical interception of equation(46)is that,if ARCS increases its contribution on the pursuer’s maneuverability,its working duration reduces.In this section,the propellant limit effects are investigated under equation(46).

    5.1 Thrust of ARCS

    Fig.4 shows ARCS thrust’s effect on the game space structure withQ=0.25s,and θRE=0.The open capture zone exists for cases β =0.25 and β =0.5.If β is too large,i.e.,β=0.75,the open capture zone does not exist as ARCS works too shortly.If β is too small,i.e.,β=0.1,there is no open capture zone in the game space due to β < β0.The critical β curve and constraint curves for differentQare shown in Fig.5.

    The region between the critical β curve and a constraint curve is the parameter space for existence of the open capture zone under propellant limit.The markers in the figure denote the calculating point of the above and following examples.The cases β =0.1 and β =0.75,shown in Fig.4,actually are not included in this parameter space.The formula in equation(46)is a simplified propellant constrain.However,for a complex form of propellant constrain,the parameter space for existence of the open capture zone can also be obtained similarly as in Fig.5.

    Fig.4 Effects of β under propellant limit.

    Fig.5 Critical β as a function of θRSunder propellant limit.

    The effect of the propellant quantity on the game space is shown in Fig.6 for fixed contribution of ARCS on the pursuer’s maneuverability,i.e., β =0.25,and θRE=0.The calculating points are also shown in Fig 5.If the fuel is smaller enough,there will be no intersect point between the critical β curve and the constraint curve.Consequently,the closed capture zone cannot exist.Increasing the propellant will enlarge the capture zone and,consequently release the handover condition between the terminal phase and the midcourse guidance.Seen from Fig.5,the critical case for the given β,i.e.,Q=0.1672s,is one intersect point of the critical β curve and constraint curves.

    Fig.6 Effects of propellant quantity.

    5.2 Minimum propellant requirement

    The minimum ARCS propellant satisfies

    which can also be expressed as

    The right-hand term of(48)is the guaranteed miss distance when the pursuer is ALCS-only controlled.The left-hand term represents ZEM reduced by ARCS.Base on Theorem 1,capture guaranteed interception requires θRE≤ θf.Thus,the minimum required propellant is an optimal problem stated as

    Theorem 5Under conditions(10)and(30),the minimum required propellant is

    where θRS,0satisfiesProofζ > 0 and(10)hold,thenf(ζ)> 0,g(ζ)> 0,andf(ζ)andg(ζ)are increasing.Givenμ andε,is constant.Letting β < β,then

    121 and,consequently,θRS,1> θRS,2.Therefore,1.Thus,the required propellant increases with β.Moreover,the minimum propellant requirement occurs at β0and isQ?= β0τP,AθRS,0,where θRS,0satisfies equation(52).

    Remark 6In Theorem 5,the optimal propellant is given under the simplified constrain equation(46).As shown is Fig.5,a set of constraint curves is obtained by changing the propellant limit.Among these curves,there is one that intersects the critical β curve tangently.The tangent point,(θRS,β)=(1.9375,0.1905)marked by star in Fig. 5, gives the optimal propellant. The thick solid line is the tangent constraint curve. For the complex constrain,Theorem 5 may not hold.However,the optimal propellant can also be obtained by finding the tangent point of the critical β curve and the tangent constraint curve.

    Using equations(15)and(24)yieldsther using equations(14)and(17)and noting from that γ(μ,ε,θ) < 0 fordecreases with ε.Thus,

    which represents the worst case for the pursuer as the target has ideal dynamics.

    6 Simulation study

    This section demonstrates the validity of analytical results by simulations.Two sets of simulations are carried out.

    The first set of simulations is carried out under ideal conditions:1)both players have perfect information structure and utilize the optimal guidance strategies in equation(27);2)both the guidance cycle and the simulation step are set to be as small as 0.1ms;and 3)both players point to each other and have zero initial lateral acceleration.The simulation results are shown in Table1.The game space structure for cases 1–4 are shown in Fig.4 and that for cases 5–7 are shown in Fig.6.Seen from Fig.5,parameter sets,(θRS,β),for cases 2,3,6,and 7 are above the critical β curve.For these cases,zero miss interception is guaranteed under the ideal conditions,which demonstrated Theorem 4. Case 8 is actually the minimum propellent case.The miss distance for this case is smaller enough for the hit-to-kill performance,which demonstrates Theorem 5.

    Table 1 Miss distance under ideal conditions.

    In the second set of simulations,the target’s maneuvering sequence is selected to be bang-bang type(maximum maneuver command to one direction followed by a maximum maneuver command in the opposite direction)[1,10,11,16–18,24].The maneuver command switches randomly at(tgo)sw∈[0,3]s.The estimated target time constantThe guidance cycle and the simulation step are taken to be 5ms and 1ms,respectively.At the beginning of the end-game,both players are assumed to point directly toward each other(the nominal case of head-on engagement).The initial lateral accelerations of both players are chosen to be zero.The results of 500 Monte Carlo runs are shown in Fig.7.Case 1 is for parametersQ=1.008s and β=0.6,which satisfies equation(56);Case 2 is for the minimum propellant case given in equation(51);and Case 3 is for ALCS-only controlled interceptor.Results show that the optimal propellant case has a better performance than the ALCS-only controlled case.However,it may result in a large miss distance due to estimation error of target’s time constant and sampling error.Assume that the estimation of time-to-goestimation of target acceleration?aE~N(aE,δaE).The effects of time-to-go estimation error,target acceleration estimation error and delay are analyzed separately.The results in Figs.7–9 show that the performance becomes worse.To improve the performance,more propellant is required.However,the suggested propellant quantity,Case 1,guarantees robust performance.

    Fig.7 Cumulative miss distance distribution with tgoestimation error.

    Fig.8 Cumulative miss distance distribution withaEestimation error.

    Fig.9 Cumulative miss distance distribution withaEestimation delay.

    7 Conclusions

    The capture condition is studied for interceptor missiles steered by aero-lift control system and attitude reaction-jet control system. Analytical results are derived under the condition that the interceptor has advantage on maneuverability and disadvantage on agility if it is aero-lift-only controlled.

    For the existence of the open capture zone,the attitude reaction-jet control system should close after the engagement terminates and contribute to the maneuverability over the minimum required value.The analytical results also show that the minimum propellant requirement increases with the contribution of attitude reaction-jet control system on the maneuverability,for a simplified form of propellant constrain.However,for the complex propellant limit, this minimum requirement can be obtained by finding the tangent point of the curve of critical parameters and a candidate constraint curve.A suggested parameter allocation is given by assuming target has ideal dynamics,which shows a robust performance in the simulation.

    [1]J.Shinar,T.Shima.Nonorthodox guidance law development approach for intercepting maneuvering targets.Journal of Guidance,Control,and Dynamics,2002,25(4):658–666.

    [2]Y.Liu,N.Qi,Z.Tang.Linear quadratic differential game strategies with two-pursuit versus single-evader.Chinese Journal of Aeronautics,2012,25(6):896–905.

    [3]R.Hirokawa,K.Sato,S.Manabe.Autopilot design for a missile with reaction-jet using coefficient diagram method.AIAA Guidance,Navigation,and Control Conference.Montreal:AIAA,2001:739–746.

    [4]Z.Paul.Tactical and strategic missile guidance.Progress in Astronautics and Aeronautics.Reston:AIAA,1997:143–161.

    [5]N.F.Palumbo,R.A.Blauwkamp,J.M.Lloyd.Modern homing missile guidance theory and techniques.Johns Hopkins APL Technical Digest,2010,29(1):42–59.

    [6]V.Garber.Optimum intercept laws for accelerating targets.AIAA Journal,1968,6(11):2196–2198.

    [7]R.G.Cottrell.Optimal intercept guidance for short-range tactical missiles.AIAA Journal,1971,9(7):1414–1415.

    [8]F.W.Nesline,P.Zarchant.A new look at classical vs modern homing missile guidance.Journal of Guidance,Control,and Dynamics,1981,4(1):78–85.

    [9]G.M.Anderson.Comparison of optimal control and differential game intercept missile guidance laws.Journal of Guidance,Control,and Dynamics,1981,4(2):109–115.

    [10]T.Shima,J.Shinar.Time-varying linear pursuit-evasion game models with bounded controls.Journal of Guidance,Control,and Dynamics,2002,25(3):425–432.

    [11]J.Shinar,T.Shima,A.Kebke.On the validity of linearized analysis in the interception of reentry vehicles.AIAA Guidance, Navigation,and Control Conference and Exhibit.Reston:AIAA,1998:1050–1060.

    [12]Y.C.Ho,A.E.Bryson JR.,S.Baron.Differential game and optimal pursuit-evasion strategies.IEEE Transaction on Automatic Control,1965,10(10):385–389.

    [13]V.Turetsky,J.Shinar.Missile guidance laws based on pursuitvasion game formulations.Automatica,2003,39(4):607–618.

    [14]O.Belapolsky,J.Z.Ben-asher.On two formulations of linear quadratic optimal guidance.AIAA Guidance,Navigation,and Control Conference and Exhibit.Hilton Head:AIAA,2007:1–26.

    [15]T.Shima,O.M.Golan.Linear quadratic differential games guidance law for dual controlled missiles.IEEE Transaction on Aerospace and Electronic Systems,2007,43(3):834–842.

    [16]S.Gutman,G.Leitmann.Optimal strategies in the neighborhood of a collison course.AIAA Journal,1976,14(9):1210–1212.

    [17]S.Gutman.On optimal guidance for homing missiles.Journal of Guidance,Control,and Dynamics,1979,2(4):296–300.

    [18]J.Shinar.Solution techniques for realistic pursuit-evasion games.Advances in Control and Dynamic Systems.New York:Academic Press,1981:63–124.

    [19]N.Qi,Y.Liu,X.Sun.Differential game guidance law for interceptor missiles with a time-varying lateral acceleration limit.Transactions of the Japan Society for Aeronautical and Space Sciences,2011,54(185/186):189–197.

    [20]T.Shima,O.M.Golan.End-game guidance laws for dual-control missiles.Proceedings IMechE–Part G:Journal of Aerospace Engineering,2005,219(2):157–170.

    [21]S.Gutman.Superiority of canards in homing missiles.IEEE Transaction on Aerospace and Electronic Systems,2003,39(3):740–746.

    [22]T.Shima.Capture zomes in a pursuuit-evasion game.Proceedings of IEEE Conference on Decision and Control.Hawaii:IEEE,2003:5450–5455.

    [23]T.Shima.Capture conditions in a pursuit-evasion game between players with biproper dynamics.Journal of Optimization Theory and Applications,2005,126(3):503–528.

    [24]T.Shima,S.Member,O.M.Golan.Bounded differential games guidance law for dual-controlled missiles.IEEE Transactions on Control System Technolody,2006,14(4):719–724.

    [25]Y.Liu,N.Qi,R.Lu,et al.Bounded linear-quadratic differential game guidance law fordual-thruster controlled missiles.Transactions of the Japan Society for Aeronautical and Space Sciences,2012,55(1):68–76.

    [26]Y.Li,N.Qi,W.Zhang,et al.Bounded differential game guidance law for interceptor missiles with aero fins and reaction jets.Transactions of the Japan Society for Aeronautical and Space Sciences,2011,53(182):275–282.

    [27]Y.Li,N.Qi.Logic-based guidance law for interceptor missiles steered by aerodynamic lift and divert thruster.IEEE Transactions on Control System Technolody,2011,19(4):884–890.

    [28]Y.Liu,N.Qi,Z.Tang.Effects of divert-thrusters on homing performance of endo-atmospheric interceptors.Journal of Optimization Theory and Applications,2013,156(2):345–364.

    [29]J.Shinar,V.Y.Glizer,V.Turetsky.Robust pursuit of a hybrid evader–the generalized solution.IEEE 26th Convention of Electrical and Electronics Engineers in Israel.Eilat:IEEE,2010:717–721.

    26 February 2013;revised 5 July 2013;accepted 3 September 2013

    DOI10.1007/s11768-014-0031-3

    ?Corresponding author.

    E-mail:liu-yanfang@hotmail.com.Tel.:+1 416-736-2100 ext.40484;fax:+1 416-736-5817.

    This work was partially supported by the China Aerospace Science and Institute Corporation and State Scholarship Fund.

    Yanfang LIUis a Ph.D.candidate at School of Astronautics,Harbin Institute of Technology,and a visiting scholar student at Department of Earth and Space Science and Engineering,York University.His study in Canada is supported by State Scholarship Fund.He received his B.E.degree from the Harbin Engineering University in 2008.His area of research includes missile guidance and control.E-mail:liu-yanfang@hotmail.com.

    Naiming QIis a professor with School of Astronautics,Harbin Institute of Technology.He received his Ph.D.degree from Harbin Institute of Technology in 2001.His area of research includes aircraft dynamics,guidance,and control and integration of electro-mechanical system.E-mail:qinmok@163.com.

    Tianye WANGis a graduate student with School of Astronautics,Harbin Institute of Technology.He received his B.E.degree from Harbin Institute of Technology in 2012.E-mail:wang878552527@126.com.

    Journal title change

    We would like to inform you that the title of‘Journal of Control Theory and Applications’is changed to ‘Control Theory and Technology’.The change will be effective from the beginning of 2014.

    We welcome your submissions for the journal with new title(http://controls.papercept.net).

    亚洲美女视频黄频| 亚洲不卡免费看| 国产色爽女视频免费观看| 丰满饥渴人妻一区二区三| 青青草视频在线视频观看| 日韩中字成人| 欧美日韩一区二区视频在线观看视频在线| 天天影视国产精品| 国产黄色视频一区二区在线观看| 日日摸夜夜添夜夜爱| 99九九线精品视频在线观看视频| 一级片'在线观看视频| 国产成人免费观看mmmm| 高清毛片免费看| 在线观看免费高清a一片| 日韩中文字幕视频在线看片| 少妇的逼水好多| 亚洲国产精品成人久久小说| 青春草亚洲视频在线观看| 一区在线观看完整版| 你懂的网址亚洲精品在线观看| 看免费成人av毛片| 欧美+日韩+精品| 欧美老熟妇乱子伦牲交| 成年女人在线观看亚洲视频| 午夜精品国产一区二区电影| 在线免费观看不下载黄p国产| 下体分泌物呈黄色| 又黄又爽又刺激的免费视频.| 免费大片黄手机在线观看| 久久久亚洲精品成人影院| 国产成人91sexporn| 青青草视频在线视频观看| 99久久精品国产国产毛片| 国精品久久久久久国模美| 一级毛片我不卡| 日韩一区二区三区影片| 国产又色又爽无遮挡免| 亚洲av中文av极速乱| 国产精品国产三级国产av玫瑰| 啦啦啦中文免费视频观看日本| 欧美xxxx性猛交bbbb| 国产色爽女视频免费观看| 大香蕉久久网| 国产熟女午夜一区二区三区 | 国产一级毛片在线| 欧美变态另类bdsm刘玥| av网站免费在线观看视频| 99久久中文字幕三级久久日本| av在线播放精品| 国产乱来视频区| 日韩精品免费视频一区二区三区 | av网站免费在线观看视频| 一本—道久久a久久精品蜜桃钙片| 亚洲精品久久午夜乱码| 飞空精品影院首页| 伦理电影大哥的女人| 久久99精品国语久久久| 亚洲情色 制服丝袜| 国产 精品1| 丝袜喷水一区| 日本免费在线观看一区| 亚洲av.av天堂| 亚洲,一卡二卡三卡| 国产乱来视频区| 欧美变态另类bdsm刘玥| 国产精品偷伦视频观看了| 伦理电影免费视频| 国产精品国产三级国产专区5o| 成人午夜精彩视频在线观看| 婷婷色麻豆天堂久久| 大片电影免费在线观看免费| 日韩免费高清中文字幕av| av线在线观看网站| 九九在线视频观看精品| 久久久久视频综合| 五月天丁香电影| 乱码一卡2卡4卡精品| 久久久国产精品麻豆| 男人操女人黄网站| 啦啦啦视频在线资源免费观看| 久久久精品区二区三区| 亚洲性久久影院| 久久99精品国语久久久| 成人漫画全彩无遮挡| 日韩 亚洲 欧美在线| 国产免费又黄又爽又色| 伊人亚洲综合成人网| 大片电影免费在线观看免费| 亚洲精品第二区| 大又大粗又爽又黄少妇毛片口| 色网站视频免费| 最新中文字幕久久久久| 精品国产国语对白av| 亚洲人成网站在线播| 国产成人freesex在线| av播播在线观看一区| 成人漫画全彩无遮挡| 国产乱来视频区| 在线播放无遮挡| 久久免费观看电影| 9色porny在线观看| 纯流量卡能插随身wifi吗| 九草在线视频观看| 少妇人妻久久综合中文| 亚洲精品日本国产第一区| 国产精品麻豆人妻色哟哟久久| 最近中文字幕2019免费版| 亚洲欧洲国产日韩| 一本久久精品| 免费人成在线观看视频色| 男女免费视频国产| 男女高潮啪啪啪动态图| 国产69精品久久久久777片| 熟女av电影| 这个男人来自地球电影免费观看 | 国产精品一区二区三区四区免费观看| 3wmmmm亚洲av在线观看| 国产成人免费无遮挡视频| 欧美日韩亚洲高清精品| 亚洲成人av在线免费| 国产伦精品一区二区三区视频9| 久久韩国三级中文字幕| 亚洲精品国产av蜜桃| www.av在线官网国产| 日本午夜av视频| 精品少妇久久久久久888优播| 热re99久久精品国产66热6| 午夜福利,免费看| 日本与韩国留学比较| 中国国产av一级| 国产日韩欧美视频二区| 国产在线免费精品| 中国三级夫妇交换| 美女大奶头黄色视频| 91aial.com中文字幕在线观看| 中文字幕最新亚洲高清| 韩国高清视频一区二区三区| 久久久久国产网址| av免费在线看不卡| 九色亚洲精品在线播放| 免费大片黄手机在线观看| 日韩精品有码人妻一区| 国产老妇伦熟女老妇高清| 亚洲第一av免费看| 这个男人来自地球电影免费观看 | 欧美日韩综合久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 亚洲婷婷狠狠爱综合网| 91成人精品电影| 天堂中文最新版在线下载| 精品午夜福利在线看| 国产老妇伦熟女老妇高清| 精品人妻在线不人妻| 婷婷色麻豆天堂久久| 国产精品女同一区二区软件| 亚洲av在线观看美女高潮| 人体艺术视频欧美日本| 亚洲内射少妇av| 少妇人妻精品综合一区二区| 免费大片黄手机在线观看| 亚洲国产av新网站| av女优亚洲男人天堂| 一区二区日韩欧美中文字幕 | 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美清纯卡通| 蜜桃在线观看..| 91aial.com中文字幕在线观看| 亚洲精品av麻豆狂野| 久久久久久人妻| 亚洲人成77777在线视频| 亚州av有码| 男人爽女人下面视频在线观看| 80岁老熟妇乱子伦牲交| 精品久久久久久久久亚洲| 久久韩国三级中文字幕| 久热这里只有精品99| 亚洲国产精品一区二区三区在线| 91久久精品国产一区二区三区| 99热6这里只有精品| 在线精品无人区一区二区三| 一级毛片 在线播放| 免费观看的影片在线观看| 久久狼人影院| av播播在线观看一区| 在线观看免费高清a一片| 日本91视频免费播放| 中文字幕人妻丝袜制服| 欧美日韩视频高清一区二区三区二| 欧美日韩亚洲高清精品| 免费观看在线日韩| 激情五月婷婷亚洲| 亚洲精品乱码久久久v下载方式| 九草在线视频观看| 午夜激情久久久久久久| 嘟嘟电影网在线观看| 伦理电影大哥的女人| 中文天堂在线官网| √禁漫天堂资源中文www| 在线免费观看不下载黄p国产| 欧美激情 高清一区二区三区| 如日韩欧美国产精品一区二区三区 | 中文字幕精品免费在线观看视频 | 国产精品久久久久久久电影| 日韩大片免费观看网站| 精品人妻熟女av久视频| 99re6热这里在线精品视频| 人人妻人人澡人人看| 亚洲欧美清纯卡通| 美女中出高潮动态图| 91午夜精品亚洲一区二区三区| 美女xxoo啪啪120秒动态图| 热re99久久精品国产66热6| 久久久久久久久久成人| 日韩三级伦理在线观看| 亚洲国产色片| 久久久久久久久久成人| 日韩三级伦理在线观看| 啦啦啦啦在线视频资源| 在线看a的网站| 精品一区在线观看国产| 久久精品国产亚洲av天美| 三级国产精品欧美在线观看| 亚洲av电影在线观看一区二区三区| 亚洲av不卡在线观看| 人体艺术视频欧美日本| 成人漫画全彩无遮挡| av线在线观看网站| 一区二区三区精品91| 久久韩国三级中文字幕| 亚洲精华国产精华液的使用体验| 精品一区二区免费观看| 啦啦啦啦在线视频资源| 人妻夜夜爽99麻豆av| 人人妻人人添人人爽欧美一区卜| 国产日韩欧美在线精品| 最新中文字幕久久久久| 秋霞在线观看毛片| 午夜福利在线观看免费完整高清在| 中国国产av一级| 亚洲图色成人| 汤姆久久久久久久影院中文字幕| 人妻人人澡人人爽人人| 国产一区二区三区综合在线观看 | 亚洲欧美清纯卡通| 欧美日本中文国产一区发布| 免费av中文字幕在线| 成年av动漫网址| 男的添女的下面高潮视频| 精品少妇久久久久久888优播| tube8黄色片| 国产黄频视频在线观看| av不卡在线播放| 国产精品99久久久久久久久| 永久免费av网站大全| 久久久久久伊人网av| 日韩欧美精品免费久久| 国产毛片在线视频| 精品午夜福利在线看| 超碰97精品在线观看| 美女脱内裤让男人舔精品视频| 91久久精品国产一区二区三区| 内地一区二区视频在线| 草草在线视频免费看| 少妇高潮的动态图| 日韩强制内射视频| 一个人免费看片子| 午夜av观看不卡| 最近手机中文字幕大全| 久久鲁丝午夜福利片| 日韩中文字幕视频在线看片| 自线自在国产av| 纵有疾风起免费观看全集完整版| 黄色怎么调成土黄色| 国产日韩欧美亚洲二区| 午夜av观看不卡| 女性被躁到高潮视频| 不卡视频在线观看欧美| 多毛熟女@视频| 18禁观看日本| 亚洲精品日韩在线中文字幕| 一本大道久久a久久精品| 伦精品一区二区三区| 大码成人一级视频| 国产爽快片一区二区三区| 人成视频在线观看免费观看| 插阴视频在线观看视频| 亚洲精品一二三| 成人国产av品久久久| 国产精品 国内视频| 丝袜美足系列| 麻豆成人av视频| 精品久久蜜臀av无| 国产爽快片一区二区三区| 亚洲激情五月婷婷啪啪| 老司机亚洲免费影院| 日韩,欧美,国产一区二区三区| 国产国拍精品亚洲av在线观看| 精品99又大又爽又粗少妇毛片| 成人毛片a级毛片在线播放| 91精品伊人久久大香线蕉| 久久毛片免费看一区二区三区| 精品久久久久久电影网| 特大巨黑吊av在线直播| 欧美日韩成人在线一区二区| 午夜激情av网站| 国产男女超爽视频在线观看| 黄色怎么调成土黄色| 精品一品国产午夜福利视频| av免费在线看不卡| 高清毛片免费看| 欧美日韩成人在线一区二区| 国产精品久久久久成人av| 91精品三级在线观看| 亚洲国产欧美在线一区| av线在线观看网站| 久久精品国产自在天天线| 精品人妻熟女av久视频| 亚洲欧美精品自产自拍| 嫩草影院入口| 国产成人freesex在线| 多毛熟女@视频| 新久久久久国产一级毛片| 亚洲天堂av无毛| 简卡轻食公司| 男女免费视频国产| 美女cb高潮喷水在线观看| 91精品三级在线观看| 多毛熟女@视频| 丝袜喷水一区| 国产极品粉嫩免费观看在线 | 亚洲欧美精品自产自拍| 能在线免费看毛片的网站| 精品人妻熟女毛片av久久网站| √禁漫天堂资源中文www| 在线观看人妻少妇| 成人国产麻豆网| 性色av一级| 久久久久久久久久久久大奶| 大香蕉97超碰在线| av有码第一页| 久久影院123| 男女无遮挡免费网站观看| 亚洲av成人精品一二三区| a级毛色黄片| 寂寞人妻少妇视频99o| 一二三四中文在线观看免费高清| 国产不卡av网站在线观看| 日韩三级伦理在线观看| 丁香六月天网| 99热国产这里只有精品6| 99热全是精品| 亚洲精品自拍成人| av女优亚洲男人天堂| 精品国产一区二区三区久久久樱花| 久久97久久精品| 热99久久久久精品小说推荐| 欧美另类一区| 久热这里只有精品99| 国产一区亚洲一区在线观看| av在线老鸭窝| 爱豆传媒免费全集在线观看| 午夜福利视频在线观看免费| 99久久中文字幕三级久久日本| 午夜精品国产一区二区电影| 精品久久久久久久久亚洲| 99热这里只有是精品在线观看| 美女大奶头黄色视频| av不卡在线播放| 欧美日韩综合久久久久久| 啦啦啦视频在线资源免费观看| 亚洲性久久影院| 国产亚洲最大av| 免费黄频网站在线观看国产| 亚洲伊人久久精品综合| 欧美 日韩 精品 国产| 亚洲精品,欧美精品| 国产成人aa在线观看| 亚洲av日韩在线播放| 人妻人人澡人人爽人人| 国产有黄有色有爽视频| 久久午夜福利片| 伦理电影大哥的女人| 黄色怎么调成土黄色| 亚洲国产精品999| 亚洲欧洲日产国产| 国产淫语在线视频| 大码成人一级视频| 在线观看人妻少妇| 国产精品国产三级国产av玫瑰| 久久久久久久久久久丰满| 日本午夜av视频| 欧美丝袜亚洲另类| 午夜av观看不卡| 丰满饥渴人妻一区二区三| 18在线观看网站| 久久久久精品性色| 成人毛片a级毛片在线播放| 在现免费观看毛片| 永久免费av网站大全| 欧美 亚洲 国产 日韩一| 高清午夜精品一区二区三区| videossex国产| 岛国毛片在线播放| 男男h啪啪无遮挡| 97超碰精品成人国产| 99热国产这里只有精品6| 国产亚洲精品久久久com| 免费少妇av软件| 另类亚洲欧美激情| 国产极品粉嫩免费观看在线 | 亚洲无线观看免费| 各种免费的搞黄视频| 国产一级毛片在线| 亚洲精品aⅴ在线观看| 男男h啪啪无遮挡| 久久亚洲国产成人精品v| 国产欧美另类精品又又久久亚洲欧美| 亚洲av不卡在线观看| 国产黄色免费在线视频| 高清欧美精品videossex| 99国产精品免费福利视频| 国产国拍精品亚洲av在线观看| 黑人巨大精品欧美一区二区蜜桃 | 性高湖久久久久久久久免费观看| 看非洲黑人一级黄片| 欧美日韩国产mv在线观看视频| videos熟女内射| 男女啪啪激烈高潮av片| 国产男女内射视频| 欧美成人精品欧美一级黄| 中文字幕人妻丝袜制服| 最近手机中文字幕大全| 永久网站在线| 国产精品熟女久久久久浪| 国产免费福利视频在线观看| 日韩亚洲欧美综合| 天堂中文最新版在线下载| 国产精品熟女久久久久浪| 三级国产精品欧美在线观看| 国产精品一区www在线观看| 久久久久久久久久久久大奶| 午夜激情福利司机影院| 汤姆久久久久久久影院中文字幕| 欧美3d第一页| 国产欧美日韩综合在线一区二区| 亚洲av在线观看美女高潮| 色婷婷av一区二区三区视频| 又黄又爽又刺激的免费视频.| 日韩中文字幕视频在线看片| 国产免费又黄又爽又色| 国国产精品蜜臀av免费| 赤兔流量卡办理| 丰满乱子伦码专区| 中国美白少妇内射xxxbb| 久久综合国产亚洲精品| 国产欧美亚洲国产| 午夜91福利影院| 色网站视频免费| 王馨瑶露胸无遮挡在线观看| 伦理电影大哥的女人| 亚洲av中文av极速乱| 能在线免费看毛片的网站| 免费av不卡在线播放| 人妻人人澡人人爽人人| 人妻夜夜爽99麻豆av| 熟女人妻精品中文字幕| 久久免费观看电影| 妹子高潮喷水视频| 欧美日韩在线观看h| 欧美3d第一页| 精品久久久久久久久亚洲| 麻豆精品久久久久久蜜桃| 日韩一本色道免费dvd| 久久久久国产精品人妻一区二区| 超色免费av| 麻豆精品久久久久久蜜桃| 男人操女人黄网站| 九九爱精品视频在线观看| 一级毛片 在线播放| 国产免费又黄又爽又色| 日韩强制内射视频| 国产在线视频一区二区| 99九九在线精品视频| 一级毛片黄色毛片免费观看视频| 久久久久精品性色| 一区二区三区精品91| 晚上一个人看的免费电影| 国产极品粉嫩免费观看在线 | av在线观看视频网站免费| 性色av一级| 久久精品久久久久久噜噜老黄| 99热全是精品| 欧美bdsm另类| videos熟女内射| 国产亚洲欧美精品永久| 18+在线观看网站| 人人澡人人妻人| 岛国毛片在线播放| 国语对白做爰xxxⅹ性视频网站| 亚洲av日韩在线播放| 狂野欧美激情性bbbbbb| av播播在线观看一区| 晚上一个人看的免费电影| 少妇人妻久久综合中文| 免费人成在线观看视频色| 中国国产av一级| 欧美激情极品国产一区二区三区 | 精品亚洲乱码少妇综合久久| 亚州av有码| 考比视频在线观看| 国产高清有码在线观看视频| 国产av精品麻豆| 简卡轻食公司| 亚洲色图 男人天堂 中文字幕 | 成人午夜精彩视频在线观看| 日韩成人av中文字幕在线观看| 久久女婷五月综合色啪小说| 中文乱码字字幕精品一区二区三区| 亚洲精品久久久久久婷婷小说| 婷婷色av中文字幕| 亚洲av成人精品一二三区| 亚洲第一av免费看| 久久影院123| 五月开心婷婷网| 日韩欧美精品免费久久| 国产精品 国内视频| 婷婷成人精品国产| av免费在线看不卡| 国产午夜精品一二区理论片| xxxhd国产人妻xxx| 国产av精品麻豆| 欧美精品亚洲一区二区| 欧美人与性动交α欧美精品济南到 | 国产一区亚洲一区在线观看| 蜜桃在线观看..| 一二三四中文在线观看免费高清| 免费观看在线日韩| a级毛色黄片| 亚洲av成人精品一二三区| 日韩视频在线欧美| 国产综合精华液| 亚洲经典国产精华液单| 老司机亚洲免费影院| 91国产中文字幕| 乱人伦中国视频| 国产国拍精品亚洲av在线观看| 欧美+日韩+精品| 精品久久久精品久久久| 亚洲一区二区三区欧美精品| 免费黄网站久久成人精品| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产精品999| 99久久综合免费| 人妻夜夜爽99麻豆av| 另类精品久久| 日韩大片免费观看网站| 亚洲精品一二三| 大片免费播放器 马上看| 边亲边吃奶的免费视频| 飞空精品影院首页| xxx大片免费视频| 国产毛片在线视频| av电影中文网址| 国产极品天堂在线| 亚洲国产精品国产精品| 男女国产视频网站| 国产成人精品在线电影| 亚洲欧美一区二区三区国产| 日韩伦理黄色片| 精品一区二区三卡| 久久99热这里只频精品6学生| 免费观看av网站的网址| 久久精品久久久久久久性| 桃花免费在线播放| 国产精品不卡视频一区二区| 毛片一级片免费看久久久久| 男的添女的下面高潮视频| 久久久久久久大尺度免费视频| 精品午夜福利在线看| 99re6热这里在线精品视频| 美女cb高潮喷水在线观看| 免费人妻精品一区二区三区视频| 精品人妻一区二区三区麻豆| 狂野欧美激情性xxxx在线观看| 波野结衣二区三区在线| 下体分泌物呈黄色| 99热国产这里只有精品6| 一级毛片aaaaaa免费看小| 久久久久久久精品精品| 肉色欧美久久久久久久蜜桃| 久久精品久久久久久久性| 亚洲一级一片aⅴ在线观看| 久久av网站| 日韩欧美精品免费久久| 只有这里有精品99| 日本91视频免费播放| 久久综合国产亚洲精品| av.在线天堂| 成人二区视频| 免费不卡的大黄色大毛片视频在线观看| 国产精品人妻久久久久久| 热re99久久国产66热| 日韩av在线免费看完整版不卡| 熟妇人妻不卡中文字幕| 2018国产大陆天天弄谢| 欧美日本中文国产一区发布| 亚洲国产色片| 赤兔流量卡办理| 王馨瑶露胸无遮挡在线观看| 最新的欧美精品一区二区| 新久久久久国产一级毛片| 9色porny在线观看| 久久人妻熟女aⅴ| 飞空精品影院首页|