• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control of a flexible rotor active magnetic bearing test rig:a characteristic model based all-coefficient adaptive control approach

    2014-12-07 05:13:32LongDIZongliLIN
    Control Theory and Technology 2014年1期

    Long DI,Zongli LIN

    Charles L.Brown Department of Electrical and Computer Engineering,University of Virginia,P.O.Box 400743,Charlottesville,VA 22904-4743,U.S.A.

    Control of a flexible rotor active magnetic bearing test rig:a characteristic model based all-coefficient adaptive control approach

    Long DI,Zongli LIN?

    Charles L.Brown Department of Electrical and Computer Engineering,University of Virginia,P.O.Box 400743,Charlottesville,VA 22904-4743,U.S.A.

    Active magnetic bearings(AMBs)have found a wide range of applications in high-speed rotating machinery industry.The instability and nonlinearity of AMBs make controller designs difficult,and when AMBs are coupled with a flexible rotor,the resulting complex dynamics make the problems of stabilization and disturbance rejection, which are critical for a stable and smooth operation of the rotor AMB system,even more difficult.Proportional-integral-derivative(PID)control dominates the current AMB applications in the field.Even though PID controllers are easy to implement,there are critical performance limitations associated with them that prevent the more advanced applications of AMBs,which usually require stronger robustness and performance offered by modern control methods such as H-infinity control and μ-synthesis.However,these advanced control designs rely heavily on the relatively accurate plant models and uncertainty characterizations,which are sometimes difficult to obtain.In this paper,we explore and report on the use of the characteristic model based all-coefficient adaptive control method to stabilize a flexible rotor AMB test rig.In spite of the simple structure of such a characteristic model based all-coefficient adaptive controller,both simulation and experimental results show its strong performance.

    Active magnetic bearings;Adaptive control;Characteristic modeling;Flexible rotor;Robustness

    1 Introduction

    Active magnetic bearings(AMBs)has been an active subject of research for decades and are becoming popular in practical applications.AMBs compare very differently with conventional mechanical bearings.On the one hand,AMBs rely on electromagnetic forces to suspend the rotor.There is no physical contact between the bearings and the rotor,creating an operation environment that is free of friction.On the other hand,AMBs require feedback control to generate appropriate supporting forces.Control of AMBs involves not onlysophisticated electronic devices,but also the design of the control algorithm,which often time has to be sophisticated as well.Thus,even though AMBs have several advantages over conventional mechanical bearings,such as lower power losses,oil free operation and improved maintainability,they are more sophisticated because of the difficulties associated with the design and implementation of their control systems.

    PID control has been the most widely used control method in industrial applications of AMB systems[1].Because of their simplicity,PID controllers are easy to implement and can be tuned intuitively.A properly tuned PID controller is able to achieve reasonable control performance.However,for systems with complex dynamics,such as flexible rotor AMB systems,it is difficult for PID controllers to deliver the required robust performance.In recent years,robust control design methods,such as μ-synthesis,have also been applied in AMB applications[2,3].Compared with the PID control design,the μ-synthesis approach is able to better handle the uncertainties in the complex system and achieve reliable performance.However,μ-synthesis requires a relatively accurate characterization of the plant dynamics and uncertainties,which in reality is often difficult to obtain.Furthermore,if the properties of the plant change significantly,the μcontroller designed based on the characterization of the original plant and uncertainties might fail to perform properly.

    Characteristic model based all-coefficient adaptive control method has been widely used in process control and aerospace industry.Several real world applications have demonstrated its effectiveness(see,for example,[4–7]).In comparison with the conventional adaptive control,characteristic model based all-coefficient adaptive control has fewer coefficients to estimate and the controller structure is simpler.Despite its simplicity,the characteristic model based all-coefficient adaptive control is able to provide robust control performance on multi-dimensional complex dynamical systems,without requiring the actual plant models[8–10].

    This paper explores and reports on the use of the characteristic model based all-coefficient adaptive control method to stabilize a flexible rotor AMB test rig.Both the simulation and experimental results demonstrate strong potential for the application of the characteristic model based all-coefficient adaptive control in AMB applications.

    The remainder of the paper is organized as follows.Section 2 describes the flexible rotor AMB test rig,its modeling,and a previously developed μ-synthesis controller as a benchmark for comparison.Section 3 briefly describes the characteristic model based all-coefficient adaptive control design method.Section 4 presents the implementation of the characteristic model based all coefficient adaptive control on the test rig and shows both simulation and experimental results.Conclusions are drawn in Section 5.

    2 The flexible rotor AMB test rig

    2.1 Description of the test rig

    Our flexible rotor AMB test rig[11]was designed and built as a research platform in the Rotating Machinery and Control(ROMAC)Laboratory at University of Virginia.The purpose of this test rig is to emulate an industrial centrifugal gas compressor and study control of the rotordynamic instability and supercritical operation as shown in Fig.1.The two radial support AMBs are located at the two ends of the rotor.Disks 1 and 2 on the rotor simulate the blades in a compressor and the two exciter AMBs in the middle and quarter spans of the rotor synthesize various effects on the rotor,such as the cross coupling effect of a seal.When the rotating speed increases,the disks will generate the gyroscopic effect which may cause instability in the rotordynamic.The load-dependent cross-coupled stiffness(CCS),which can be emulated by an exciter AMB,is another cause of performance degradation and instability.

    Fig.1 Motivation for the design of the test rig.

    The rotor is 1.23m long and weighs around 44.9kg.Four laminated steel journals are mounted on the shaft for the two radial support AMBs at the non-driven end(NDE)and driven end(DE)and the two radial exciter AMBs at the middle and quarter spans.The air gaps at all the four AMBs are the same at 10 mils. Only the NDE and DE support AMBs are utilized for control.There are also two auxiliary ball bearings mounted at the support AMB locations to prevent damage to AMBs when the rotor drops.A 3.7kW,electric fan cooled,high speed motor with variable frequency drive(VFD),Colombo RS-90/2,is adopted that is able to run the rotor to 18,000r/min.In order to obtain the approximate locations of the critical speeds as a function of the support stiffness,we performed rotordynamic analysis and the resulting undamped critical speed map is shown in Fig.2.

    Fig.2 The undamped critical speed map of the rotor.

    In the undamped critical speed map,the first bending critical speed,shown in the curve with circles,starts at 13,227r/min(220.4Hz)and increases with the increase of the support stiffness.Usually the target closed-loop stiffness for an AMB system is 2.684×106N/m for rotors of comparable dimensions[11].Based on this map,we can predict the speeds at which the unbalance distribution of the rotor will lead to the excitation of the rotor’s natural frequencies.

    Another important graphic tool for rotordynamic analysis is the free-free mode shape plot,which is shown in Fig.3 for our test rig.It illustrates the movement of the rotor at the rigid body modes and bending critical modes with respect to the locations of the position sensors and actuators.Based on this plot,we can determine if the axial locations of the sensors and AMBs are in the proper positions to avoid the out of phase situation as the rotor runs through various bending critical speeds.

    Four amplifiers are installed for each radial AMB and each amplifier features a 25kHz switching frequency.The maximum continuous current is rated at 10 A, which gives each AMB a static load capacity of 1450N.The rotor motion is monitored by a 10 channel Kaman eddy current sensor system and the displacement of each control axis is measured by a 1H/15N static probe.The digital control system is based on an Innovative Integration M6713 PCI board and a TI C6713B 32-bit floating point digital signal processing(DSP)chip is used for the implementation of the digital control algorithm with an updating frequency at 12kHz.Sixteen input-output analog channels are simultaneously sampled and interfaced with the 16 sensors and the 16 actuators associated with the four AMBs.A computer control station with a custom designed graphic user interface provides the user with many functionalities.The entire flexible rotor AMB test rig is shown in Fig.4.

    Fig.3 The free-free mode shape plot of the rotor.

    Fig.4 An overview of the flexible rotor AMB test rig.

    2.2 Modeling and μ synthesis control

    A diagram of the overall flexible rotor AMB control system is shown in Fig.5.The dynamics of the test rig is very complex.Several components are involved in the modeling process.A rotor model is derived based on the finite-element analysis method.The shaft length is divided into 50 stations for the lateral rotordynamic modeling.For the magnetic bearings,a linearized magnetic circuit model is adopted.The sensors,anti-aliasing filters(AAF)and amplifiers are described by their transfer functions.The combined model of the overall test rig has 452 states.Since higher modes beyond the third bending critical frequency contribute negligible effects on the entire system dynamic response,they are truncated and the final reduced order model possesses 36 states with 4 inputs and 4 outputs at the driven end(xaxis(DEX)andyaxis(DEY))and the non-driven end(xaxis(NDEX)andyaxis(NDEY)).This 36th order model serves as the nominal model of the test rig.

    Shown in Fig.6 is the Bode plots of one of the four control channels in the nominal model of the test rig.Overlaid on these Bode plots are the experimental measurements of the transfer function of the same channel.The agreement between the analytic model and the experimental measurements in the frequency range of 1 Hz to 1kHz confirms the accuracy of the analytic model we have obtained.

    Fig.5 A diagram of the flexible rotor-AMB control system.

    Fig.6 Bode plots of the test rig: analytic model vs experimental measurements.

    A realistic characterization of the uncertainties is essential in the design of a μ-synthesis controller.We have identified two major sources of uncertainties in our test rig.The first one is the gyroscopic effect,which varies with the rotating speed.The main influence of the gyroscopic effect is to split the system eigenvalues into forward and backward modes with different natural frequencies.Shown in Fig.7 is the Campbell diagram with a support stiffness of 5×106N/m,depicting the variation of the system eigenvalues with the increase of the rotating speed.Also marked in the figure is the maximum continuous operating speed(MCOS)of 18,000r/min,which represents the capacity limit of the motor drive.

    The other major source of uncertainty is the cross coupled stiffness(CCS),which depends heavily on the load of the rotor.A pole-zero map of the open-loop rotor AMB system at 0r/min under the effect of the CCS is shown in Fig.8.In this pole-zero map,originally two unstable real poles corresponding to the first two rigid body modes lie in the right-half plane(RHP)and four complex pole-zero pairs corresponding to the first two bending modes lie in the left-half plane near the imaginary axis. The CCS drives the first rigid body mode(Nc1)in the RHP to split into two complex conjugate poles,which move to the further right as the CCS increases.The complex pole-zero pairs corresponding to the first bending mode(Nc3)move to the RHP as the arrow sign indicates.Those changes increase the minimum achievable peak sensitivity and introduce additional phase lags

    Fig.7 A Campbell diagram that characterizes the uncertainty in the gyroscopic effect.

    Fig.8 Uncertainty characterization for cross-coupled stiffness.

    Basedon the nominal model of the test rig and the uncertainty characterization,a μ-synthesis controller has been designed in[3,12].The design utilizes the Matlab function dksyn to carry out four D-K iterations and arrive at a reasonable μvalue.The result is a 48th order controller with μ=0.856.The Bode plots of this μ-synthesis controller are shown in Fig.9.Simulation of the closed-loop system under this controller has been carried out in Simulink[3,12].The μ-synthesis design has also been implemented on a DSP computer.Both simulation and experimental results have shown that the μ-synthesis controller achieves satisfactory performance and the parametric uncertainties of the rotor-AMB system have been well handled[12].

    Fig.9 Bode plots of the μ-synthesis controller.

    The performance of the μ-synthesis controller will serve as a benchmark for comparison with the characteristic model based all-coefficient adaptive control to be presented in the next section.

    3 Characteristic model based all-coefficient adaptive control

    3.1 Characteristic modeling

    Unlike conventional modeling methods that concentrate on the precise system dynamics,the characteristic modeling focuses on the characteristics of the plant and the control performance requirements.The corresponding output information of the original high order plant is compressed into a few characteristic parameters so that no information is lost during the modeling process[5].As a result,even though the characteristic model possesses a simple structure,it precisely reflects the dynamics of the original plant.

    It has been established in[5]that a linear time invariant plant

    can be represented by a time-varying difference equation with a lower order.The exact order of the difference equation is determined by the control objective.For our purpose in the paper,we recall the following results.

    Consider a linear time-invariant plant as given in(1).If the control objective is position keeping or reference tracking,then,for a sufficiently small sampling periodTthat satisfies the sampling theorem and guarantees the controllability of the discretized model,the characteristic model is a second-order time-varying difference equation,

    whereu(k)andy(k)are respectively the control input and the system output at the kth sampling point and the coefficientsf1(k),f2(k),g0(k)andg1(k)are the characteristic parameters.

    The characteristic model for the plantG(s)as given in(2)possesses the following properties:

    ·The coefficientsf1(k),f2(k),g0(k)andg1(k)are slowly time-varying.

    ·The ranges of these parameters can be decided a priori.

    ·In response to the same input,the output of the original model(1)is identical to the output of the characteristic model(2)at each sampling time.

    3.2 Characteristic model based all-coefficient adaptive control

    Consider a linear time-invariant plant

    Let the discretized equation of(3)be given by

    Then,the coefficients of(4)satisfy the following conditions[5]:

    ·If the static gainDof(3)is equals to unity,then the sum of all the coefficients of(4)equals one,i.e.,

    ·IfD≠0 and is bounded,then the sum of all the coefficients of(4)approaches one asT→0,i.e.,

    The ranges of αi’s and βi’s can be determined in advance based on the ranges ofai’s andbi’s.The value of the sampling periodT,when system(3)does not have poles at the origin,is usually chosen as[8],

    whereTminis the minimum average time constant of system(3)over the ranges of the values of its coefficientsai’s andbi’s.The value ofTmincan be determined in a straightforward way as follows.

    LetCdenote the set of values of the coefficientsai’s andbi’s.Clearly,the poles of system(3),denoted aspi,i=1,2,...,n,are functions of the elements ofC.Then,the minimum average time constantTmincan be computed as

    We now consider the characteristic model for system(3),i.e.,

    which can be written as follows to facilitate the estimation of its coefficients,

    In order to specify the ranges of the values of the coefficients in the characteristic model(5),we consider the following second order time-invariant difference equation

    Then,according to[13],when ηmax≤ 1/3,the coefficients in the characteristic model(5)for an unstable plant satisfy the following conditions:

    We observe,in the above conditions,that α1→ 2,α2→?1,β0→ 0 and β1→ 0,asT→ 0 and hence ηmax→ 0.

    For a particular value of ηmax=1/4,we arrive at the following ranges for the coefficients α1and α2:

    On the other hand,β0andβ1are smaller positive scalars.

    Motivated by the above analysis on the second order time invariant difference equation(6),we will limit the coefficientsf1(k)andf2(k)in the characteristic model(5)to the following set:

    and choose some positive numbers that are much smaller than one as the initial values forg0(k)andg1(k).

    where δ ≥ 0,0 < γ < 2,and,for a scalarx,π(x)is the projection ofxinto the setN[14].

    The characteristic model based all-coefficient adaptive controluc(k)is formulated as

    whereuc1(k),uc2(k),uc3(k)anduc4(k)are respectively specified as follows:

    ·Maintaining/tracking control:

    whereyr(k)is the reference system output,λ1is a positive constant,andare the estimates off1(k),f2(k),g0(k)andg1(k),respectively.

    ·Golden section adaptive control:

    ·Differential control:

    whered1is a positive constant.

    ·Integral control:

    whered2is a positive constant.

    4 Simulation and experimental results on the test rig

    In this paper,we explore the application of the characteristic model based all-coefficient adaptive control scheme,as recalled in Section 3,to the flexible rotor AMB test rig described in Section 2.We will carry out both the simulation studies and the experimental testing.

    The simulation is based on the Simulink model derived for the entire flexible rotor AMB system,which includes all components of the test rig.The μ-synthesis controller was initially used to stabilize the test rig and its performance serves as a benchmark for comparison with our characteristic model based all-coefficient adaptive controller.

    The μ-synthesis controller in Simulink is then replaced with the characteristic model based all-coefficient adaptive controller.An identical characteristic model based all-coefficient adaptive controller is implemented for all the four control channels,thexandyaxes at both the driven and nondriven ends of the rotor.In simulating the characteristic model based all-coefficient adaptive control,the controller parameters are chosen as λ1=0.16,d1=0.0257,d2=0.01,δ =3.5 and γ =1.5.The initial values for the adaptation law are selected asf1(0)=2.102,f2(0)=?1.104 andg0(0)=g1(0)=0.001.Note that(f1(0),f2(0))∈N.

    Shown in Figs.10 and 11 are some simulation re-sults for the μ-synthesis controller and the characteristic model based all-coefficient adaptive controller,respectively.For both controllers, the simulation starts with the 0r/min rotating speed.The rotating speed is then gradually increased to 14,400r/min.It can be noticed that for different control channels,the control signals from the characteristic model based all-coefficient adaptive control are very similar to each other due to the fact that an identical controller is applied at each control input.On the other hand,for the μ-synthesis control,the control signals vary significantly from channel to channel.

    In terms of the levels of vibration at both the driven and nondriven ends, it can be observed that the displacements in bothxandyaxes are much smaller under the characteristic model based all-coefficient adaptive control law than under the μ-synthesis controller for most of the speed range.The adaptation of the coefficients in the characteristic model based all-coefficient adaptive controller,while the rotating speed varies,is shown in Fig.12.

    Fig.10 Simulation results with the μ-synthesis controller:control signals and the shaft displacements.

    Fig.11 Simulation results with the characteristic model based all-coefficient adaptive controller:control signals and the shaft displacements.

    Fig.12 Adaptation of the parameters f1(k),f2(k),g0(k)and g1(k),as the rotating speed varies.

    The μ-synthesis controller has been experimentally tested in[12].To implement the characteristic model based all-coefficient adaptive controller,we first design a first order low-pass filter which,along with a phase bump filter,rolls off the high frequency gain[15].A notch filter is also included to attenuate the effect of the second bending mode[16],which is around 530Hz.

    The characteristic model based all-coefficient control algorithm is converted to C++code to replace the existing μ-synthesis control algorithm.In running the experiment,the controller parameters and the the initial values for the adaptation law are chosen to be the same as those used in the simulation study.

    The experimental results,for both the μ-synthesis control and the characteristic model based all-coefficient adaptive control,have been recorded for a speed range up to around 14,400r/min,at which the rotor remains stable.These results are shown in Figs.13 and 14,in which it can be seen that the characteristic model based all-coefficient adaptive control preserves the reliable performance shown in the simulation.It can also be observed that,for both controllers,the control signals display several peaks when the rotor passes through the rigid body modes and moves towards the first bending mode.In terms of the level of vibration,the characteristic model based all-coefficient adaptive controller results in lower levels of vibration at both driven and nondriven ends.

    Fig.13 Experimental results with the μ-synthesis controller:control signals,shaft displacements and orbit size.

    Fig.14 Experimental results with the characteristic model based all-coefficient adaptive controller:control signals,shaft displacements and orbit size.

    5 Conclusions

    In this paper,we have explored and reported on the application of the characteristic model based all coefficient adaptive control on a flexible rotor AMB system.The nonlinearity,uncertainty and high model order of flexible rotor AMB systems cause challenges for controller designs.Although μ-synthesis has been shown to be able to sufficiently handle these challenges, it requiresthe plant and uncertainty models, which are usually nontrivial to obtain.Moreover,even with plant and uncertainty model,the design of the μ-synthesis controller is a rather complex process.The characteristic model based all-coefficient adaptive controller is of low order and simple structure.On the other hand,both simulation and experimental results indicated that,despite its simplicity,the characteristic model based all-coefficient adaptive control is able to provide control performance comparable to what a benchmark μ-synthesis controller can provide,thus demonstrating its strong potential for application in the AMB control systems.

    [1]G.Schweitzer,E.H.Maslen.Magnetic Bearings.Berlin:Springer-Verlag,2009.

    [2]E.H.Maslen,J.T.Sawicki.μ-synthesis for magnetic bearings:why use such a complicated tool?Proceedings of the ASME International Mechanical Enginering Congress and Exposition:Mechanical Systems and Control.Seattle:ASME,2007:1103–1112.

    [3]S.E.Mushi,Z.Lin,P.E.Allaire.Design,construction,and modeling of a flexible rotor active magnetic bearing test rig.IEEEASME Transactions on Mechatronics,2011,17(6):1170–1182.

    [4]H.Wu,Z.Sha.An all-coefficient adaptive control method.Acta Automatica Sinica,1985,11(1):12–20.

    [5]H.Wu,J.Hu,Y.Xie.Characteristic model-based all-coefficient adaptive control method and its applications.IEEE Transactions on Systems,Man,and Cybernetics–Part C:Applications and Reviews,2007,37(2):213–221.

    [6]G.Zhang,H.Wu.An all-coefficient adaptive control method for a class of nonlinear time-varying systems.Science in China–Series F:Information Sciences,2009,52(10):1730–1738.

    [7]Z.Zhang,J.Hu.Stability analysis of a hypersonic vehicle controlled by the characteristic model based adaptive controller.Science in China–Series F:Information Sciences,2012,55(10):2243–2256.

    [8]H.Wu,Y.Liu,Z.Liu,et al.Characteristic modeling and the control of flexible structure.Science in China–Series F:Information Sciences,2001,44(4):278–291.

    [9]G.Zhang,J.Liu,H.Wu.Adaptive control of large flexible structures using the characteristic modeling technique.Proceedings of theIMACSMulticonferenceonComputational Engineering in Systems Applications.Beijing:Tsinghua University Press,2006.

    [10]Z.Li,Z.Wang,J.Li.A hybrid control scheme of adaptive and variable structure for flexible spacecraft.Aerospace Science and Technology,2004,8(5):423–430.

    [11]S.E.Mushi.Control of Flexible Rotors Supported by Active Magnetic Bearings.Master’s thesis,Charlottesville,VA:University of Virginia,2008.

    [12]S.E.Mushi.Robust Control of Rotordynamic Instability in Rotating Machinery Supported by Active Magnetic Bearings.Ph.D.thesis.Charlottesville,VA:University of Virginia,2012.

    [13]H.Wu,J.Hu,Y.Xie.Characteristic Model-Based Intelligent Adaptive Control.Beijing:China Science and Technology Press,2008.

    [14]B.Meng,H.Wu,Z.Lin,et al.Characteristic model based control of the x-34 reusable launch vehicle in its climbing phase.Science in China Series F:Information Sciences,52(11):2216–2225,2009.

    [15]H.Fujiwara,K.Ebina,K.Ebina,et al.Control of flexible rotors supported by active magnetic bearings.Proceedings of the 8th International Symposium on Magnetic Bearings.Mito,Japan,2002:145–150.

    [16]S.E.Mushi,Z.Lin,P.E.Allaire.Design,construction and modeling of a flexible rotor active magnetic bearing test rig.Proceedings of the Asme Turbo Expo.Glasgow,U.K.:ASME,2010.

    22 November 2013;revised 21 December 2013;accepted 21 December 2013

    DOI10.1007/s11768-014-0184-0

    ?Corresponding author.

    E-mail:zl5y@virginia.edu.

    Long DI received his B.S.and M.S.degrees,both in Electrical Engineering,from Utah State University,Logan,UT,in 2009 and 2011,respectively.He is currently working toward his Ph.D.degree at the University of Virginia.His main research interest lies in modeling and control of active magnetic bearings.E-mail:ld4vv@virginia.edu.

    Zongli LIN is a professor of Electrical and Computer Engineering at University of Virginia.He received his B.S.degree in Mathematics and Computer Science from Xiamen University,Xiamen,China,in 1983,M.E.degree in Automatic Control from Chinese Academy of Space Technology,Beijing,China,in 1989,and his Ph.D.degree in Electrical and Computer Engineering from Washington State University,Pullman,Washington,in 1994.His current research interests include nonlinear control,robust control,and control applications.He was an associate editor of the IEEE Transactions on Automatic Control(2001–2003),IEEE/ASME Transactions on Mechatronics(2006–2009)and IEEE Control Systems Magazine(2005–2012).He was an elected member of the Board of Governors of the IEEE Control Systems Society(2008–2010)and has served on the operating committees and program committees of several conferences.He currently chairs the IEEE Control Systems Society Technical Committee on Nonlinear Systems and Control and serves on the editorial boards of several journals and book series,including Automatica,Systems&Control Letters,Science China Information Sciences,and Springer/Birkhauser book series Control Engineering.He is a fellow of the Institute of Electrical and Electronics Engineers(IEEE),the International Federation of Automatic Control(IFAC)and the American Association for the Advancement of Science(AAAS).E-mail:zl5y@virginia.edu.

    男人舔女人下体高潮全视频| 久9热在线精品视频| 欧美av亚洲av综合av国产av| 性少妇av在线| 欧美黄色片欧美黄色片| 国产不卡一卡二| 在线观看舔阴道视频| 香蕉久久夜色| 高清欧美精品videossex| 久久热在线av| 亚洲欧洲精品一区二区精品久久久| 久久伊人香网站| 最近最新中文字幕大全电影3 | 久久久久国产一级毛片高清牌| 法律面前人人平等表现在哪些方面| 制服人妻中文乱码| 国产精品一区二区免费欧美| 国产激情欧美一区二区| 精品久久久精品久久久| 九色亚洲精品在线播放| 999久久久国产精品视频| 久久狼人影院| www.999成人在线观看| 高清黄色对白视频在线免费看| 亚洲人成电影免费在线| 欧美日韩亚洲国产一区二区在线观看| 级片在线观看| xxx96com| 亚洲专区字幕在线| 亚洲五月色婷婷综合| 成年版毛片免费区| 亚洲第一青青草原| 亚洲第一av免费看| 久久精品国产亚洲av香蕉五月| 91麻豆精品激情在线观看国产 | 夜夜夜夜夜久久久久| svipshipincom国产片| 亚洲精品久久午夜乱码| 中文字幕精品免费在线观看视频| 亚洲欧美日韩另类电影网站| 999精品在线视频| 午夜影院日韩av| 国产免费av片在线观看野外av| 国产欧美日韩精品亚洲av| 国产精品av久久久久免费| 免费人成视频x8x8入口观看| 欧美日韩视频精品一区| 欧美中文日本在线观看视频| 美女福利国产在线| 999久久久国产精品视频| 黄色视频不卡| 后天国语完整版免费观看| 久久国产精品人妻蜜桃| 91精品国产国语对白视频| 一个人观看的视频www高清免费观看 | 日韩精品中文字幕看吧| 欧美激情久久久久久爽电影 | 国产亚洲精品综合一区在线观看 | 亚洲精品在线观看二区| 国产av一区二区精品久久| 国产黄a三级三级三级人| 俄罗斯特黄特色一大片| 视频在线观看一区二区三区| 日本一区二区免费在线视频| 欧美另类亚洲清纯唯美| 精品无人区乱码1区二区| 99riav亚洲国产免费| 精品免费久久久久久久清纯| 女生性感内裤真人,穿戴方法视频| 在线观看免费视频网站a站| 91字幕亚洲| 国产亚洲精品综合一区在线观看 | 水蜜桃什么品种好| 国产精品久久久久成人av| 99久久99久久久精品蜜桃| 在线国产一区二区在线| 又黄又粗又硬又大视频| 久久国产精品影院| 亚洲精品久久成人aⅴ小说| 另类亚洲欧美激情| 亚洲av第一区精品v没综合| 日本wwww免费看| xxxhd国产人妻xxx| 亚洲专区国产一区二区| 亚洲全国av大片| 午夜福利一区二区在线看| 久久香蕉国产精品| a级毛片在线看网站| 精品久久久久久成人av| 9191精品国产免费久久| 女性被躁到高潮视频| 少妇粗大呻吟视频| 国产精品香港三级国产av潘金莲| 啦啦啦 在线观看视频| 中亚洲国语对白在线视频| 日本一区二区免费在线视频| 国内久久婷婷六月综合欲色啪| 亚洲国产欧美网| 变态另类成人亚洲欧美熟女 | 亚洲第一av免费看| 91成年电影在线观看| 日韩人妻精品一区2区三区| 级片在线观看| 黑人巨大精品欧美一区二区蜜桃| 90打野战视频偷拍视频| 如日韩欧美国产精品一区二区三区| cao死你这个sao货| 精品国产亚洲在线| 无限看片的www在线观看| 国产乱人伦免费视频| 97碰自拍视频| 丰满的人妻完整版| videosex国产| 国产精品久久久久久人妻精品电影| 大型av网站在线播放| bbb黄色大片| www.精华液| 91在线观看av| 老汉色∧v一级毛片| 一区二区日韩欧美中文字幕| 一个人免费在线观看的高清视频| 欧美成狂野欧美在线观看| 老司机午夜福利在线观看视频| 日日摸夜夜添夜夜添小说| 亚洲人成网站在线播放欧美日韩| 成人三级黄色视频| 视频区欧美日本亚洲| 午夜福利在线观看吧| 国产高清videossex| 999久久久精品免费观看国产| 黄片播放在线免费| 国产av在哪里看| 久久精品国产亚洲av高清一级| 日韩欧美在线二视频| 精品国产亚洲在线| 欧美日韩亚洲综合一区二区三区_| 狂野欧美激情性xxxx| 欧美日韩精品网址| 亚洲av成人av| 最新在线观看一区二区三区| 亚洲成人免费电影在线观看| 国产免费现黄频在线看| 高清在线国产一区| 波多野结衣高清无吗| 亚洲av熟女| 久久影院123| 每晚都被弄得嗷嗷叫到高潮| 大型av网站在线播放| 丰满迷人的少妇在线观看| 午夜视频精品福利| 国产成人精品久久二区二区91| 伦理电影免费视频| 日本免费一区二区三区高清不卡 | 99国产精品一区二区蜜桃av| 99精品在免费线老司机午夜| av在线播放免费不卡| 一区二区三区精品91| 一级毛片精品| 99久久人妻综合| 日本 av在线| 亚洲在线自拍视频| 色综合婷婷激情| 在线观看66精品国产| 国产亚洲精品第一综合不卡| 成人免费观看视频高清| 国产欧美日韩一区二区精品| 国产高清国产精品国产三级| 老司机在亚洲福利影院| 亚洲第一av免费看| 日韩欧美免费精品| 两人在一起打扑克的视频| 一级毛片精品| 午夜视频精品福利| 亚洲精品美女久久久久99蜜臀| 超色免费av| 国产av一区在线观看免费| 色婷婷久久久亚洲欧美| 三上悠亚av全集在线观看| 波多野结衣av一区二区av| 亚洲精华国产精华精| 怎么达到女性高潮| 国产主播在线观看一区二区| 精品国产一区二区久久| 97人妻天天添夜夜摸| 十八禁网站免费在线| 日韩一卡2卡3卡4卡2021年| 一本综合久久免费| 亚洲激情在线av| 精品久久久久久电影网| 激情在线观看视频在线高清| 亚洲人成77777在线视频| 国产精品久久电影中文字幕| 涩涩av久久男人的天堂| 麻豆国产av国片精品| 亚洲va日本ⅴa欧美va伊人久久| 91麻豆精品激情在线观看国产 | 欧美亚洲日本最大视频资源| av网站免费在线观看视频| 人妻丰满熟妇av一区二区三区| 亚洲精品在线观看二区| 桃红色精品国产亚洲av| 国产亚洲精品综合一区在线观看 | 国产精品偷伦视频观看了| 午夜日韩欧美国产| 男人的好看免费观看在线视频 | 成年人黄色毛片网站| 日韩大码丰满熟妇| 高清毛片免费观看视频网站 | 亚洲精品美女久久av网站| 国产三级在线视频| 丝袜美足系列| 国产精品偷伦视频观看了| 91九色精品人成在线观看| 欧美日本亚洲视频在线播放| 亚洲一码二码三码区别大吗| 午夜免费成人在线视频| 国产精品野战在线观看 | 男女下面插进去视频免费观看| 天天影视国产精品| 淫妇啪啪啪对白视频| 欧美av亚洲av综合av国产av| 99国产精品一区二区蜜桃av| 精品欧美一区二区三区在线| 99精国产麻豆久久婷婷| 精品熟女少妇八av免费久了| 欧美日韩精品网址| 欧美激情 高清一区二区三区| 中文字幕色久视频| avwww免费| 国产在线精品亚洲第一网站| 欧美日韩黄片免| 午夜福利欧美成人| 久久久久久久午夜电影 | 99精品在免费线老司机午夜| 日韩 欧美 亚洲 中文字幕| 淫妇啪啪啪对白视频| 后天国语完整版免费观看| 丰满饥渴人妻一区二区三| 久99久视频精品免费| 精品国产一区二区三区四区第35| 久久久久久久久免费视频了| 国内毛片毛片毛片毛片毛片| 久久久国产欧美日韩av| 日日夜夜操网爽| 一进一出抽搐动态| 亚洲欧美精品综合久久99| 级片在线观看| 精品高清国产在线一区| 美女扒开内裤让男人捅视频| 一级毛片高清免费大全| 欧美精品亚洲一区二区| 一边摸一边做爽爽视频免费| 成人三级黄色视频| 日日干狠狠操夜夜爽| 欧美精品一区二区免费开放| 法律面前人人平等表现在哪些方面| 欧美国产精品va在线观看不卡| 国产xxxxx性猛交| 99精国产麻豆久久婷婷| 国产av又大| 国产精品一区二区在线不卡| 国产免费男女视频| 久久久久亚洲av毛片大全| 国产成人精品在线电影| 日本一区二区免费在线视频| 91九色精品人成在线观看| avwww免费| 大香蕉久久成人网| 国产精品电影一区二区三区| 新久久久久国产一级毛片| 亚洲精品中文字幕一二三四区| 午夜老司机福利片| 亚洲avbb在线观看| 久久久久久久久中文| 水蜜桃什么品种好| 新久久久久国产一级毛片| 久久精品aⅴ一区二区三区四区| 精品国产一区二区三区四区第35| 国产一区二区在线av高清观看| 亚洲精华国产精华精| 一级片'在线观看视频| 国产在线精品亚洲第一网站| 黑人欧美特级aaaaaa片| 91在线观看av| 九色亚洲精品在线播放| 亚洲成人久久性| 欧美av亚洲av综合av国产av| 亚洲,欧美精品.| 国产免费现黄频在线看| 人成视频在线观看免费观看| 久久香蕉激情| 亚洲一区高清亚洲精品| 制服人妻中文乱码| avwww免费| 丰满的人妻完整版| 国产精品av久久久久免费| 欧美在线一区亚洲| 国产成人一区二区三区免费视频网站| 法律面前人人平等表现在哪些方面| 夜夜躁狠狠躁天天躁| 亚洲欧美精品综合一区二区三区| 悠悠久久av| 国产一区在线观看成人免费| 亚洲熟妇熟女久久| 视频区图区小说| 好看av亚洲va欧美ⅴa在| 婷婷六月久久综合丁香| 精品国产乱码久久久久久男人| 法律面前人人平等表现在哪些方面| 女同久久另类99精品国产91| 亚洲第一青青草原| www.www免费av| 久久午夜亚洲精品久久| 精品久久久久久成人av| 少妇 在线观看| 午夜福利免费观看在线| 精品久久久久久电影网| 又黄又粗又硬又大视频| 亚洲欧美日韩无卡精品| 亚洲一区二区三区欧美精品| 大香蕉久久成人网| x7x7x7水蜜桃| 在线观看免费高清a一片| 久久热在线av| 日本a在线网址| 国产精品秋霞免费鲁丝片| 看片在线看免费视频| 国产深夜福利视频在线观看| 日本a在线网址| 久久久久久久久免费视频了| 日本黄色视频三级网站网址| 久久久精品欧美日韩精品| 国产aⅴ精品一区二区三区波| 每晚都被弄得嗷嗷叫到高潮| 高清黄色对白视频在线免费看| 国产精品一区二区免费欧美| 在线观看一区二区三区激情| 国产精品偷伦视频观看了| 久久人人爽av亚洲精品天堂| 国产无遮挡羞羞视频在线观看| 亚洲av电影在线进入| 熟女少妇亚洲综合色aaa.| 妹子高潮喷水视频| 黄色视频,在线免费观看| 成人三级做爰电影| 在线十欧美十亚洲十日本专区| 精品卡一卡二卡四卡免费| 亚洲一区二区三区色噜噜 | 夜夜爽天天搞| 狂野欧美激情性xxxx| 午夜两性在线视频| 欧美日韩乱码在线| 精品第一国产精品| 欧美一区二区精品小视频在线| 一级,二级,三级黄色视频| 精品国产国语对白av| 日韩欧美一区二区三区在线观看| 极品人妻少妇av视频| 9热在线视频观看99| 亚洲狠狠婷婷综合久久图片| 日本wwww免费看| 在线观看66精品国产| 久久精品国产亚洲av香蕉五月| 电影成人av| 国产精品亚洲av一区麻豆| 内射极品少妇av片p| 又粗又爽又猛毛片免费看| 亚洲自偷自拍三级| 非洲黑人性xxxx精品又粗又长| 看十八女毛片水多多多| 深夜精品福利| 欧美色视频一区免费| 少妇的逼水好多| 国产主播在线观看一区二区| 国产成人aa在线观看| 99久久九九国产精品国产免费| 久久精品影院6| 美女高潮的动态| 亚洲第一区二区三区不卡| 免费看美女性在线毛片视频| 天堂影院成人在线观看| 神马国产精品三级电影在线观看| 69av精品久久久久久| 真人做人爱边吃奶动态| 九九久久精品国产亚洲av麻豆| 亚洲人与动物交配视频| av福利片在线观看| 亚洲熟妇中文字幕五十中出| a级毛片a级免费在线| 日韩欧美在线二视频| 伦理电影大哥的女人| 综合色av麻豆| 国产在线精品亚洲第一网站| 3wmmmm亚洲av在线观看| 欧美色视频一区免费| 国产白丝娇喘喷水9色精品| 精品久久久久久久久av| 免费黄网站久久成人精品 | 琪琪午夜伦伦电影理论片6080| 日本在线视频免费播放| 人人妻,人人澡人人爽秒播| www.www免费av| 特级一级黄色大片| 亚洲成人中文字幕在线播放| 欧美一区二区亚洲| 男女那种视频在线观看| 小说图片视频综合网站| 久久久久久久午夜电影| 亚洲美女搞黄在线观看 | 日本撒尿小便嘘嘘汇集6| 欧美激情久久久久久爽电影| 草草在线视频免费看| 久久人人爽人人爽人人片va | 精品无人区乱码1区二区| 黄色一级大片看看| 亚洲激情在线av| 色播亚洲综合网| 日韩有码中文字幕| 欧美潮喷喷水| 亚洲国产精品sss在线观看| 日韩av在线大香蕉| 搡女人真爽免费视频火全软件 | www.熟女人妻精品国产| 亚洲中文日韩欧美视频| 午夜福利在线在线| av在线天堂中文字幕| 欧美中文日本在线观看视频| 日韩大尺度精品在线看网址| 国产白丝娇喘喷水9色精品| 欧美+亚洲+日韩+国产| 欧美精品国产亚洲| 午夜精品在线福利| 淫妇啪啪啪对白视频| 悠悠久久av| 国产一区二区在线av高清观看| 性插视频无遮挡在线免费观看| 99热这里只有精品一区| 亚洲专区国产一区二区| 男女床上黄色一级片免费看| aaaaa片日本免费| 免费无遮挡裸体视频| 精品乱码久久久久久99久播| 中文字幕精品亚洲无线码一区| 国产白丝娇喘喷水9色精品| 88av欧美| 最新在线观看一区二区三区| 三级国产精品欧美在线观看| 88av欧美| 日本五十路高清| 亚洲欧美日韩高清专用| 伊人久久精品亚洲午夜| 精品午夜福利在线看| 亚洲男人的天堂狠狠| 亚洲精品亚洲一区二区| 18禁裸乳无遮挡免费网站照片| 老司机深夜福利视频在线观看| 丰满乱子伦码专区| 精品久久久久久久久久久久久| 国产精品久久久久久亚洲av鲁大| 亚洲av第一区精品v没综合| 人妻丰满熟妇av一区二区三区| 黄色女人牲交| 精品午夜福利视频在线观看一区| 久久久久亚洲av毛片大全| 在现免费观看毛片| 757午夜福利合集在线观看| 天堂动漫精品| 亚洲在线自拍视频| 久久精品国产清高在天天线| 国产日本99.免费观看| 日韩欧美 国产精品| 日韩欧美精品免费久久 | av中文乱码字幕在线| 亚洲av免费高清在线观看| 内射极品少妇av片p| 黄片小视频在线播放| 国内精品久久久久久久电影| 欧美区成人在线视频| 日韩欧美免费精品| av专区在线播放| 久久这里只有精品中国| 蜜桃亚洲精品一区二区三区| 人妻夜夜爽99麻豆av| 日本免费a在线| 又爽又黄a免费视频| 国产精品久久久久久亚洲av鲁大| 我要搜黄色片| 国产精品永久免费网站| 亚洲成人久久性| 在线观看美女被高潮喷水网站 | 啦啦啦观看免费观看视频高清| 久久国产乱子伦精品免费另类| 午夜福利在线观看吧| 午夜久久久久精精品| 精品不卡国产一区二区三区| 日韩欧美三级三区| 一本久久中文字幕| 欧美潮喷喷水| 在线观看一区二区三区| 美女cb高潮喷水在线观看| 一卡2卡三卡四卡精品乱码亚洲| 搞女人的毛片| 一a级毛片在线观看| 一个人观看的视频www高清免费观看| 亚洲avbb在线观看| 又黄又爽又免费观看的视频| 日本与韩国留学比较| 舔av片在线| 国产成人aa在线观看| 日本熟妇午夜| av视频在线观看入口| 成人永久免费在线观看视频| 波多野结衣高清作品| 亚洲第一欧美日韩一区二区三区| 亚洲第一区二区三区不卡| 啪啪无遮挡十八禁网站| 国产精品乱码一区二三区的特点| 色哟哟·www| 脱女人内裤的视频| 成年女人永久免费观看视频| 国产精品人妻久久久久久| 国产精品爽爽va在线观看网站| 无人区码免费观看不卡| 每晚都被弄得嗷嗷叫到高潮| 亚洲人与动物交配视频| 男人舔奶头视频| 18美女黄网站色大片免费观看| 亚洲成人免费电影在线观看| 日本 欧美在线| 国产精品亚洲一级av第二区| 免费人成视频x8x8入口观看| 婷婷精品国产亚洲av| 俺也久久电影网| 每晚都被弄得嗷嗷叫到高潮| 一级黄片播放器| 97人妻精品一区二区三区麻豆| 别揉我奶头 嗯啊视频| 丰满人妻一区二区三区视频av| 亚洲在线观看片| 女生性感内裤真人,穿戴方法视频| 国产欧美日韩精品一区二区| 亚洲国产欧洲综合997久久,| 性欧美人与动物交配| 中文字幕人成人乱码亚洲影| 亚洲成a人片在线一区二区| 成人三级黄色视频| 欧美成人免费av一区二区三区| 精品国产三级普通话版| 男女那种视频在线观看| 97超视频在线观看视频| 别揉我奶头 嗯啊视频| 我的女老师完整版在线观看| 天堂网av新在线| 色哟哟·www| 久久久久久久久久成人| 色精品久久人妻99蜜桃| 欧美日韩黄片免| 免费在线观看亚洲国产| 日韩欧美国产一区二区入口| 老司机午夜十八禁免费视频| 精品久久久久久,| 国产成人啪精品午夜网站| 我的女老师完整版在线观看| 高潮久久久久久久久久久不卡| 欧美日韩中文字幕国产精品一区二区三区| 好看av亚洲va欧美ⅴa在| 亚洲aⅴ乱码一区二区在线播放| 三级男女做爰猛烈吃奶摸视频| 在现免费观看毛片| 成人国产一区最新在线观看| 国内精品久久久久久久电影| 丁香欧美五月| 蜜桃久久精品国产亚洲av| 国产精品,欧美在线| 成人一区二区视频在线观看| 国产精品精品国产色婷婷| 人妻制服诱惑在线中文字幕| 国模一区二区三区四区视频| 国产精品一区二区性色av| 三级毛片av免费| 搡老岳熟女国产| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品粉嫩美女一区| 少妇的逼水好多| 最近中文字幕高清免费大全6 | 亚洲人与动物交配视频| 亚洲自拍偷在线| 中文字幕人妻熟人妻熟丝袜美| 久久久久久国产a免费观看| 久久久久免费精品人妻一区二区| 欧美激情在线99| 国产一级毛片七仙女欲春2| 99久久精品国产亚洲精品| 少妇被粗大猛烈的视频| av黄色大香蕉| 国产一区二区激情短视频| 成人高潮视频无遮挡免费网站| 国产精华一区二区三区| 久久久久久九九精品二区国产| 又爽又黄无遮挡网站| 国产91精品成人一区二区三区| 看片在线看免费视频| 狠狠狠狠99中文字幕| 亚洲人成网站在线播放欧美日韩| 欧美xxxx性猛交bbbb| 中文字幕人成人乱码亚洲影| 久久久精品大字幕| 九九热线精品视视频播放| 国产精品乱码一区二三区的特点| 久久久久九九精品影院| 欧美+亚洲+日韩+国产| 一卡2卡三卡四卡精品乱码亚洲| 国产高清视频在线观看网站| 国产亚洲精品av在线| 亚洲精品影视一区二区三区av|