拓步雄等
[摘要] 目的 探討二十二碳六烯酸(DHA)對白介素1β(IL-1β)誘導(dǎo)的動脈平滑肌細(xì)胞增殖和遷移的影響及機(jī)制。 方法 血管平滑肌細(xì)胞(VSMCs)培養(yǎng)及傳代后,分為對照組、IL-1β組、DHA組、IL-1β和DHA處理組四組,其中對照組細(xì)胞加入50 μL磷酸鹽緩沖液(PBS);IL-1β組細(xì)胞加入10 ng/mL IL-1β;DHA組細(xì)胞加入80 μmol/L DHA;IL-1β和DHA處理組加入10 ng/mL IL-1β和80 μmol/L DHA,培養(yǎng)48 h后,噻唑藍(lán)(MTT)法和Transwell法檢測VSMCs的增殖和遷移情況;qRT-PCR和Western blotting技術(shù)檢測基質(zhì)金屬蛋白酶(MMP)-2、MMP-9、組織金屬蛋白酶抑制劑(TIMP)-1、TIMP-2和Notch3的表達(dá)情況。 結(jié)果 VSMCs的增殖率和遷移能力經(jīng)IL-1β處理后顯著增高,而IL-1β和DHA處理組顯著低于IL-1β處理組(F=25.537,P=0.003);MMP-2、MMP-9、TIMP-1、TIMP-2的表達(dá)量經(jīng)IL-1β處理后顯著增高,而經(jīng)IL-1β和DHA共處理后顯著低于IL-1β組(MMP-2:F=34.286,P=0.000;TIMP-2:F=21.034,P=0.009;MMP-9:F=31.732,P=0.000;TIMP-1:F=18.213,P=0.021);IL-1β組細(xì)胞Notch3表達(dá)量顯著降低,IL-1β和DHA處理組中Notch3的表達(dá)水平則顯著高于IL-1β處理組(F=39.235,P=0.000)。 結(jié)論 DHA可通過Notch信號通路抑制VSMCs的增殖和遷移。
[關(guān)鍵詞] 二十二碳六烯酸;白介素1β;基質(zhì)金屬蛋白酶-2;基質(zhì)金屬蛋白酶-9;組織金屬蛋白酶抑制劑-1;組織金屬蛋白酶抑制劑-2;Notch3
[中圖分類號] R544.1 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1673-7210(2014)09(c)-0021-05
Effect and mechanism study of Docosahexaenoic Acid for vascular smooth muscle cells proliferation and migration induced by IL-1β
TUO Buxiong LI Chaomin YE Mingxia LIU Wei LI Hui▲
Department of Cardiology, the 451st Hospital of PLA, Shaanxi Province, Xi′an 710054, China
[Abstract] Objective To study the effect and mechanism study of Docosahexaenoic Acid (DHA) for vascular smooth muscle cells (VSMC) proliferation and migration induced by interleukin (IL-1β). Methods Subcultured VSMCs were divided into four groups: control group, DHA group, IL-1β group and IL-1β combined with DHA group. Cells were cocultured with 50 μL PBS in control group, with 10 ng/mL IL-1β in IL-1β group, with 80 μmol/L DHA in DHA group, with 10 ng/mL IL-1β and 80 μmol/L DHA in IL-1β combined with DHA group for 48 h. MTT and Transwell methods were used to detect VSMCs proliferation and migration. qRT-PCR and Western blotting methods were used to measure the expression of matrix metalloproteinase (MMP)-2, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1, TIMP-2 and Notch3. Results The proliferation and migration of VSMCs significantly increased in IL-1β group , while the proliferation and migration ability of VSMCs significantly decreased compared with IL-1β group (F=25.537, P=0.003). In IL-1β group, the expression of MMP-2, MMP-9, TIMP-1 and TIMP-2 significantly increased (P < 0.05), whereas the expression of MMP-2, MMP-9, TIMP-1 and TIMP-2 in IL-1β combined with DHA group significantly decreased compared with IL-1β group (MMP-2: F=34.286, P=0.000; TIMP-2: F=21.034, P=0.009; MMP-9: F=31.732, P=0.000; TIMP-1: F=18.213, P=0.021). The expression of Notch3 in IL-1β group was significantly lower, while in the IL-1β combined with DHA group the expression of Notch3 was significantly higher than that in the IL-1β group (F=39.235, P=0.000). Conclusion DHA can inhibit VSMCs proliferation and migration through the Notch signaling pathway.
[Key words] Docosahexaenoic Acid; IL-1β; MMP-2; MMP-9; TIMP-1; TIMP-2; Notch3
血管壁結(jié)構(gòu)的改變是高血壓病理改變的普遍特征。目前普遍認(rèn)為,高血壓基本病理改變是血管重塑。動脈壁中膜肥厚是高血壓血管壁增厚的主要原因,這與血管平滑肌細(xì)胞(vascular smooth muscle cells,VSMCs)的增殖和遷移密切相關(guān)。研究表明多不飽和脂肪酸如二十碳五烯酸和二十二碳六烯酸(Docosahexaenoic Acid,DHA)可降低心血管疾病的發(fā)病率和病死率[1]。DHA除了具有很好的降血脂作用外,還可以通過影響內(nèi)皮細(xì)胞和VSMCs的生物學(xué)行為進(jìn)而調(diào)節(jié)血壓。在炎性反應(yīng)中DHA可降低VSMCs的增殖和遷移[2-3]。研究表明,在高血壓、血管再狹窄和動脈粥樣硬化過程中VSMCs的增殖和遷移與基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMP)降解細(xì)胞外基質(zhì)密切相關(guān)[4]。當(dāng)血管損傷后炎癥因子高表達(dá),上調(diào)MMP-2和MMP-9,使細(xì)胞外基質(zhì)大量降解,加速了VSMCs向血管內(nèi)膜遷移,導(dǎo)致血管壁增厚,引起血壓上升,血栓形成[5-6]。目前,有關(guān)DHA的降血壓機(jī)制的研究尚不多見。本文通過研究DHA對VSMCs增殖及遷移的影響,以及對基質(zhì)金屬蛋白酶及其抑制劑含量的變化探討了DHA對高血壓的影響及機(jī)制。
1 材料與方法
1.1 材料與儀器
雄性SD大鼠,山東綠葉制藥有限公司動物實驗中心提供,合格證號:20030020;干粉培養(yǎng)基(DMEM),美國Gibco公司生產(chǎn);Trizol,加拿大Invitrogen公司提供;Quantscript RT kit,總RNA提取試劑盒購自于Takara公司;瓊脂糖購自于BioWest公司;RIPA裂解液,購自于美國Millipore公司;DHA、噻唑藍(lán)(MTT)、二甲基亞砜(DMSO)和胰蛋白酶購自于Sigma公司;水套式二氧化碳孵箱,美國Nuaire公司生產(chǎn);超凈工作臺,蘇州凈化設(shè)備公司生產(chǎn);PCR儀:MJ Research INC生產(chǎn)。
1.2 方法
1.2.1 細(xì)胞培養(yǎng) 8周齡的雄性大鼠,頸椎脫臼處死,取胸主動脈,放入磷酸鹽緩沖液(PBS)中清洗。剝?nèi)用}外膜及內(nèi)膜,取血管的中層組織洗凈后剪成1 mm2大小的組織塊,按組織貼塊法接種于200 mL/L胎牛血清的DMEM培養(yǎng)液中,于5%CO2、37℃下培養(yǎng)24 h。待細(xì)胞達(dá)到80%的融合后,用2.5 g/L的胰蛋白酶消化傳代。
1.2.2 實驗分組處理 消化細(xì)胞并收集細(xì)胞懸液,將細(xì)胞以1×105/孔接種于24孔細(xì)胞培養(yǎng)板中,然后將細(xì)胞隨機(jī)分為四組:對照組細(xì)胞加入50 μL PBS培養(yǎng)48 h;IL-1β組細(xì)胞加入10 ng/mL IL-1β共培養(yǎng)48 h;DHA組細(xì)胞加入80 μmol/L DHA培養(yǎng)48 h;IL-1β和DHA處理組細(xì)胞加入10 ng/mL IL-1β和80 μmol/L DHA培養(yǎng)48 h。
1.2.3 MTT檢測細(xì)胞增殖 細(xì)胞增殖采用MTT法進(jìn)行檢測。細(xì)胞消化后通過計數(shù)板計數(shù),將細(xì)胞以1×104/孔的密度接種至96孔培養(yǎng)板中。接種12 h后,按上述分組方法進(jìn)行培養(yǎng)。每組做6個重復(fù)。培養(yǎng)48 h后每孔加入5 g/L的MTT 20 μL,37℃恒溫箱中培養(yǎng)4 h,去上清,每孔加入200 μL DMSO,振搖20 min,用紫外分光光度計測定570 nm下的光密度值(OD)。
1.2.4 Transwell法檢測細(xì)胞侵襲 在24孔Transwell上室聚碳酸酯膜(膜孔徑8 μm)上涂1 g/L的matrigel 70 μL,37℃,60 min使之在微孔濾膜上重組為基底膜結(jié)構(gòu)。取對數(shù)生長期的VSMCs,以DMEM培養(yǎng)液[不加胎牛血清(FBS)],調(diào)整細(xì)胞懸液中細(xì)胞數(shù)為l×105/mL,取200 μL細(xì)胞懸液接種于Transwell上室內(nèi),下室加入10%FBS的DMEM培養(yǎng)液500 μL,37℃,5%CO2培養(yǎng)24 h后,將濾膜上層細(xì)胞用棉簽?zāi)ㄈ?,濾膜以甲醇固定,然后用結(jié)晶紫染色15 min。100倍光鏡下選擇膜上、下、左、右、中5個不同視野的穿過膜細(xì)胞數(shù),求平均值。
1.2.5 qRT-PCR檢測 VSMCs細(xì)胞分組處理48 h后,利用PBS清洗細(xì)胞3遍,然后胰酶消化收集細(xì)胞,依據(jù)試劑盒說明,采用Trizol(Invitrogen,CA)抽提法提取總RNA,提取出的RNA用紫外分光光度計測OD值,以確定RNA的濃度和純度;采用Quantscript RT kit反轉(zhuǎn)錄合成cDNA,PCR擴(kuò)增。PCR擴(kuò)增條件:94℃,1.5 min;94℃,1 min;64℃,1 min;72℃,1 min 40個循環(huán),最后在72℃下延伸10 min,同樣的方法擴(kuò)增內(nèi)參基因三磷酸甘油醛脫氫酶(GAPDH)。引物信息見表1。
1.2.6 Western blotting檢測蛋白表達(dá) 細(xì)胞分組處理48 h后,利用PBS清洗細(xì)胞3遍,然后胰酶消化收集細(xì)胞,用RIPA細(xì)胞蛋白裂解液提取細(xì)胞中的蛋白,二辛可酸(BCA)法測定蛋白濃度。蛋白樣品經(jīng)SDS-PAGE電泳,上樣量為40 μg/行,電泳完畢后,電轉(zhuǎn)移至PVDF膜進(jìn)行如下處理:牛血清白蛋白(BSA)封閉過夜,一抗(1∶1000比例稀釋)室溫?fù)嵊? h,磷酸鹽吐溫緩沖液(PBST)洗滌3次,辣根過氧化物酶(HRP)-IgG(1∶100比例稀釋)室溫?fù)嵊? h,PBST洗滌3次,電化學(xué)發(fā)光(ECL)顯色,暗室曝光。
1.3 統(tǒng)計學(xué)方法
采用統(tǒng)計軟件SPSS 13.0對實驗數(shù)據(jù)進(jìn)行分析,計量資料數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,兩兩比較采用t檢驗。以P < 0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 VSMCs的增殖情況
MTT法檢測VSMCs的增殖情況,結(jié)果顯示,DHA組VSMCs的相對增殖率與對照組比較,差異無統(tǒng)計學(xué)意義(P > 0.05);而IL-1β組VSMCs的相對增殖率顯著增高(P < 0.05);IL-1β和DHA共處理組VSMCs的相對增殖率與IL-1β組VSMCs的相對增殖率相比顯著下降(P < 0.01)。見圖1。
與對照組比較,*P < 0.05;與IL-1β組比較,t=25.537,#P=0.003;IL-1β:白介素-1β;DHA:二十二碳六烯酸
圖1 不同處理組血管平滑肌細(xì)胞的相對增殖率
2.2 VSMCs的遷移情況
Transwell法檢測VSMCs的遷移,結(jié)果顯示,DHA組VSMCs的穿膜均數(shù)為(18.24±5.31)個,與對照組[(22.17±4.58)個]比較,差異無統(tǒng)計學(xué)意義(P > 0.05);IL-1β組VSMCs的穿膜均數(shù)高達(dá)(64.72±21.35)個,顯著高于對照組,差異有統(tǒng)計學(xué)意義(P < 0.05);當(dāng)經(jīng)IL-1β處理的VSMCs與DHA共培養(yǎng)時,VSMCs的穿膜數(shù)量為(38.94±8.45)個,顯著低于IL-1β組VSMCs的穿膜數(shù)量,差異有統(tǒng)計學(xué)意義(P < 0.05)。
2.3 VSMCs中MMP-2、TIMP-2、MMP-9和TIMP-1的表達(dá)
Western blotting檢測MMP-2、TIMP-2、MMP-9及TIMP-1在VSMCs中的表達(dá),結(jié)果顯示,與對照組比較,DHA組VSMCs中MMP-2、TIMP-2、MMP-9、TIMP-1的表達(dá)量和MMP-2/TIMP-2、MMP-9/TIMP-1的比值改變不顯著,差異無統(tǒng)計學(xué)意義(P > 0.05);而IL-1β組的VSMCs中MMP-2、TIMP-2、MMP-9、TIMP-1的表達(dá)量和MMP-2/TIMP-2、MMP-9/TIMP-1的比值顯著增高,差異有統(tǒng)計學(xué)意義(P < 0.05)。當(dāng)經(jīng)IL-1β處理的VSMCs與DHA共培養(yǎng)48 h后,細(xì)胞中的MMP-2、MMP-9的表達(dá)量和MMP-2/TIMP-2、MMP-9/TIMP-1的比值與IL-1β組相比有顯著降低,差異有統(tǒng)計學(xué)意義(P < 0.05)。見圖2、3。
與對照組比較,*P < 0.05;與IL-1β組比較,#P < 0.01;IL-1β:白介素-1β;DHA:二十二碳六烯酸;MMP:基質(zhì)金屬蛋白酶;TIMP:組織金屬蛋白酶抑制劑;GAPDH:甘油醛-3-磷酸脫氫酶
圖2 不同處理組血管平滑肌細(xì)胞中MMP-2和TIMP-2的表達(dá)
與對照組比較,*P < 0.05;與IL-1β組比較,#P < 0.01;IL-1β:白介素-1β;DHA:二十二碳六烯酸;MMP:基質(zhì)金屬蛋白酶;TIMP:組織金屬蛋白酶抑制劑;GAPDH:甘油醛-3-磷酸脫氫酶
圖3 不同處理組血管平滑肌細(xì)胞中MMP-9和TIMP-1的表達(dá)
2.4 Notch信號通路關(guān)鍵調(diào)控因子Notch3在VSMCs中的表達(dá)
DHA組VSMCs中Notch3的表達(dá)量與對照組比較,差異無統(tǒng)計學(xué)意義(P > 0.05);Notch3在IL-1β組VSMCs中的表達(dá)量顯著低于對照組,差異有統(tǒng)計學(xué)意義(P < 0.05);當(dāng)經(jīng)IL-1β處理的VSMCs與DHA共培養(yǎng)48 h后,VSMCs中的Notch3表達(dá)量與IL-1β組相比顯著增高,差異有統(tǒng)計學(xué)意義(P < 0.05),提示DHA對VSMCs增殖和遷移的抑制作用是通過Notch信號通路實現(xiàn)的。見圖4。
3 討論
VSMCs是構(gòu)成血管壁的重要組成成分,其增殖過度是導(dǎo)致多種心血管疾病,尤其是高血壓、動脈粥樣硬化、血管再狹窄等的關(guān)鍵環(huán)節(jié)[7-8]。正常成熟的血管中VSMCs處于分化狀態(tài),當(dāng)局部血管在炎癥因子等刺激作用下?lián)p傷后,局部釋放大量細(xì)胞因子和生長因子,使位于中膜的VSMCs表型發(fā)生改變,導(dǎo)致細(xì)胞收縮功能消失,并由中膜向內(nèi)膜遷移、增殖,同時分泌大量的細(xì)胞外基質(zhì)(extra-cellular matrix,ECM)。本實驗用炎癥因子IL-1β對VSMCs進(jìn)行了處理,誘導(dǎo)VSMCs細(xì)胞發(fā)生炎性反應(yīng),引起其大量增殖,然后用DHA進(jìn)行處理,比較不同處理組VSMCs中MMP-2和MMP-9及其抑制劑的表達(dá)差異,并對Notch信號途徑中的主要調(diào)控因子Notch3進(jìn)行了檢測,探討DHA對VSMCs增殖和遷移的影響及機(jī)制。
MMPs是一類可降解ECM的鋅蛋白酶家族,以酶原的形式分泌,由其他蛋白酶或炎癥因子激活,在組織重構(gòu)及ECM的動態(tài)平衡中發(fā)揮著重要作用[9]。TIMPs是MMPs的主要抑制劑,主要由肌成纖維細(xì)胞、VSMCs、激活的星形膠質(zhì)細(xì)胞等分泌,其分泌為基本的生理所需,隨MMPs的表達(dá)而表達(dá),二者維持在一定的比例,調(diào)節(jié)ECM的動態(tài)平衡,若二者的比例失衡,將引起多種病理反應(yīng)。本研究發(fā)現(xiàn)經(jīng)IL-1β誘導(dǎo)的VSMCs的增殖及遷移能力顯著增高,且MMP-2、MMP-9、TIMP-1和TIMP-2的表達(dá)量顯著上調(diào),MMP-2/TIMP-2、MMP-9/TIMP-1的比值均顯著增高,比例失調(diào)。與DHA共培養(yǎng)后VSMCs的增殖及遷移能力顯著下降,MMP-2和MMP-9的表達(dá)量及MMP-2/TIMP-2、MMP-9/TIMP-1的比值都表現(xiàn)為顯著下調(diào)。說明VSMCs的增殖及遷移與MMP-2/TIMP-2、MMP-9/TIMP-1的比例失衡具有相關(guān)性,DHA可以降低MMP-2和MMP-9的表達(dá)量,從而降低MMP-2/TIMP-2、MMP-9/TIMP-1的比值,對抑制VSMCs的增殖及遷移發(fā)揮重要的作用。
Notch信號通路一條最初發(fā)現(xiàn)于果蠅、高度保守的信號轉(zhuǎn)導(dǎo)途徑,廣泛存在于各種生物體內(nèi)。Armulik等[10]的研究發(fā)現(xiàn)Notch信號通路在調(diào)節(jié)VSMCs形態(tài)和功能中發(fā)揮重要作用。本研究發(fā)現(xiàn):經(jīng)IL-1β處理的VSMCs中低表達(dá)Notch3;經(jīng)IL-1β處理的VSMCs與DHA共培養(yǎng)后Notch3的表達(dá)量表現(xiàn)為顯著增高,VSMCs的增殖和遷移能力也顯著降低,說明Notch3在DHA抑制平滑肌細(xì)胞增殖和遷移中發(fā)揮重要作用。
DHA對VSMCs生理功能的調(diào)節(jié)作用已被多個研究所報道[11-12]。有研究認(rèn)為ω-3不飽和脂肪酸特別是DHA一方面極易與膜磷脂或三酰甘油相融合并增加VSMCs膜固醇類的流動從而對與胞膜密切相關(guān)的信號分子產(chǎn)生影響[13],而另一方面對細(xì)胞膜離子通道進(jìn)行調(diào)控,最終調(diào)節(jié)細(xì)胞內(nèi)的信號轉(zhuǎn)導(dǎo)[14]。
綜上所述,本研究發(fā)現(xiàn)DHA可以降低炎性反應(yīng)所引起的VSMCs中MMP-2和MMP-9的高表達(dá),調(diào)節(jié)MMP-2/TIMP-2、MMP-9/TIMP-1的比例,抑制VSMCs的增殖和遷移,在高血壓的病理過程中發(fā)揮重要作用。同時,本研究發(fā)現(xiàn)DHA發(fā)揮調(diào)節(jié)作用的過程中Notch3起到了關(guān)鍵性的作用,此結(jié)果提示DHA作用的發(fā)揮可能是通過Notch信號通路實現(xiàn)的。
[參考文獻(xiàn)]
[1] NO authors. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'infarto miocardico [J]. Lancet,1999,354(9177):447-455.
[2] Abeywardena MY,Head RJ. Longchain n-3 polyunsaturated fatty acids and blood vessel function [J]. Cardiovasc Res,2001,52(3):361-371.
[3] Robinson JG,Stone NJ. Antiatherosclerotic and antithrombotic effects of omega-3 fatty acids [J]. Am J Cardiol,2006,98(4A):39-49.
[4] Galis ZS,Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly [J]. Circ Res,2002,90(3):251-262.
[5] Bond M,Chase AJ,Baker AH,et al. Inhibition of transcription factor NF-kappaB reduces matrix metalloproteinase-1,-3 and -9 production by vascular smooth muscle cells [J]. Cardiovasc Res,2001,50(3):556-565.
[6] Wang M,Zhao D,Spinetti G,et al. Matrix metalloproteinase 2 activation of transforming growth factor-beta1 (TGF-beta1) and TGF-beta1-type Ⅱ receptor signaling within the aged arterial wall [J]. Arterioscler Thromb Vasc Biol,2006, 26(7):1503-1509.
[7] Hattori Y,Hattori S,Sato N,et al. High-glucose-induced nuclear factor κB activation in vascular smooth muscle cells [J]. Cardiovase Res,2000,46(1):188-197.
[8] 趙娟,王紅,于傘鑫,等.Urantide對大鼠血管平滑肌細(xì)胞增殖的影響[J].吉林大學(xué)學(xué)報:醫(yī)學(xué)版,2011,37(6):1079-1082.
[9] Oheake Y,Tojo H,Seiki M. Multifunctional roles of MTl-MMP in myofiber formation and morphostatic maintenance of skeletal muscle [J]. J Cell Sic,2006,119(18):3822-3832.
[10] Armulik A,Abramsson A,Betsholtz C. Endothelial/pericyteinteractions [J]. Circ Res,2005,97(6):512-523.
[11] Botham KM,Wheeler-Jones CP. Postprandial lipoproteins and the molecular regulation of vascular homeostasis[J]. Prog Lipid Res,2013,52(4):446-464.
[12] Song J,Kwon N,Lee MH,et al. Association of serum phospholipid PUFAs with cardiometabolic risk: beneficial effect of DHA on the suppression of vascular proliferation/inflammation [J]. Clin Biochem,2014,47(6):361-368.
[13] Dusserre E,Pulcini T,Bourdillon MC,et al. ω-3 Fatty acids in smooth muscle cell phospholipids increase membrane cholesterol efflux [J]. Lipids,1995,30(1):35-41.
[14] Hirafuji M,Machida T,Hamaue N,et al. Cardiovascular protective effects of n-3 polyunsaturated fatty acids with special emphasis on docosahexaenoic acid [J]. J Pharmacol Sci,2003,92(4):308-316.
(收稿日期:2014-05-25 本文編輯:衛(wèi) 軻)
DHA對VSMCs生理功能的調(diào)節(jié)作用已被多個研究所報道[11-12]。有研究認(rèn)為ω-3不飽和脂肪酸特別是DHA一方面極易與膜磷脂或三酰甘油相融合并增加VSMCs膜固醇類的流動從而對與胞膜密切相關(guān)的信號分子產(chǎn)生影響[13],而另一方面對細(xì)胞膜離子通道進(jìn)行調(diào)控,最終調(diào)節(jié)細(xì)胞內(nèi)的信號轉(zhuǎn)導(dǎo)[14]。
綜上所述,本研究發(fā)現(xiàn)DHA可以降低炎性反應(yīng)所引起的VSMCs中MMP-2和MMP-9的高表達(dá),調(diào)節(jié)MMP-2/TIMP-2、MMP-9/TIMP-1的比例,抑制VSMCs的增殖和遷移,在高血壓的病理過程中發(fā)揮重要作用。同時,本研究發(fā)現(xiàn)DHA發(fā)揮調(diào)節(jié)作用的過程中Notch3起到了關(guān)鍵性的作用,此結(jié)果提示DHA作用的發(fā)揮可能是通過Notch信號通路實現(xiàn)的。
[參考文獻(xiàn)]
[1] NO authors. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'infarto miocardico [J]. Lancet,1999,354(9177):447-455.
[2] Abeywardena MY,Head RJ. Longchain n-3 polyunsaturated fatty acids and blood vessel function [J]. Cardiovasc Res,2001,52(3):361-371.
[3] Robinson JG,Stone NJ. Antiatherosclerotic and antithrombotic effects of omega-3 fatty acids [J]. Am J Cardiol,2006,98(4A):39-49.
[4] Galis ZS,Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly [J]. Circ Res,2002,90(3):251-262.
[5] Bond M,Chase AJ,Baker AH,et al. Inhibition of transcription factor NF-kappaB reduces matrix metalloproteinase-1,-3 and -9 production by vascular smooth muscle cells [J]. Cardiovasc Res,2001,50(3):556-565.
[6] Wang M,Zhao D,Spinetti G,et al. Matrix metalloproteinase 2 activation of transforming growth factor-beta1 (TGF-beta1) and TGF-beta1-type Ⅱ receptor signaling within the aged arterial wall [J]. Arterioscler Thromb Vasc Biol,2006, 26(7):1503-1509.
[7] Hattori Y,Hattori S,Sato N,et al. High-glucose-induced nuclear factor κB activation in vascular smooth muscle cells [J]. Cardiovase Res,2000,46(1):188-197.
[8] 趙娟,王紅,于傘鑫,等.Urantide對大鼠血管平滑肌細(xì)胞增殖的影響[J].吉林大學(xué)學(xué)報:醫(yī)學(xué)版,2011,37(6):1079-1082.
[9] Oheake Y,Tojo H,Seiki M. Multifunctional roles of MTl-MMP in myofiber formation and morphostatic maintenance of skeletal muscle [J]. J Cell Sic,2006,119(18):3822-3832.
[10] Armulik A,Abramsson A,Betsholtz C. Endothelial/pericyteinteractions [J]. Circ Res,2005,97(6):512-523.
[11] Botham KM,Wheeler-Jones CP. Postprandial lipoproteins and the molecular regulation of vascular homeostasis[J]. Prog Lipid Res,2013,52(4):446-464.
[12] Song J,Kwon N,Lee MH,et al. Association of serum phospholipid PUFAs with cardiometabolic risk: beneficial effect of DHA on the suppression of vascular proliferation/inflammation [J]. Clin Biochem,2014,47(6):361-368.
[13] Dusserre E,Pulcini T,Bourdillon MC,et al. ω-3 Fatty acids in smooth muscle cell phospholipids increase membrane cholesterol efflux [J]. Lipids,1995,30(1):35-41.
[14] Hirafuji M,Machida T,Hamaue N,et al. Cardiovascular protective effects of n-3 polyunsaturated fatty acids with special emphasis on docosahexaenoic acid [J]. J Pharmacol Sci,2003,92(4):308-316.
(收稿日期:2014-05-25 本文編輯:衛(wèi) 軻)
DHA對VSMCs生理功能的調(diào)節(jié)作用已被多個研究所報道[11-12]。有研究認(rèn)為ω-3不飽和脂肪酸特別是DHA一方面極易與膜磷脂或三酰甘油相融合并增加VSMCs膜固醇類的流動從而對與胞膜密切相關(guān)的信號分子產(chǎn)生影響[13],而另一方面對細(xì)胞膜離子通道進(jìn)行調(diào)控,最終調(diào)節(jié)細(xì)胞內(nèi)的信號轉(zhuǎn)導(dǎo)[14]。
綜上所述,本研究發(fā)現(xiàn)DHA可以降低炎性反應(yīng)所引起的VSMCs中MMP-2和MMP-9的高表達(dá),調(diào)節(jié)MMP-2/TIMP-2、MMP-9/TIMP-1的比例,抑制VSMCs的增殖和遷移,在高血壓的病理過程中發(fā)揮重要作用。同時,本研究發(fā)現(xiàn)DHA發(fā)揮調(diào)節(jié)作用的過程中Notch3起到了關(guān)鍵性的作用,此結(jié)果提示DHA作用的發(fā)揮可能是通過Notch信號通路實現(xiàn)的。
[參考文獻(xiàn)]
[1] NO authors. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'infarto miocardico [J]. Lancet,1999,354(9177):447-455.
[2] Abeywardena MY,Head RJ. Longchain n-3 polyunsaturated fatty acids and blood vessel function [J]. Cardiovasc Res,2001,52(3):361-371.
[3] Robinson JG,Stone NJ. Antiatherosclerotic and antithrombotic effects of omega-3 fatty acids [J]. Am J Cardiol,2006,98(4A):39-49.
[4] Galis ZS,Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly [J]. Circ Res,2002,90(3):251-262.
[5] Bond M,Chase AJ,Baker AH,et al. Inhibition of transcription factor NF-kappaB reduces matrix metalloproteinase-1,-3 and -9 production by vascular smooth muscle cells [J]. Cardiovasc Res,2001,50(3):556-565.
[6] Wang M,Zhao D,Spinetti G,et al. Matrix metalloproteinase 2 activation of transforming growth factor-beta1 (TGF-beta1) and TGF-beta1-type Ⅱ receptor signaling within the aged arterial wall [J]. Arterioscler Thromb Vasc Biol,2006, 26(7):1503-1509.
[7] Hattori Y,Hattori S,Sato N,et al. High-glucose-induced nuclear factor κB activation in vascular smooth muscle cells [J]. Cardiovase Res,2000,46(1):188-197.
[8] 趙娟,王紅,于傘鑫,等.Urantide對大鼠血管平滑肌細(xì)胞增殖的影響[J].吉林大學(xué)學(xué)報:醫(yī)學(xué)版,2011,37(6):1079-1082.
[9] Oheake Y,Tojo H,Seiki M. Multifunctional roles of MTl-MMP in myofiber formation and morphostatic maintenance of skeletal muscle [J]. J Cell Sic,2006,119(18):3822-3832.
[10] Armulik A,Abramsson A,Betsholtz C. Endothelial/pericyteinteractions [J]. Circ Res,2005,97(6):512-523.
[11] Botham KM,Wheeler-Jones CP. Postprandial lipoproteins and the molecular regulation of vascular homeostasis[J]. Prog Lipid Res,2013,52(4):446-464.
[12] Song J,Kwon N,Lee MH,et al. Association of serum phospholipid PUFAs with cardiometabolic risk: beneficial effect of DHA on the suppression of vascular proliferation/inflammation [J]. Clin Biochem,2014,47(6):361-368.
[13] Dusserre E,Pulcini T,Bourdillon MC,et al. ω-3 Fatty acids in smooth muscle cell phospholipids increase membrane cholesterol efflux [J]. Lipids,1995,30(1):35-41.
[14] Hirafuji M,Machida T,Hamaue N,et al. Cardiovascular protective effects of n-3 polyunsaturated fatty acids with special emphasis on docosahexaenoic acid [J]. J Pharmacol Sci,2003,92(4):308-316.
(收稿日期:2014-05-25 本文編輯:衛(wèi) 軻)