• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      三階非線性三點(diǎn)邊值問題的正解

      2014-10-10 02:46:54孔令彬金前德
      關(guān)鍵詞:三階邊值問題不動點(diǎn)

      孔令彬,金前德

      (東北石油大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,黑龍江大慶 163318)

      三階非線性三點(diǎn)邊值問題的正解

      孔令彬,金前德

      (東北石油大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,黑龍江大慶 163318)

      利用Krasnoselskii不動點(diǎn)定理及Ascoli-Arzela定理,研究含參數(shù)的非線性三階三點(diǎn)邊值問題,證明當(dāng)參數(shù)取值范圍不同時(shí),該邊值問題的正解存在性與不存在性.

      非線性三階三點(diǎn)邊值問題;存在性;正解

      0 引言

      非線性三階三點(diǎn)邊值問題來源于應(yīng)用數(shù)學(xué)與物理等領(lǐng)域,已受到人們重視和研究[1-15].Sun Y在文獻(xiàn)[16]研究下述非線性三階三點(diǎn)邊值問題,即

      式(3)、(4)較式(1)、(2)更一般些.當(dāng)ρ=0時(shí),式(3)、(4)與式(1)、(2)相類似,可采用文獻(xiàn)[16]的方法考慮正解存在性.筆者考慮ρ>0情形,通過適當(dāng)變換,再利用Krasnoselskii不動點(diǎn)定理和Ascoli-Arzela定理,討論參數(shù)變化時(shí)式(3)、(4)是否存在正解,所采用的方法與文獻(xiàn)[16]不同,獲得新結(jié)果.

      假設(shè):

      (H1)對每個(gè)固定的u∈[0,+∞),f(t,u)在t∈[0,1]上非負(fù)連續(xù),對幾乎所有的t∈[0,1],f(t,u)關(guān)于u≥0單調(diào)非增;

      定義 稱函數(shù)u(t)為式(3)、(4)的一個(gè)正解,如果它滿足

      (ⅰ)u∈C1[0,1]∩C2(0,1)并在(0,1)內(nèi)u(t)>0;

      (ⅱ)u(t)滿足式(3)和式(4).

      主要結(jié)論為

      定理1 假設(shè)(H1)、(H2)成立,則存在λ*∈(0,+∞).當(dāng)λ∈(0,λ*]時(shí),式(3)、(4)至少存在一個(gè)正解;當(dāng)λ∈(λ*,+∞)時(shí),式(3),(4)不存在正解.

      1 式(3)、(4)的等價(jià)形式及預(yù)備引理

      設(shè)C[0,1]是[0,1]上連續(xù)函數(shù)構(gòu)成的Banach空間,C+[0,1]={v∈C[0,1];v(t)≥0},定義映射J:C+[0,1]→C+[0,1],則

      容易知道,若u(t)滿足式(3)、(4),令u′(t)+ρu(t)=-v(t),則v(t)滿足式(6)、(7),其中Jv(t)由式(5)給出.反之,若v(t)滿足式(6)、(7),令u(t)=Jv(t),則u(t)滿足式(3)、(4),因此邊值問題式(3)、(4)與邊值問題式(6)、(7)等價(jià).

      為證明文中主要結(jié)論,給出5個(gè)引理.

      的解,則v″(t)-ρv′(t)+ρ2v(t)=-h(t)的任何解可表示為v(t)=C1φ1(t)+C2φ2(t)+φ0(t),其中h∈C+[0,1],C1,C2是任意常數(shù).

      證明 直接驗(yàn)證即可.

      2 定理1的證明

      即Φv∈K或Φ(K)?K.另外,易證Φ是全連續(xù)的.

      引理7 假設(shè)(H1)、(H2)成立,若λ充分大,則式(6)、(7)無正解.

      3 結(jié)束語

      研究含參數(shù)的非線性三階邊值問題,給出該問題的Green函數(shù),進(jìn)而將該邊值問題轉(zhuǎn)化為等價(jià)的積分方程,在適當(dāng)?shù)目臻g上定義映射,通過利用Green函數(shù)的性質(zhì)和錐不動點(diǎn)定理,證明正解的存在性.

      [1] Graef J R,Yang B.Multiple positive solutions to a three point third order boundary value problem[J].Discrete Contin.Dyn.Syst,2005(S1):1-8.

      [2] Guo L,Sun J,Zhao Y.Existence of positive solution for nonlinear third-order three point boundary value problem[J].Nonlinear A-nal,2007(14):93-111.

      [3] Boucherif A,Al-Malki N.Nonlinear three-point third order boundary value problems[J].Appl.Math.Comput,2007(190):1168-1177.

      [4] Sun Y.Positive solutions of singular third order three point boundary value problems[J].J.Math.Anal.Appl,2005(306):589-603.

      [5] Yu H,Lu H,Liu Y.Multiple positive solutions to third-order three-point singular semi positive boundary value problem[J].Proc. Indian Acad.Sci.Math.Sci,2004(114):409-422.

      [6] Guo L J,Sun J P,Zhao Y H.Existence of positive solutions for nonlinear third-order three-point boundary value problems[J].Nonlinear Anal,2008(68):3151-3158.

      [7] Graef J R,Webb J R.Third order boundary value problems with nonlocal boundary conditions[J].Nonlinear Anal,2009(71):1542-1551.

      [8] Graef J R,Yang B.Positive solutions of a third order nonlocal boundary value problem[J].Discrete Contin.Dyn.Syst.Ser,2008 (S1):89-97.

      [9] Stanek S.On a three-point boundary value problem for third order differential equations with singularities in phase variables[J]. Georgian Math.J,2007(14):361-383.

      [10] Graef J R,Henderson J,Wong P J,et al.Three positive solutions of an n-th order three point focal type boundary value problem[J]. Nonlinear Anal,2008(69):3386-3404.

      [11] Erbe L H,Wang H.On the existence of positive solutions of ordinary differential equations[J].Proc.Amer.Math,1994(120):743 -748.

      [12] 孫建平,張小麗.非線性三階三點(diǎn)邊值問題正解的存在性[J].西北師范大學(xué)學(xué)報(bào):自然科學(xué)版,2012,48(3):14-21.

      Zhang Jianpin,Zhang Xiaoli.Existence of positive solutions for a class of third-order Three-point boundary value problem[J].Journal of Northwest Normal University:Natural Science Edition,2012,48(3):14-21.

      [13] 張立新,孫博,張洪.三點(diǎn)邊值問題的兩個(gè)正解的存在性[J].西南師范大學(xué)學(xué)報(bào):自然學(xué)科版,2013,16(10):30-33.

      Zhang Lixin,Sun Bo,Zhang Hong.Existence of two positive solution for three-point third order boundary value problems[J].Journal of Southwest China Normal University:Natural Science Edition,2013,16(10):30-33.

      [14] 姚慶六.一類復(fù)合型奇異三階三點(diǎn)邊值問題正解的存在性[J].浙江大學(xué)學(xué)報(bào):理學(xué)版,2012,39(4):381-384.

      Yao Qingliu.Existence of positive solution for a kind of composite singular three order three point boundary value problem[J].Journal of Zhejiang University:Science Edition,2012,39(4):381-384.

      [15] 張曉萍,孫永平.三階三點(diǎn)邊值問題正解的存在性[J].數(shù)學(xué)的實(shí)踐與認(rèn)識,2014,44(2):181-185.

      Zhang Xiaoping,Sun Yongping.Existence of positive solutions for a class of third-order three-point boundary value problem[J]. Mathematics in Practice and Theory,2014,44(2):181-185.

      [16] Sun Y.Positive solutions for third-order three-point nonhomogeneous boundary value problems[J].Appl.Math.Lett,2009(22):45-51.

      O175.8

      A

      2095-4107(2014)05-0121-06

      DOI 10.3969/j.issn.2095-4107.2014.04.015

      2014-04-09;編輯關(guān)開澄

      黑龍江省教育廳科學(xué)技術(shù)研究項(xiàng)目(12541076)

      孔令彬(1956-)男,碩士,教授,主要從事非線性微分方程邊值問題方面的研究.

      猜你喜歡
      三階邊值問題不動點(diǎn)
      非線性n 階m 點(diǎn)邊值問題正解的存在性
      三階非線性微分方程周期解的非退化和存在唯一性
      帶有積分邊界條件的奇異攝動邊值問題的漸近解
      一類抽象二元非線性算子的不動點(diǎn)的存在性與唯一性
      活用“不動點(diǎn)”解決幾類數(shù)學(xué)問題
      三類可降階的三階非線性微分方程
      不動點(diǎn)集HP1(2m)∪HP2(2m)∪HP(2n+1) 的對合
      三階微分方程理論
      非線性m點(diǎn)邊值問題的多重正解
      一類非錐映射減算子的不動點(diǎn)定理及應(yīng)用
      阳春市| 大冶市| 金塔县| 阳城县| 江油市| 大洼县| 拉萨市| 嘉定区| 安泽县| 循化| 筠连县| 江西省| 瑞丽市| 土默特左旗| 浮山县| 文水县| 余江县| 始兴县| 广饶县| 称多县| 汽车| 留坝县| 张家界市| 万州区| 景德镇市| 和顺县| 凤凰县| 吴旗县| 交城县| 寿宁县| 淅川县| 松原市| 远安县| 徐闻县| 鲜城| 安化县| 宣城市| 宿松县| 绥江县| 清流县| 涿鹿县|