• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The atmospheric circulation patterns influencing the frequency of spring sand-dust storms in the Tarim Basin

    2014-10-09 08:12:08HongJunLiXinHuaYangYongZhaoMinZhongWangWenHuo
    Sciences in Cold and Arid Regions 2014年2期

    HongJun Li , XinHua Yang, Yong Zhao, MinZhong Wang, Wen Huo

    Urumqi Institute of Desert Meteorology, China Meteorological Administration, Urumqi, Xinjiang 830002, China

    1 Introduction

    The Tarim Basin (75°E–91°E, 37°N–41°N) is located in an extremely arid climate zone, with the Taklimakan Desert (the largest desert in China) dominating vast parts of the region. Frequent sand-dust storms occur in spring and summer when its surface temperature rises and the surface winds strengthen (Qianet al., 2002). The observed wind velocity threshold of sand movement is only 5.2 m/s (Chen, 1994). Consequently, the Tarim Basin is a major origin of severe and extremely severe sand-dust storm events (Qianet al., 2002; Wanget al., 2003; Wanget al., 2010) affecting China (Gao and Jiang, 2002; Wanget al., 2003; Liuet al., 2004; Liet al., 2008). Within the Tarim Basin, the most frequent sandstorms occur in the Taklimakan Desert, with pronounced interannual and decadal variations. Sand-dust storms in the Taklimakan Desert mainly occur from March to August, with April to June being the most active period (Gao and Jiang, 2002;Maet al., 2006). A large number of sandstorms were observed in the 1970s, but the number dramatically declined in the 1990s, although the total number of weak and localized sand-dust storms increased (Zhou, 2001;Gao and Jiang, 2002; Maet al., 2006; Fenget al., 2010).

    Based on satellite images of sandstorms in the hinterland of the basin in recent decades, it is generally acknowledged that there are four types of air motions generating the dust storms in the Tarim Basin: (1) strong,large-scale cold air invasions from the west and north; (2)cold air invasions coming from the east; (3) the combination of downslope cold air flow and east-originating cold air; and (4) the basin’s middle air is pumped from low level to upper level (Li and Xiao, 1999). These systems are largely influenced by the unique topographic features of the Tarim Basin, with the Tibetan Plateau at its south,the Kunlun Mountains at its west, and the Tianshan Mountains at its north (Xu, 1997).

    The synoptic cause for the sand-dust storms in the basin is that, due to the strong surface heating in its warm seasons, a shallow thermal depression normally dominates the region. When cold air invades the basin, a strong, low-level atmospheric convergence forms over the areas of Hetian-Yutian-Minfeng and Keping. The associated strong ascending motion in the atmospheric boundary layer provides the dynamic lifting mechanism for sand dust, causing these two areas to have the most frequent sand-dust storms in all of China (Heet al., 1998;Hanet al., 2005). Furthermore, corresponding to the low-level heat system, the upper atmosphere is dominated by strong atmospheric divergence and a descending motion in the upper-level jet stream inlet area. This leads to the downward propagation of the high-level momentum, which further enhances the middle and low-level wind speeds and develops a cold front moving southward.This finally triggers the outbreaks of sandstorm events(Wanget al., 2008; Penget al., 2009).

    Besides these large-scale synoptic patterns, the frequency of sand-dust storms is also influenced by local climate factors such as precipitation, relative humidity,surface temperature, and wind velocity (Zenget al.,2010). Previous research (e.g., Weiet al., 2004) reported rising temperatures in recent past decades in the Tarim Basin. At the same time, precipitation has increased and the near-surface winds have declined. Those researchers concluded that these changes have contributed to the decline of sand-dust storm days in South Xinjiang.

    Although there is a reasonable understanding of the synoptic setup and local climate conditions that are favorable for sandstorms to develop in the basin, the causes of the remarkable year-to-year variation in sandstorm occurrences are less clear. Liet al. (2008) posited that sandstorms have a quasi 3-year cycle, and other studies have shown that the spring and summer sand-dust weather patterns are influenced by many circulation systems ranging from polar regions to the low latitudes, such as the polar front embedded in the westerlies in the middle latitudes, the East Asia trough, and the position and strength of the subtropical high (Maoet al., 2005; Wanget al., 2007; Zenget al., 2010). Most of the analyses of the relationship between sand-dust storms and circulations have focused on the dust storms in northern China and the eastern part of northwest China. Less is understood about the atmospheric circulation systems influencing the dust storms in the Tarim Basin. This was the purpose of this study.

    2 Data

    We used the monthly sand-dust storm data from 37 meteorological stations situated in the Tarim Basin for the period of January 1961 to December 2009. Studies by Wang and Dong (2000) and Qianet al. (2002) showed that the data are of good quality. We mainly focused on the dust storm activities in the boreal spring season by averaging the sandstorm days during March-April-May to obtain the interannual time-series of the spring sandstorm frequencies. The atmospheric circulation data used in this study are from the NCEP/NCAR monthly reanalysis grid data at the spatial resolution of 2.5°×2.5° (Kalnayet al., 1996).

    3 Analysis results

    3.1 Changes in sandstorm frequencies

    Sand-dust storms in the Tarim Basin exhibit significant interannual and decadal variations. Sand-dust storms occurred frequently during the 1960s and the 1970s and declined significantly in the 1980s. Since the 1990s,sandstorm occurrence in the basin has become less frequent (Figure 1). Calculation of the linear trend over the whole period revealed a declining trend of -1.2 sandstorm days per decade, which is statistically significant at the 99% confidence level. This result is consistent with the conclusions derived from other studies (Liet al.,2008).

    Figure 1 The variation of sand-dust days in the Tarim Basin in spring during 1961–2009

    3.2 Atmospheric circulation patterns associated with spring sandstorms

    The dynamic and thermodynamic conditions that affect the variation of sand-dust storms are closely related to the large-scale atmospheric circulation background(Wang and Dong, 2000; Ren and Wang, 2009). Figure 2 shows correlations of the spring 500-hPa geopotential height and the sand-dust storm frequency in the Tarim Basin during the study period. It clearly displays a "- +-" pattern from the west to the east crossing the Eurasian continent, with negative correlations over the Paris Basin and the Zara region in midwestern Mongolia. In between, there is a weak positive correlation pattern near the Ural River region. The correlations over the Zara region have the highest negative values, with the correlation coefficient reaching -0.6. The correlation patterns over both the Zara region and the Paris Basin are statistically significant at the 95% confidence level.Combined with the mean circulation background (with a ridge system over the Urals and a trough over the midwestern Mongolia region), and the rising of the geopotential height at 500 hPa over midwestern Mongolia and its decline over the Ural region, the correlation patterns suggest a weakening of the meridional circulation between the two regions, and the prevailing circulation in the middle troposphere becomes more zonally oriented.This makes it difficult for high-latitude cold air masses to penetrate southward, resulting in weakened low-level winds and reduced frequency. The weakened low-level winds cannot easily cross over the Tianshan Mountains into the Tarim Basin. This also means that the cold air mass which often accumulates along the northern side of the Tianshan Mountains becomes weak and there is less east-originating cold air invasion into the Tarim Basin.

    Figure 2 Correlations between sand-dust storm frequency in the Tarim Basin and atmosphere circulations in spring

    Because the 500-hPa geopotential height over midwestern Mongolia has the most significantly negative correlation with the sand-dust storm frequency in the Tarim Basin, we further explored the relationship between the long-term variation of the height field and the sandstorm frequency in the basin. Figure 3 shows the interannual variation of the 500-hPa height over the area of 30°N–70°N, 80°E–120°E, where statistically negative correlations are shown in figure 2. The 500-hPa height in this region has experienced steady increases, and its correlation coefficient with the sandstorm frequency in the Tarim Basin reaches -0.69, passing the significance test at the 99% confidence level. The 500-hPa geopotential height has an increasing linear trend of 7.0 gpm per decade. Such an increase indicates that the low-value cyclone system is weakened and the large-scale winter monsoon circulation is also weakened. This means the southward intrusion of cold air from high latitudes is reduced. Associated with weakened surface winds in the spring, the sand-dust storm events are significantly reduced. This finding is in good agreement with the results of Zheng (2004).

    3.3 Sandstorms and the abrupt increase in the 500-hPa geopotential height

    Figures 1–3 show that the spring sandstorms vary significantly in response to changes in the regional atmospheric circulation. We used the Mann-Kendall rank statistical method (hereafter, MKT) (Fu and Wang, 1992)to test whether the variations of the sand-dust storms and geopotential height were significant during different periods, and whether the timing of the abrupt changes was consistent between the two.

    Figure 3 Time-series of the average geopotential height departure from 500 hPa over the area located in 30°N–70°N and 80°E–120°E

    Figure 4 shows the time-series of the MKT curves for sandstorms in the Tarim Basin, and the 500-hPa geopotential height averaged over the areas of significantly negative correlations in the Zara region. In the early 1960s, the trend of sand-dust storm days was positive but became negative in the mid-1960s. From the late 1970s,the MKT curve of sand-dust storm frequency (line c1)dropped sharply. After 1984, the number of sand-dust storm days reached a significant decrease of 5%.

    Figure 4 Abrupt changes of sand-dust storm frequency (a) and 500-hPa geopotential height (b) over the significantly negative correlation areas. c1 and c2 represent abrupt test statistical series in positive sequence and statistical series in reverse sequence, respectively.

    The crossing point of lines c1 and c2 of the MKT appears in 1985, suggesting an abrupt change point of the dust storms around that time. The abrupt change in the spring sand-dust storms is related to the abrupt change in the geopotential height at 500 hPa. Figure 4b shows that the geopotential height (line c1) was in a negative trend in the early 1960s, and in the mid-1960s it turned into a positive trend. From the late 1970s to the 2000s, it has kept increasing significantly. According to the MKT curves in figure 4b, the abrupt changes in geopotential height which occurred in 1980 and 1984 coincide with the rapid declines in the sand-dust storm frequencies around 1985.

    To further illustrate the influence of the atmospheric circulations on the sand-dust storms in the Tarim Basin,we conducted a composite analysis by calculating the mean atmospheric circulation anomalies during the years with higher and lower numbers of the spring sandstorms in the Tarim Basin. Out of the 49 spring seasons, we selected the years of 1962, 1979, 1971,1963, and 1966 as representing higher numbers of dust storms, and the years of 2005, 1997, 1996, 2000, and 2009 as representing lower numbers of the dust storms.The corresponding 500-hPa circulation patterns for more-frequent dust storms in the basin are related to the fact that the Tarim Basin is located in front of a high-pressure ridge, with cold air from the northwest travelling southward and eastward and then entering the Tarim Basin, causing strong surface winds and sandstorms (Figure 5).

    Figure 5 The circulation departure field at 500 hPa in years with more (a) and fewer (b) sand-dust storms, and the circulation field (c) and wind departure field (d) at 850 hPa in years with more sand-dust storms

    Figure 5a shows that the 500-hPa geopotential height has a positive anomaly center in the west and a negative center in the east. The negative anomaly over the western part of Mongolia extends farther north to the polar region.Meanwhile, the positive anomaly is located over the East European plains to the west of the Urals, and its northern boundary extends to the high-latitude region. The large pressure gradient between the two centers causes the zonal westerlies to be distorted and the circulation becomes more meridional. This kind of circulation situation formed by the high pressure (ridge) near the East European plains and the low pressure (trough) over Mongolia is a typical synoptic pattern that is often observed in the development of sand-dust storm weather in the Tarim Basin. In contrast, for the years with few sandstorms(Figure 5b) the synoptic pattern is almost opposite to the one shown in figure 5a, with a negative anomaly over eastern Europe and positive anomalies over western Mongolia. Under such conditions, the meridional circulation is weakened and the circulations become more stable,resulting in conditions that are not favorable for the development of sandstorms.

    In the lower troposphere, figures 5c and 5d show the 850-hPa height and wind conditions favorable for dust storm development in the Tarim Basin. Over western Asia there exists one high pressure ridge, and from the Okhotsk Sea to the Tarim Basin is a trough in the northeast–southwest direction. The Tarim Basin is located in front of the ridge and in the back of the trough, so the prevailing airflow draws more cold air from the north into the basin from the northeast. The low-pressure system over western Mongolia is the primary factor that influences the occurrence of sand-dust storms in the Tarim Basin.

    4 Conclusions

    Based on NCEP/NCAR reanalysis data and sandstorm frequency data from the Tarim Basin, the impact of atmosphere patterns on sand-dust storms was investigated by correlations and atmosphere field composite analysis. The main conclusions are as follows:

    1) The sand-dust storm frequency in the Tarim Basin in the spring season is closely related to certain patterns of large-scale atmospheric circulation. It has significantly negative correlations with the 500-hPa geopotential height over the Paris Basin and midwestern Mongolia,but positive correlations with the 500-hPa height over the Ural River region.

    2) The 1985 abrupt decline in spring sandstorms in the Tarim Basin was accompanied by an abrupt increase in the 500-hPa height field over western Mongolia. This followed abrupt increases in the 500-hPa height in 1980 and 1984.

    3) At the interannual scale, strengthened cyclonic circulation patterns over western Mongolia and anticyclones in the East European plains at 500-hPa geopotential height, are the typical background conditions conducive to more sand-dust storms in the Tarim Basin.

    This work was supported by the Special Fund of the Central Scientific Research Institution (No. IDM201203),the National Natural Science Foundation of China (No.41305107), and the Nonprofit Sector Specific Research(Nos. GYHY201106025 and GYHY201006012).

    Chen WN, Dong ZB, Yang ZT,et al., 1995. Threshold velocities of sand-driving wind in the Taklimakan Desert. Acta Geographica Sinica, 50(4): 360–367. DOI: 10.3321/j.issn:0375-5444.1995.04.009.

    Gao WD, Jiang W, 2002. Discussion on the formation and harms of the sand-dust storms in the west and the south of Taklimakan Desert. J. Arid Land Resources and Env., 16(3): 64–70. DOI:10.3969/j.issn.1003-7578.2002.03.012.

    Feng XY, Wang SG, Cheng YF,et al., 2010. Climatic features of sandstorms in the central and western part of the north in China. J. Desert Res., 30(2): 394–399.

    Fu CB, Wang Q, 1992. The definition and test method of abrupt climate change. Chinese J. Atmos. Sci., 16(1): 111–119. DOI:10.3878/j.issn.1006-9895.1992.04.11.

    Han YX, Fang XM, Song LC,et al., 2005. Discussion on atmospheric circulations and the cause of sand-dust storms in Tarim Basin, based on the desert aeolian deposit landform and wind fields reestablished by meteorological observations. Chinese J. Atmos. Sci., 29(4):627–635.

    He Q, Xiang M, Tang SJ, 1998. Analysis on two severe sandstorms in the hinterland of Taklimakan Desert. J. Desert Res., 18(1): 320–327.

    Kalnay E, Kanamitsu M, Kistler R, 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteorol. Soc., 77: 437–471. DOI:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Li HJ, Li J, He Q, 2008. Study on the trends and sudden changes of sand-dust storms in Xinjiang. J. Desert Res., 28(5): 915–919.

    Li H, Xiao JD, 1999. Remote monitoring to the sandstorms in the hinterland of Taklimakan Desert. J. Xinjiang Agri. Univ., 22(3):219–223.

    Li SK, Lu M, Wang KR,et al., 2008. The effect of soil erosion to the ground surface in south Xinjiang on the formation of sand-dust weathers. Agricul. Sci. in China, 141(10): 3158–3167. DOI:10.3864/j.issn.0578-1752.2008.10.032.

    Liu XD, Tian L, Zhang XY, 2004. Impact of the sand-dust events in Taklimakan Desert on the atmospheric PM10concentration in the lower reaches. China Env. Sci., 24(5): 528–532. DOI:10.3321/j.issn:1000-6923.2004.05.005.

    Ma Y, Xiao KT, Wang X, 2006. Climatic features of the sand-dust weathers in Tarim Basin. Acta Sientiarum Naturalium Universitatis Pekinensis, 42(6): 784–790. DOI: 10.3321/j.issn:0479-8023.2006.06.016.

    Mao WY, Ai L, Chen S,et al., 2005. Correlations between spring dust weathers in Xinjiang and characteristic quantities of month circulations in the earlier stages. Arid Land Geog., 28(2): 171–175. DOI:10.3321/j.issn:1000-6060.2005.02.007.

    Peng Y, Wang Z, Xu XT, 2009. Analysis on the dynamic characteristics of circulations during a large-scale sand-dust weather event in the northwest. J. Desert Res., 29(4): 766–772.

    Qian ZA, Song MH, Li WN, 2002. Analysis on the distribution and variation trend of sandstorms in the last 50 years in China. J. Desert Res., 22(2): 106–110. DOI: 10.3321/j.issn:1000-694X.2002.02.002.

    Ren YL, Wang JS, 2009. Analysis on the factors affecting the changes of sandstorm weathers in the northwest and Tibetan Plateau of China. J. Desert Res., 29(4): 734–743.

    Wang CZ, Niu SJ, Wang LN, 2010. Variation features of sand-dust storms in the past 50a in China. J. Desert Res., 30(4): 933–939.

    Wang JY, Wang SG, Ma Y,et al., 2007. The relations between sandstorms in spring in the north of China and climatic factors. J. Desert Res., 27(2): 296–300. DOI: 10.3321/j.issn:1000-694X.2007.02.022.

    Wang MZ, Wei WS, Yang LM,et al., 2008. Analysis on the dynamic structure of circulations in the process of one east-coming sandstorm event in Tarim Basin. J. Desert Res., 28(2): 370–376.

    Wang SG, Dong GR, 2000. The development of the study on sand-dust storms. J. Desert Res., 20(4): 349–356. DOI:10.3321/j.issn:1000-694X.2000.04.002.

    Wang SG, Wang JY, Zhou ZJ,et al., 2003. Regional characteristics of sand-dust storms in China. J. Geog. Sci., 58(2): 193–200. DOI:10.3321/j.issn:0375-5444.2003.02.005.

    Wei WS, Gao WD, Shi YG, 2004. Study on the effect of the climate and environment changes on sand-dust storms in Xinjiang.Arid Land Geography, 27(2): 138–141. DOI:10.3321/j.issn:1000-6060.2004.02.002.

    Xu XH, 1997. Analysis and study on the satellite imagery of sand-dust storms in Tarim Basin. Research on Sand-Dust Storms in China.Meteorological Press, Beijing, pp. 88–91.

    Zeng SL, Cheng YF, Wang SG,et al., 2010. Investigation on the inter-annual variations and the causes of spring sandstorms in the northwest and Inner Mongolia in China. J. Desert Res., 30(5):1200–1206.

    Zheng XJ, 2004. Analysis on some characteristics of sand-dust weathers in Beijing region. Clim. and Env. Res., 9(1): 14–23. DOI:10.3969/j.issn.1006-9585.2004.01.003.

    Zhou ZJ, 2001. Flying dust and sandstorm weathers in the last 45 years in China. Quaternary Sci., 21(1): 9–17. DOI:10.3321/j.issn:1001-7410.2001.01.002.

    桃花免费在线播放| 国产在线一区二区三区精| 91在线精品国自产拍蜜月| 成人影院久久| 天美传媒精品一区二区| av天堂久久9| 亚洲精品国产色婷婷电影| √禁漫天堂资源中文www| 亚洲精品国产色婷婷电影| 久久人人爽av亚洲精品天堂| 久久影院123| 午夜久久久在线观看| 伦理电影免费视频| 国产视频首页在线观看| 国精品久久久久久国模美| 美国免费a级毛片| 男男h啪啪无遮挡| 中国美白少妇内射xxxbb| 久久人人97超碰香蕉20202| 在线亚洲精品国产二区图片欧美| 亚洲欧美日韩另类电影网站| 美女内射精品一级片tv| 性色av一级| av视频免费观看在线观看| 国产女主播在线喷水免费视频网站| 爱豆传媒免费全集在线观看| 日韩欧美精品免费久久| 国产精品久久久av美女十八| 亚洲成人av在线免费| 一区二区av电影网| 高清欧美精品videossex| 涩涩av久久男人的天堂| 在线看a的网站| 在线观看三级黄色| 久久精品夜色国产| 亚洲,欧美精品.| 国产黄色免费在线视频| 男女国产视频网站| 成人二区视频| 亚洲人成77777在线视频| 又大又黄又爽视频免费| 精品少妇内射三级| 亚洲国产毛片av蜜桃av| 边亲边吃奶的免费视频| 欧美国产精品一级二级三级| 性色av一级| 国产成人一区二区在线| 草草在线视频免费看| 99久久综合免费| 久久久久久人妻| 国产免费现黄频在线看| av又黄又爽大尺度在线免费看| 婷婷色综合www| 久久久国产欧美日韩av| 久久女婷五月综合色啪小说| 亚洲精品久久久久久婷婷小说| 国产极品天堂在线| 成人二区视频| 成人二区视频| 纯流量卡能插随身wifi吗| 亚洲精品一区蜜桃| 岛国毛片在线播放| 国产精品成人在线| 欧美另类一区| 一本久久精品| 亚洲欧美日韩另类电影网站| 人妻一区二区av| 国产无遮挡羞羞视频在线观看| 国产在线一区二区三区精| 欧美亚洲日本最大视频资源| 亚洲精华国产精华液的使用体验| 人体艺术视频欧美日本| 狠狠婷婷综合久久久久久88av| 在线天堂最新版资源| 黄色一级大片看看| 免费观看无遮挡的男女| 午夜福利视频精品| 在线 av 中文字幕| 妹子高潮喷水视频| 免费少妇av软件| 亚洲成av片中文字幕在线观看 | 色视频在线一区二区三区| 精品第一国产精品| 大香蕉97超碰在线| 女的被弄到高潮叫床怎么办| 国产又爽黄色视频| 狂野欧美激情性bbbbbb| 熟女av电影| 国产日韩欧美视频二区| 青春草亚洲视频在线观看| 欧美精品国产亚洲| 91精品国产国语对白视频| 91在线精品国自产拍蜜月| 午夜老司机福利剧场| 性色av一级| 两个人免费观看高清视频| 女人久久www免费人成看片| 精品人妻偷拍中文字幕| 国产麻豆69| 黑人欧美特级aaaaaa片| 夫妻午夜视频| 成人漫画全彩无遮挡| 人人妻人人添人人爽欧美一区卜| 青春草国产在线视频| 人人妻人人爽人人添夜夜欢视频| 精品久久久久久电影网| 亚洲欧美一区二区三区国产| 成人免费观看视频高清| 日本猛色少妇xxxxx猛交久久| 九色亚洲精品在线播放| 国产白丝娇喘喷水9色精品| 亚洲综合色惰| 啦啦啦啦在线视频资源| 秋霞在线观看毛片| 99九九在线精品视频| 欧美日韩一区二区视频在线观看视频在线| 91成人精品电影| a 毛片基地| 成人无遮挡网站| 高清av免费在线| 国产亚洲欧美精品永久| 亚洲综合色网址| 国产精品人妻久久久影院| 午夜久久久在线观看| 黄色毛片三级朝国网站| 国产精品99久久99久久久不卡 | 深夜精品福利| 巨乳人妻的诱惑在线观看| 九九爱精品视频在线观看| 黄网站色视频无遮挡免费观看| 国产成人aa在线观看| 国产老妇伦熟女老妇高清| 最近手机中文字幕大全| 亚洲综合精品二区| 大香蕉97超碰在线| 九色亚洲精品在线播放| 丝袜脚勾引网站| 亚洲欧美中文字幕日韩二区| 亚洲国产色片| 亚洲人与动物交配视频| 亚洲av免费高清在线观看| 2021少妇久久久久久久久久久| 2021少妇久久久久久久久久久| av不卡在线播放| 日本欧美国产在线视频| 国产精品一区www在线观看| av卡一久久| 色婷婷久久久亚洲欧美| 国产精品嫩草影院av在线观看| 九色亚洲精品在线播放| 亚洲人与动物交配视频| 三级国产精品片| 欧美成人精品欧美一级黄| 飞空精品影院首页| 久久精品久久久久久久性| 欧美 日韩 精品 国产| 日日啪夜夜爽| 国产爽快片一区二区三区| 18禁观看日本| 免费看av在线观看网站| 欧美3d第一页| 亚洲av在线观看美女高潮| 国产69精品久久久久777片| 久久久久国产精品人妻一区二区| 色婷婷久久久亚洲欧美| 女性被躁到高潮视频| 国产亚洲精品久久久com| 国产精品久久久久久精品电影小说| 下体分泌物呈黄色| 亚洲精品成人av观看孕妇| 欧美成人午夜精品| 黄网站色视频无遮挡免费观看| 少妇熟女欧美另类| 亚洲五月色婷婷综合| 9热在线视频观看99| 好男人视频免费观看在线| 最近手机中文字幕大全| 久久精品久久精品一区二区三区| 人人澡人人妻人| 看免费av毛片| 最后的刺客免费高清国语| 亚洲成人手机| 成人无遮挡网站| 大香蕉97超碰在线| 久久久精品区二区三区| 乱码一卡2卡4卡精品| 国产又爽黄色视频| kizo精华| av有码第一页| 人人妻人人澡人人爽人人夜夜| 日韩熟女老妇一区二区性免费视频| 老司机影院毛片| 母亲3免费完整高清在线观看 | 久久久久久久大尺度免费视频| 高清在线视频一区二区三区| 在线精品无人区一区二区三| 人成视频在线观看免费观看| 看非洲黑人一级黄片| 国产亚洲欧美精品永久| 在线观看免费高清a一片| 青春草国产在线视频| 日日啪夜夜爽| 国产一区二区激情短视频 | 男的添女的下面高潮视频| 69精品国产乱码久久久| 免费少妇av软件| 国产xxxxx性猛交| 狠狠婷婷综合久久久久久88av| 亚洲天堂av无毛| 男女边吃奶边做爰视频| 亚洲色图综合在线观看| 人妻少妇偷人精品九色| 精品亚洲成国产av| 久久久久久久久久久免费av| 视频在线观看一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 青春草亚洲视频在线观看| 亚洲欧美中文字幕日韩二区| 久久久久久人妻| 成人综合一区亚洲| 女性生殖器流出的白浆| 免费高清在线观看视频在线观看| 成人国语在线视频| 男男h啪啪无遮挡| 欧美成人午夜精品| 午夜福利乱码中文字幕| 看免费成人av毛片| 大话2 男鬼变身卡| 日韩不卡一区二区三区视频在线| 精品午夜福利在线看| 在线观看国产h片| 亚洲人与动物交配视频| 夜夜爽夜夜爽视频| 在线天堂最新版资源| 69精品国产乱码久久久| 两个人看的免费小视频| 9热在线视频观看99| 97在线人人人人妻| 亚洲丝袜综合中文字幕| 午夜福利在线观看免费完整高清在| 国产一区二区在线观看av| 99久久综合免费| 亚洲欧美成人综合另类久久久| 亚洲av福利一区| 9191精品国产免费久久| 久久久久久人妻| 少妇高潮的动态图| 丝袜人妻中文字幕| 2018国产大陆天天弄谢| 久久午夜福利片| 久久久久久久大尺度免费视频| 捣出白浆h1v1| 一区二区三区精品91| 多毛熟女@视频| 日韩 亚洲 欧美在线| 日本欧美视频一区| 你懂的网址亚洲精品在线观看| 久久久久精品久久久久真实原创| 日本av手机在线免费观看| 99热6这里只有精品| 日韩欧美一区视频在线观看| 男女免费视频国产| 搡女人真爽免费视频火全软件| 日日摸夜夜添夜夜爱| 国产69精品久久久久777片| 亚洲精品美女久久av网站| 欧美精品一区二区免费开放| 亚洲av电影在线观看一区二区三区| 女性被躁到高潮视频| 又黄又爽又刺激的免费视频.| 亚洲成人av在线免费| 99久久中文字幕三级久久日本| 亚洲高清免费不卡视频| 婷婷成人精品国产| 国产不卡av网站在线观看| 男的添女的下面高潮视频| 日韩av免费高清视频| 欧美日韩av久久| 男女无遮挡免费网站观看| 久久久久久久久久久久大奶| 国产欧美另类精品又又久久亚洲欧美| 精品卡一卡二卡四卡免费| 内地一区二区视频在线| 国产精品.久久久| 欧美bdsm另类| 卡戴珊不雅视频在线播放| 高清在线视频一区二区三区| 国产男女超爽视频在线观看| 国产成人免费观看mmmm| 日韩欧美精品免费久久| 伊人久久国产一区二区| 亚洲av电影在线进入| 国产一区二区在线观看av| 99九九在线精品视频| 伊人久久国产一区二区| 日本免费在线观看一区| 一本色道久久久久久精品综合| 又黄又粗又硬又大视频| 青春草视频在线免费观看| 亚洲精品aⅴ在线观看| 日韩av免费高清视频| 亚洲五月色婷婷综合| 伦精品一区二区三区| 最黄视频免费看| 男男h啪啪无遮挡| 亚洲国产精品国产精品| 国产男女超爽视频在线观看| 爱豆传媒免费全集在线观看| 成年人午夜在线观看视频| 亚洲丝袜综合中文字幕| 亚洲精品,欧美精品| 人人妻人人添人人爽欧美一区卜| 妹子高潮喷水视频| 免费大片黄手机在线观看| 日韩精品有码人妻一区| 天美传媒精品一区二区| 18禁动态无遮挡网站| 免费av不卡在线播放| 我的女老师完整版在线观看| 亚洲综合精品二区| 巨乳人妻的诱惑在线观看| 爱豆传媒免费全集在线观看| 国产片特级美女逼逼视频| 亚洲丝袜综合中文字幕| 亚洲av国产av综合av卡| 久久青草综合色| 久久人人97超碰香蕉20202| 久久精品国产亚洲av涩爱| 精品久久久久久电影网| 99久久综合免费| 国产精品久久久av美女十八| 寂寞人妻少妇视频99o| 午夜久久久在线观看| 99热这里只有是精品在线观看| 欧美激情极品国产一区二区三区 | 熟女电影av网| av免费在线看不卡| 国产精品嫩草影院av在线观看| 美女中出高潮动态图| 亚洲精品久久久久久婷婷小说| www.熟女人妻精品国产 | 国产高清不卡午夜福利| 国产熟女欧美一区二区| 日本免费在线观看一区| 九草在线视频观看| 午夜免费男女啪啪视频观看| 国产精品蜜桃在线观看| 大片免费播放器 马上看| 9热在线视频观看99| 久久人人97超碰香蕉20202| 国产不卡av网站在线观看| 日本色播在线视频| 午夜福利影视在线免费观看| 午夜影院在线不卡| 成人毛片a级毛片在线播放| 男女高潮啪啪啪动态图| 在线观看www视频免费| 国产成人精品福利久久| 日日撸夜夜添| 女性被躁到高潮视频| 免费看不卡的av| 国产免费现黄频在线看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 中文乱码字字幕精品一区二区三区| 国产色爽女视频免费观看| 久久久久久久久久久久大奶| 国产精品女同一区二区软件| 丝瓜视频免费看黄片| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲午夜精品一区二区久久| 国产精品久久久久久精品电影小说| 久久久久精品人妻al黑| 久久精品久久久久久噜噜老黄| 欧美 亚洲 国产 日韩一| 免费在线观看完整版高清| 欧美精品一区二区免费开放| 9191精品国产免费久久| 午夜福利视频在线观看免费| 22中文网久久字幕| 两个人看的免费小视频| 自线自在国产av| 午夜福利在线观看免费完整高清在| 黑人高潮一二区| 51国产日韩欧美| 欧美老熟妇乱子伦牲交| 亚洲国产av影院在线观看| 国产 精品1| 黄色配什么色好看| 久久99蜜桃精品久久| 丝袜美足系列| 日本欧美视频一区| 这个男人来自地球电影免费观看 | 国产精品一区二区在线观看99| 99久久中文字幕三级久久日本| 国产黄色视频一区二区在线观看| 成年人免费黄色播放视频| 色吧在线观看| 大香蕉97超碰在线| 在线精品无人区一区二区三| 国产成人免费观看mmmm| 少妇熟女欧美另类| 国产高清不卡午夜福利| 免费av中文字幕在线| 日韩一区二区三区影片| 国产精品.久久久| 国产激情久久老熟女| 久久人人97超碰香蕉20202| 日韩av在线免费看完整版不卡| 日本爱情动作片www.在线观看| 韩国精品一区二区三区 | 国产精品久久久久成人av| 国产毛片在线视频| www.色视频.com| 熟女人妻精品中文字幕| 亚洲成人av在线免费| 丰满迷人的少妇在线观看| av黄色大香蕉| 欧美日韩成人在线一区二区| 2021少妇久久久久久久久久久| 精品少妇黑人巨大在线播放| 日韩中文字幕视频在线看片| 国产精品久久久久久久久免| 交换朋友夫妻互换小说| 亚洲,一卡二卡三卡| 日韩欧美一区视频在线观看| 中文欧美无线码| 黄色视频在线播放观看不卡| www.av在线官网国产| 黑人猛操日本美女一级片| 亚洲国产精品国产精品| 欧美日韩成人在线一区二区| 一本大道久久a久久精品| 在线精品无人区一区二区三| 国国产精品蜜臀av免费| 97在线人人人人妻| 香蕉国产在线看| 97精品久久久久久久久久精品| 欧美日韩综合久久久久久| 国产1区2区3区精品| 欧美激情国产日韩精品一区| 国产成人一区二区在线| 免费观看a级毛片全部| 韩国av在线不卡| 超色免费av| 日韩成人av中文字幕在线观看| 国产日韩欧美在线精品| 日韩三级伦理在线观看| av在线老鸭窝| 成人国产av品久久久| 97人妻天天添夜夜摸| 国产黄频视频在线观看| 国产男女内射视频| 成人综合一区亚洲| 精品久久蜜臀av无| 亚洲图色成人| 国产国语露脸激情在线看| 内地一区二区视频在线| 久久精品国产自在天天线| 狂野欧美激情性bbbbbb| 精品福利永久在线观看| 美女国产高潮福利片在线看| 99国产综合亚洲精品| 大片免费播放器 马上看| 日韩,欧美,国产一区二区三区| 寂寞人妻少妇视频99o| 人人澡人人妻人| 尾随美女入室| 伦理电影免费视频| 国产淫语在线视频| 亚洲综合色网址| 飞空精品影院首页| 亚洲熟女精品中文字幕| 婷婷成人精品国产| 欧美亚洲 丝袜 人妻 在线| 麻豆乱淫一区二区| 日韩av在线免费看完整版不卡| 人妻系列 视频| 蜜臀久久99精品久久宅男| 99热6这里只有精品| 国产黄频视频在线观看| 麻豆乱淫一区二区| 街头女战士在线观看网站| 妹子高潮喷水视频| 91aial.com中文字幕在线观看| 欧美xxxx性猛交bbbb| 纵有疾风起免费观看全集完整版| 最近手机中文字幕大全| 伦理电影大哥的女人| √禁漫天堂资源中文www| 少妇精品久久久久久久| 国产精品 国内视频| 丝袜脚勾引网站| 在线天堂中文资源库| 日日撸夜夜添| 97在线人人人人妻| 成人国产麻豆网| 久久精品久久久久久久性| 成人毛片60女人毛片免费| 人妻人人澡人人爽人人| 国产男女超爽视频在线观看| 国产成人免费无遮挡视频| 赤兔流量卡办理| 日韩av免费高清视频| 午夜福利视频在线观看免费| 成人国产av品久久久| 国产精品久久久久成人av| 日韩成人伦理影院| 高清av免费在线| 国产免费又黄又爽又色| 大片电影免费在线观看免费| 国产高清三级在线| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美色中文字幕在线| 自拍欧美九色日韩亚洲蝌蚪91| 涩涩av久久男人的天堂| 国产男人的电影天堂91| 亚洲国产看品久久| 日韩av免费高清视频| av视频免费观看在线观看| 成人黄色视频免费在线看| av不卡在线播放| 国产成人精品久久久久久| 亚洲国产色片| 亚洲第一区二区三区不卡| 亚洲欧美清纯卡通| 永久网站在线| 久久久久网色| 日韩人妻精品一区2区三区| 麻豆精品久久久久久蜜桃| 街头女战士在线观看网站| 女的被弄到高潮叫床怎么办| 视频区图区小说| av黄色大香蕉| 久久人人爽人人爽人人片va| h视频一区二区三区| 在线观看国产h片| 亚洲成av片中文字幕在线观看 | 最黄视频免费看| 久久精品国产a三级三级三级| 久久精品国产自在天天线| 高清在线视频一区二区三区| av又黄又爽大尺度在线免费看| 91成人精品电影| 一本—道久久a久久精品蜜桃钙片| 国产色婷婷99| 一本—道久久a久久精品蜜桃钙片| 高清毛片免费看| 国产欧美日韩综合在线一区二区| 如何舔出高潮| av播播在线观看一区| 热re99久久精品国产66热6| 亚洲精品视频女| 久久久久网色| 香蕉丝袜av| 好男人视频免费观看在线| 亚洲av电影在线进入| 在线观看免费高清a一片| 国产一区二区三区综合在线观看 | 欧美亚洲日本最大视频资源| 亚洲精品aⅴ在线观看| 最近手机中文字幕大全| 九九在线视频观看精品| 99九九在线精品视频| 亚洲经典国产精华液单| 亚洲成人手机| 国产成人精品福利久久| 中文字幕av电影在线播放| 看免费成人av毛片| 国产免费视频播放在线视频| 久久久久精品人妻al黑| 国产精品久久久久久av不卡| 国产有黄有色有爽视频| 黄色视频在线播放观看不卡| 亚洲色图 男人天堂 中文字幕 | 久久毛片免费看一区二区三区| 国产视频首页在线观看| 久久av网站| 2018国产大陆天天弄谢| 国产精品久久久av美女十八| 欧美精品国产亚洲| 国产精品国产av在线观看| 国国产精品蜜臀av免费| 人妻 亚洲 视频| 伦理电影免费视频| 成人综合一区亚洲| 日本wwww免费看| 老女人水多毛片| av一本久久久久| 午夜福利乱码中文字幕| 最近最新中文字幕免费大全7| 国产色婷婷99| 伦理电影免费视频| 大香蕉久久网| 午夜老司机福利剧场| 成人亚洲精品一区在线观看| 午夜91福利影院| 久久99一区二区三区| 99热全是精品| 成人国产麻豆网| 日韩视频在线欧美| 久久综合国产亚洲精品| 日韩熟女老妇一区二区性免费视频| 午夜老司机福利剧场| 国产永久视频网站| 妹子高潮喷水视频| 亚洲av男天堂| av视频免费观看在线观看| av在线播放精品| 九九在线视频观看精品| 亚洲欧美一区二区三区国产| 大香蕉久久成人网| av福利片在线| 久久久a久久爽久久v久久| 欧美少妇被猛烈插入视频| 岛国毛片在线播放|