• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The atmospheric circulation patterns influencing the frequency of spring sand-dust storms in the Tarim Basin

    2014-10-09 08:12:08HongJunLiXinHuaYangYongZhaoMinZhongWangWenHuo
    Sciences in Cold and Arid Regions 2014年2期

    HongJun Li , XinHua Yang, Yong Zhao, MinZhong Wang, Wen Huo

    Urumqi Institute of Desert Meteorology, China Meteorological Administration, Urumqi, Xinjiang 830002, China

    1 Introduction

    The Tarim Basin (75°E–91°E, 37°N–41°N) is located in an extremely arid climate zone, with the Taklimakan Desert (the largest desert in China) dominating vast parts of the region. Frequent sand-dust storms occur in spring and summer when its surface temperature rises and the surface winds strengthen (Qianet al., 2002). The observed wind velocity threshold of sand movement is only 5.2 m/s (Chen, 1994). Consequently, the Tarim Basin is a major origin of severe and extremely severe sand-dust storm events (Qianet al., 2002; Wanget al., 2003; Wanget al., 2010) affecting China (Gao and Jiang, 2002; Wanget al., 2003; Liuet al., 2004; Liet al., 2008). Within the Tarim Basin, the most frequent sandstorms occur in the Taklimakan Desert, with pronounced interannual and decadal variations. Sand-dust storms in the Taklimakan Desert mainly occur from March to August, with April to June being the most active period (Gao and Jiang, 2002;Maet al., 2006). A large number of sandstorms were observed in the 1970s, but the number dramatically declined in the 1990s, although the total number of weak and localized sand-dust storms increased (Zhou, 2001;Gao and Jiang, 2002; Maet al., 2006; Fenget al., 2010).

    Based on satellite images of sandstorms in the hinterland of the basin in recent decades, it is generally acknowledged that there are four types of air motions generating the dust storms in the Tarim Basin: (1) strong,large-scale cold air invasions from the west and north; (2)cold air invasions coming from the east; (3) the combination of downslope cold air flow and east-originating cold air; and (4) the basin’s middle air is pumped from low level to upper level (Li and Xiao, 1999). These systems are largely influenced by the unique topographic features of the Tarim Basin, with the Tibetan Plateau at its south,the Kunlun Mountains at its west, and the Tianshan Mountains at its north (Xu, 1997).

    The synoptic cause for the sand-dust storms in the basin is that, due to the strong surface heating in its warm seasons, a shallow thermal depression normally dominates the region. When cold air invades the basin, a strong, low-level atmospheric convergence forms over the areas of Hetian-Yutian-Minfeng and Keping. The associated strong ascending motion in the atmospheric boundary layer provides the dynamic lifting mechanism for sand dust, causing these two areas to have the most frequent sand-dust storms in all of China (Heet al., 1998;Hanet al., 2005). Furthermore, corresponding to the low-level heat system, the upper atmosphere is dominated by strong atmospheric divergence and a descending motion in the upper-level jet stream inlet area. This leads to the downward propagation of the high-level momentum, which further enhances the middle and low-level wind speeds and develops a cold front moving southward.This finally triggers the outbreaks of sandstorm events(Wanget al., 2008; Penget al., 2009).

    Besides these large-scale synoptic patterns, the frequency of sand-dust storms is also influenced by local climate factors such as precipitation, relative humidity,surface temperature, and wind velocity (Zenget al.,2010). Previous research (e.g., Weiet al., 2004) reported rising temperatures in recent past decades in the Tarim Basin. At the same time, precipitation has increased and the near-surface winds have declined. Those researchers concluded that these changes have contributed to the decline of sand-dust storm days in South Xinjiang.

    Although there is a reasonable understanding of the synoptic setup and local climate conditions that are favorable for sandstorms to develop in the basin, the causes of the remarkable year-to-year variation in sandstorm occurrences are less clear. Liet al. (2008) posited that sandstorms have a quasi 3-year cycle, and other studies have shown that the spring and summer sand-dust weather patterns are influenced by many circulation systems ranging from polar regions to the low latitudes, such as the polar front embedded in the westerlies in the middle latitudes, the East Asia trough, and the position and strength of the subtropical high (Maoet al., 2005; Wanget al., 2007; Zenget al., 2010). Most of the analyses of the relationship between sand-dust storms and circulations have focused on the dust storms in northern China and the eastern part of northwest China. Less is understood about the atmospheric circulation systems influencing the dust storms in the Tarim Basin. This was the purpose of this study.

    2 Data

    We used the monthly sand-dust storm data from 37 meteorological stations situated in the Tarim Basin for the period of January 1961 to December 2009. Studies by Wang and Dong (2000) and Qianet al. (2002) showed that the data are of good quality. We mainly focused on the dust storm activities in the boreal spring season by averaging the sandstorm days during March-April-May to obtain the interannual time-series of the spring sandstorm frequencies. The atmospheric circulation data used in this study are from the NCEP/NCAR monthly reanalysis grid data at the spatial resolution of 2.5°×2.5° (Kalnayet al., 1996).

    3 Analysis results

    3.1 Changes in sandstorm frequencies

    Sand-dust storms in the Tarim Basin exhibit significant interannual and decadal variations. Sand-dust storms occurred frequently during the 1960s and the 1970s and declined significantly in the 1980s. Since the 1990s,sandstorm occurrence in the basin has become less frequent (Figure 1). Calculation of the linear trend over the whole period revealed a declining trend of -1.2 sandstorm days per decade, which is statistically significant at the 99% confidence level. This result is consistent with the conclusions derived from other studies (Liet al.,2008).

    Figure 1 The variation of sand-dust days in the Tarim Basin in spring during 1961–2009

    3.2 Atmospheric circulation patterns associated with spring sandstorms

    The dynamic and thermodynamic conditions that affect the variation of sand-dust storms are closely related to the large-scale atmospheric circulation background(Wang and Dong, 2000; Ren and Wang, 2009). Figure 2 shows correlations of the spring 500-hPa geopotential height and the sand-dust storm frequency in the Tarim Basin during the study period. It clearly displays a "- +-" pattern from the west to the east crossing the Eurasian continent, with negative correlations over the Paris Basin and the Zara region in midwestern Mongolia. In between, there is a weak positive correlation pattern near the Ural River region. The correlations over the Zara region have the highest negative values, with the correlation coefficient reaching -0.6. The correlation patterns over both the Zara region and the Paris Basin are statistically significant at the 95% confidence level.Combined with the mean circulation background (with a ridge system over the Urals and a trough over the midwestern Mongolia region), and the rising of the geopotential height at 500 hPa over midwestern Mongolia and its decline over the Ural region, the correlation patterns suggest a weakening of the meridional circulation between the two regions, and the prevailing circulation in the middle troposphere becomes more zonally oriented.This makes it difficult for high-latitude cold air masses to penetrate southward, resulting in weakened low-level winds and reduced frequency. The weakened low-level winds cannot easily cross over the Tianshan Mountains into the Tarim Basin. This also means that the cold air mass which often accumulates along the northern side of the Tianshan Mountains becomes weak and there is less east-originating cold air invasion into the Tarim Basin.

    Figure 2 Correlations between sand-dust storm frequency in the Tarim Basin and atmosphere circulations in spring

    Because the 500-hPa geopotential height over midwestern Mongolia has the most significantly negative correlation with the sand-dust storm frequency in the Tarim Basin, we further explored the relationship between the long-term variation of the height field and the sandstorm frequency in the basin. Figure 3 shows the interannual variation of the 500-hPa height over the area of 30°N–70°N, 80°E–120°E, where statistically negative correlations are shown in figure 2. The 500-hPa height in this region has experienced steady increases, and its correlation coefficient with the sandstorm frequency in the Tarim Basin reaches -0.69, passing the significance test at the 99% confidence level. The 500-hPa geopotential height has an increasing linear trend of 7.0 gpm per decade. Such an increase indicates that the low-value cyclone system is weakened and the large-scale winter monsoon circulation is also weakened. This means the southward intrusion of cold air from high latitudes is reduced. Associated with weakened surface winds in the spring, the sand-dust storm events are significantly reduced. This finding is in good agreement with the results of Zheng (2004).

    3.3 Sandstorms and the abrupt increase in the 500-hPa geopotential height

    Figures 1–3 show that the spring sandstorms vary significantly in response to changes in the regional atmospheric circulation. We used the Mann-Kendall rank statistical method (hereafter, MKT) (Fu and Wang, 1992)to test whether the variations of the sand-dust storms and geopotential height were significant during different periods, and whether the timing of the abrupt changes was consistent between the two.

    Figure 3 Time-series of the average geopotential height departure from 500 hPa over the area located in 30°N–70°N and 80°E–120°E

    Figure 4 shows the time-series of the MKT curves for sandstorms in the Tarim Basin, and the 500-hPa geopotential height averaged over the areas of significantly negative correlations in the Zara region. In the early 1960s, the trend of sand-dust storm days was positive but became negative in the mid-1960s. From the late 1970s,the MKT curve of sand-dust storm frequency (line c1)dropped sharply. After 1984, the number of sand-dust storm days reached a significant decrease of 5%.

    Figure 4 Abrupt changes of sand-dust storm frequency (a) and 500-hPa geopotential height (b) over the significantly negative correlation areas. c1 and c2 represent abrupt test statistical series in positive sequence and statistical series in reverse sequence, respectively.

    The crossing point of lines c1 and c2 of the MKT appears in 1985, suggesting an abrupt change point of the dust storms around that time. The abrupt change in the spring sand-dust storms is related to the abrupt change in the geopotential height at 500 hPa. Figure 4b shows that the geopotential height (line c1) was in a negative trend in the early 1960s, and in the mid-1960s it turned into a positive trend. From the late 1970s to the 2000s, it has kept increasing significantly. According to the MKT curves in figure 4b, the abrupt changes in geopotential height which occurred in 1980 and 1984 coincide with the rapid declines in the sand-dust storm frequencies around 1985.

    To further illustrate the influence of the atmospheric circulations on the sand-dust storms in the Tarim Basin,we conducted a composite analysis by calculating the mean atmospheric circulation anomalies during the years with higher and lower numbers of the spring sandstorms in the Tarim Basin. Out of the 49 spring seasons, we selected the years of 1962, 1979, 1971,1963, and 1966 as representing higher numbers of dust storms, and the years of 2005, 1997, 1996, 2000, and 2009 as representing lower numbers of the dust storms.The corresponding 500-hPa circulation patterns for more-frequent dust storms in the basin are related to the fact that the Tarim Basin is located in front of a high-pressure ridge, with cold air from the northwest travelling southward and eastward and then entering the Tarim Basin, causing strong surface winds and sandstorms (Figure 5).

    Figure 5 The circulation departure field at 500 hPa in years with more (a) and fewer (b) sand-dust storms, and the circulation field (c) and wind departure field (d) at 850 hPa in years with more sand-dust storms

    Figure 5a shows that the 500-hPa geopotential height has a positive anomaly center in the west and a negative center in the east. The negative anomaly over the western part of Mongolia extends farther north to the polar region.Meanwhile, the positive anomaly is located over the East European plains to the west of the Urals, and its northern boundary extends to the high-latitude region. The large pressure gradient between the two centers causes the zonal westerlies to be distorted and the circulation becomes more meridional. This kind of circulation situation formed by the high pressure (ridge) near the East European plains and the low pressure (trough) over Mongolia is a typical synoptic pattern that is often observed in the development of sand-dust storm weather in the Tarim Basin. In contrast, for the years with few sandstorms(Figure 5b) the synoptic pattern is almost opposite to the one shown in figure 5a, with a negative anomaly over eastern Europe and positive anomalies over western Mongolia. Under such conditions, the meridional circulation is weakened and the circulations become more stable,resulting in conditions that are not favorable for the development of sandstorms.

    In the lower troposphere, figures 5c and 5d show the 850-hPa height and wind conditions favorable for dust storm development in the Tarim Basin. Over western Asia there exists one high pressure ridge, and from the Okhotsk Sea to the Tarim Basin is a trough in the northeast–southwest direction. The Tarim Basin is located in front of the ridge and in the back of the trough, so the prevailing airflow draws more cold air from the north into the basin from the northeast. The low-pressure system over western Mongolia is the primary factor that influences the occurrence of sand-dust storms in the Tarim Basin.

    4 Conclusions

    Based on NCEP/NCAR reanalysis data and sandstorm frequency data from the Tarim Basin, the impact of atmosphere patterns on sand-dust storms was investigated by correlations and atmosphere field composite analysis. The main conclusions are as follows:

    1) The sand-dust storm frequency in the Tarim Basin in the spring season is closely related to certain patterns of large-scale atmospheric circulation. It has significantly negative correlations with the 500-hPa geopotential height over the Paris Basin and midwestern Mongolia,but positive correlations with the 500-hPa height over the Ural River region.

    2) The 1985 abrupt decline in spring sandstorms in the Tarim Basin was accompanied by an abrupt increase in the 500-hPa height field over western Mongolia. This followed abrupt increases in the 500-hPa height in 1980 and 1984.

    3) At the interannual scale, strengthened cyclonic circulation patterns over western Mongolia and anticyclones in the East European plains at 500-hPa geopotential height, are the typical background conditions conducive to more sand-dust storms in the Tarim Basin.

    This work was supported by the Special Fund of the Central Scientific Research Institution (No. IDM201203),the National Natural Science Foundation of China (No.41305107), and the Nonprofit Sector Specific Research(Nos. GYHY201106025 and GYHY201006012).

    Chen WN, Dong ZB, Yang ZT,et al., 1995. Threshold velocities of sand-driving wind in the Taklimakan Desert. Acta Geographica Sinica, 50(4): 360–367. DOI: 10.3321/j.issn:0375-5444.1995.04.009.

    Gao WD, Jiang W, 2002. Discussion on the formation and harms of the sand-dust storms in the west and the south of Taklimakan Desert. J. Arid Land Resources and Env., 16(3): 64–70. DOI:10.3969/j.issn.1003-7578.2002.03.012.

    Feng XY, Wang SG, Cheng YF,et al., 2010. Climatic features of sandstorms in the central and western part of the north in China. J. Desert Res., 30(2): 394–399.

    Fu CB, Wang Q, 1992. The definition and test method of abrupt climate change. Chinese J. Atmos. Sci., 16(1): 111–119. DOI:10.3878/j.issn.1006-9895.1992.04.11.

    Han YX, Fang XM, Song LC,et al., 2005. Discussion on atmospheric circulations and the cause of sand-dust storms in Tarim Basin, based on the desert aeolian deposit landform and wind fields reestablished by meteorological observations. Chinese J. Atmos. Sci., 29(4):627–635.

    He Q, Xiang M, Tang SJ, 1998. Analysis on two severe sandstorms in the hinterland of Taklimakan Desert. J. Desert Res., 18(1): 320–327.

    Kalnay E, Kanamitsu M, Kistler R, 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteorol. Soc., 77: 437–471. DOI:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Li HJ, Li J, He Q, 2008. Study on the trends and sudden changes of sand-dust storms in Xinjiang. J. Desert Res., 28(5): 915–919.

    Li H, Xiao JD, 1999. Remote monitoring to the sandstorms in the hinterland of Taklimakan Desert. J. Xinjiang Agri. Univ., 22(3):219–223.

    Li SK, Lu M, Wang KR,et al., 2008. The effect of soil erosion to the ground surface in south Xinjiang on the formation of sand-dust weathers. Agricul. Sci. in China, 141(10): 3158–3167. DOI:10.3864/j.issn.0578-1752.2008.10.032.

    Liu XD, Tian L, Zhang XY, 2004. Impact of the sand-dust events in Taklimakan Desert on the atmospheric PM10concentration in the lower reaches. China Env. Sci., 24(5): 528–532. DOI:10.3321/j.issn:1000-6923.2004.05.005.

    Ma Y, Xiao KT, Wang X, 2006. Climatic features of the sand-dust weathers in Tarim Basin. Acta Sientiarum Naturalium Universitatis Pekinensis, 42(6): 784–790. DOI: 10.3321/j.issn:0479-8023.2006.06.016.

    Mao WY, Ai L, Chen S,et al., 2005. Correlations between spring dust weathers in Xinjiang and characteristic quantities of month circulations in the earlier stages. Arid Land Geog., 28(2): 171–175. DOI:10.3321/j.issn:1000-6060.2005.02.007.

    Peng Y, Wang Z, Xu XT, 2009. Analysis on the dynamic characteristics of circulations during a large-scale sand-dust weather event in the northwest. J. Desert Res., 29(4): 766–772.

    Qian ZA, Song MH, Li WN, 2002. Analysis on the distribution and variation trend of sandstorms in the last 50 years in China. J. Desert Res., 22(2): 106–110. DOI: 10.3321/j.issn:1000-694X.2002.02.002.

    Ren YL, Wang JS, 2009. Analysis on the factors affecting the changes of sandstorm weathers in the northwest and Tibetan Plateau of China. J. Desert Res., 29(4): 734–743.

    Wang CZ, Niu SJ, Wang LN, 2010. Variation features of sand-dust storms in the past 50a in China. J. Desert Res., 30(4): 933–939.

    Wang JY, Wang SG, Ma Y,et al., 2007. The relations between sandstorms in spring in the north of China and climatic factors. J. Desert Res., 27(2): 296–300. DOI: 10.3321/j.issn:1000-694X.2007.02.022.

    Wang MZ, Wei WS, Yang LM,et al., 2008. Analysis on the dynamic structure of circulations in the process of one east-coming sandstorm event in Tarim Basin. J. Desert Res., 28(2): 370–376.

    Wang SG, Dong GR, 2000. The development of the study on sand-dust storms. J. Desert Res., 20(4): 349–356. DOI:10.3321/j.issn:1000-694X.2000.04.002.

    Wang SG, Wang JY, Zhou ZJ,et al., 2003. Regional characteristics of sand-dust storms in China. J. Geog. Sci., 58(2): 193–200. DOI:10.3321/j.issn:0375-5444.2003.02.005.

    Wei WS, Gao WD, Shi YG, 2004. Study on the effect of the climate and environment changes on sand-dust storms in Xinjiang.Arid Land Geography, 27(2): 138–141. DOI:10.3321/j.issn:1000-6060.2004.02.002.

    Xu XH, 1997. Analysis and study on the satellite imagery of sand-dust storms in Tarim Basin. Research on Sand-Dust Storms in China.Meteorological Press, Beijing, pp. 88–91.

    Zeng SL, Cheng YF, Wang SG,et al., 2010. Investigation on the inter-annual variations and the causes of spring sandstorms in the northwest and Inner Mongolia in China. J. Desert Res., 30(5):1200–1206.

    Zheng XJ, 2004. Analysis on some characteristics of sand-dust weathers in Beijing region. Clim. and Env. Res., 9(1): 14–23. DOI:10.3969/j.issn.1006-9585.2004.01.003.

    Zhou ZJ, 2001. Flying dust and sandstorm weathers in the last 45 years in China. Quaternary Sci., 21(1): 9–17. DOI:10.3321/j.issn:1001-7410.2001.01.002.

    女人爽到高潮嗷嗷叫在线视频| 免费高清在线观看日韩| 亚洲精品中文字幕一二三四区 | 爱豆传媒免费全集在线观看| 天堂8中文在线网| 色老头精品视频在线观看| 99国产极品粉嫩在线观看| 久久久久精品人妻al黑| 国产成人影院久久av| 欧美另类亚洲清纯唯美| 午夜激情av网站| tube8黄色片| 亚洲人成77777在线视频| 亚洲美女黄色视频免费看| 男女高潮啪啪啪动态图| 国产日韩欧美视频二区| 99精品欧美一区二区三区四区| 69av精品久久久久久 | 亚洲精品国产av成人精品| 好男人电影高清在线观看| 中文字幕人妻丝袜一区二区| 日韩大码丰满熟妇| 我的亚洲天堂| 老熟妇仑乱视频hdxx| 亚洲av美国av| 亚洲色图 男人天堂 中文字幕| 91大片在线观看| 免费日韩欧美在线观看| 搡老岳熟女国产| 天天添夜夜摸| 精品久久蜜臀av无| 九色亚洲精品在线播放| 日韩视频在线欧美| 男女之事视频高清在线观看| 久久久久久亚洲精品国产蜜桃av| 美女福利国产在线| 99国产极品粉嫩在线观看| 午夜福利免费观看在线| 极品人妻少妇av视频| 99国产精品99久久久久| 波多野结衣av一区二区av| 免费高清在线观看日韩| 亚洲国产欧美在线一区| 国产精品99久久99久久久不卡| 成年动漫av网址| 男女免费视频国产| 国产亚洲欧美精品永久| 欧美国产精品va在线观看不卡| 免费黄频网站在线观看国产| 免费女性裸体啪啪无遮挡网站| 国产97色在线日韩免费| 亚洲一区中文字幕在线| 久久天堂一区二区三区四区| a在线观看视频网站| 制服人妻中文乱码| 婷婷成人精品国产| 成人亚洲精品一区在线观看| 免费在线观看黄色视频的| 黄色毛片三级朝国网站| 国产野战对白在线观看| 交换朋友夫妻互换小说| 国产精品一区二区免费欧美 | 日本wwww免费看| 精品少妇内射三级| 老熟女久久久| 香蕉丝袜av| e午夜精品久久久久久久| 国产免费一区二区三区四区乱码| 99久久人妻综合| 午夜福利在线免费观看网站| 日本vs欧美在线观看视频| 在线观看舔阴道视频| 国产亚洲精品第一综合不卡| 久久人妻福利社区极品人妻图片| 精品一区二区三区四区五区乱码| 欧美日韩国产mv在线观看视频| 精品人妻一区二区三区麻豆| 91av网站免费观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品一卡2卡三卡4卡5卡 | 色综合欧美亚洲国产小说| 色老头精品视频在线观看| h视频一区二区三区| 午夜福利在线观看吧| 国产片内射在线| 黑人巨大精品欧美一区二区mp4| 欧美激情 高清一区二区三区| 国产精品成人在线| 99久久99久久久精品蜜桃| 99国产极品粉嫩在线观看| 国产有黄有色有爽视频| 欧美国产精品一级二级三级| 建设人人有责人人尽责人人享有的| 亚洲,欧美精品.| 亚洲美女黄色视频免费看| 一区二区三区四区激情视频| 18禁观看日本| 性色av乱码一区二区三区2| 亚洲国产欧美在线一区| 久久久久久免费高清国产稀缺| 十八禁网站网址无遮挡| 欧美黄色淫秽网站| 五月天丁香电影| 欧美黑人精品巨大| 99香蕉大伊视频| 精品高清国产在线一区| 日韩精品免费视频一区二区三区| 亚洲精品中文字幕一二三四区 | 精品少妇一区二区三区视频日本电影| 人妻一区二区av| 精品国产乱码久久久久久小说| 91精品国产国语对白视频| 亚洲少妇的诱惑av| 一本综合久久免费| 天天影视国产精品| 国产精品成人在线| 日韩免费高清中文字幕av| 免费少妇av软件| 一级,二级,三级黄色视频| 久久影院123| 悠悠久久av| 国产一区二区三区在线臀色熟女 | 欧美激情 高清一区二区三区| 麻豆国产av国片精品| 久久国产亚洲av麻豆专区| 精品亚洲成国产av| 十八禁人妻一区二区| 亚洲 欧美一区二区三区| 精品人妻一区二区三区麻豆| 国产成人精品无人区| 精品一区在线观看国产| av线在线观看网站| 亚洲精品中文字幕一二三四区 | 亚洲中文字幕日韩| 成在线人永久免费视频| 国产精品免费大片| 中文字幕制服av| 国产男女超爽视频在线观看| 亚洲国产欧美在线一区| 午夜视频精品福利| 亚洲国产欧美一区二区综合| 亚洲欧美日韩高清在线视频 | 19禁男女啪啪无遮挡网站| 热99re8久久精品国产| 在线十欧美十亚洲十日本专区| 在线永久观看黄色视频| 精品久久久久久电影网| 欧美日韩精品网址| 国产xxxxx性猛交| 日韩欧美免费精品| 亚洲国产欧美在线一区| 欧美性长视频在线观看| 欧美黄色片欧美黄色片| 18禁裸乳无遮挡动漫免费视频| 一边摸一边抽搐一进一出视频| 国产一卡二卡三卡精品| 精品国产一区二区久久| 国产视频一区二区在线看| av有码第一页| 狂野欧美激情性xxxx| 国产精品1区2区在线观看. | 好男人电影高清在线观看| 欧美xxⅹ黑人| 国产av国产精品国产| 日本91视频免费播放| 男女边摸边吃奶| 久久久久久久精品精品| 巨乳人妻的诱惑在线观看| 汤姆久久久久久久影院中文字幕| 中文字幕高清在线视频| 国产欧美日韩一区二区三 | 激情视频va一区二区三区| 亚洲中文av在线| 精品欧美一区二区三区在线| 在线观看www视频免费| 亚洲av电影在线进入| 2018国产大陆天天弄谢| 黄色 视频免费看| 精品国产乱码久久久久久男人| www.精华液| 国产无遮挡羞羞视频在线观看| 亚洲人成77777在线视频| 国产亚洲午夜精品一区二区久久| 成人av一区二区三区在线看 | 韩国高清视频一区二区三区| 最近中文字幕2019免费版| 国产亚洲午夜精品一区二区久久| 老熟妇仑乱视频hdxx| 久久精品国产亚洲av高清一级| 欧美大码av| 老熟女久久久| 国产色视频综合| 在线观看舔阴道视频| 国产精品久久久人人做人人爽| 在线观看免费午夜福利视频| 五月天丁香电影| 老汉色av国产亚洲站长工具| 亚洲国产欧美在线一区| 国产深夜福利视频在线观看| 母亲3免费完整高清在线观看| 中文字幕av电影在线播放| 啦啦啦免费观看视频1| 国产av又大| 免费在线观看视频国产中文字幕亚洲 | 免费人妻精品一区二区三区视频| 黑人操中国人逼视频| 两个人免费观看高清视频| 亚洲人成电影免费在线| 亚洲五月色婷婷综合| 老司机影院毛片| 丰满人妻熟妇乱又伦精品不卡| 嫩草影视91久久| 伊人亚洲综合成人网| 啦啦啦中文免费视频观看日本| 午夜影院在线不卡| 精品熟女少妇八av免费久了| 欧美日韩精品网址| 免费观看av网站的网址| 99国产精品99久久久久| 国产一卡二卡三卡精品| 国产精品免费大片| av在线老鸭窝| 日韩制服骚丝袜av| 不卡一级毛片| 一级片免费观看大全| 一级毛片精品| 高清视频免费观看一区二区| 婷婷丁香在线五月| 女人高潮潮喷娇喘18禁视频| 桃红色精品国产亚洲av| 老司机在亚洲福利影院| 香蕉丝袜av| 精品少妇久久久久久888优播| 久久国产精品男人的天堂亚洲| 亚洲熟女精品中文字幕| 国产精品久久久久久精品电影小说| 欧美激情极品国产一区二区三区| 欧美中文综合在线视频| 在线观看一区二区三区激情| 日韩有码中文字幕| 国产亚洲一区二区精品| 欧美精品人与动牲交sv欧美| 午夜91福利影院| 精品乱码久久久久久99久播| 狂野欧美激情性xxxx| 美女视频免费永久观看网站| 欧美精品人与动牲交sv欧美| 天天躁日日躁夜夜躁夜夜| 亚洲第一青青草原| 亚洲欧洲日产国产| 欧美97在线视频| 一进一出抽搐动态| 一区二区三区激情视频| 肉色欧美久久久久久久蜜桃| 啦啦啦在线免费观看视频4| 在线观看免费视频网站a站| 一区二区av电影网| 纯流量卡能插随身wifi吗| 最近最新免费中文字幕在线| 午夜91福利影院| www.999成人在线观看| 2018国产大陆天天弄谢| videos熟女内射| 久久久久国产一级毛片高清牌| 亚洲国产欧美日韩在线播放| av超薄肉色丝袜交足视频| 亚洲av成人一区二区三| 99国产精品免费福利视频| 国产激情久久老熟女| av在线app专区| 亚洲天堂av无毛| 午夜激情av网站| 久久精品人人爽人人爽视色| 久久人人爽av亚洲精品天堂| 久久亚洲精品不卡| 老司机福利观看| 久久精品国产a三级三级三级| 日韩大码丰满熟妇| 97精品久久久久久久久久精品| 国产亚洲精品久久久久5区| 免费一级毛片在线播放高清视频 | 国产av又大| 狂野欧美激情性bbbbbb| 欧美精品一区二区大全| 五月天丁香电影| 亚洲性夜色夜夜综合| 久久久久久久精品精品| 99re6热这里在线精品视频| www.精华液| 一个人免费看片子| 日本撒尿小便嘘嘘汇集6| 欧美日韩黄片免| 免费看十八禁软件| 久热爱精品视频在线9| 亚洲欧美精品自产自拍| 99国产精品99久久久久| 亚洲精品粉嫩美女一区| 精品国产乱子伦一区二区三区 | 亚洲中文日韩欧美视频| 女性生殖器流出的白浆| 真人做人爱边吃奶动态| 亚洲精品国产精品久久久不卡| 亚洲av电影在线观看一区二区三区| 欧美97在线视频| 亚洲av男天堂| 极品少妇高潮喷水抽搐| 日本一区二区免费在线视频| 国产成人欧美| 国产精品偷伦视频观看了| 欧美日韩av久久| 啦啦啦 在线观看视频| 99热网站在线观看| 老熟妇仑乱视频hdxx| 国产黄色免费在线视频| 国产成人a∨麻豆精品| 午夜福利乱码中文字幕| 多毛熟女@视频| 精品一区二区三卡| 中文精品一卡2卡3卡4更新| 午夜免费成人在线视频| 亚洲av男天堂| 免费黄频网站在线观看国产| 少妇人妻久久综合中文| av天堂在线播放| 18禁黄网站禁片午夜丰满| 999精品在线视频| 超色免费av| 丝袜脚勾引网站| 欧美xxⅹ黑人| 久久久久网色| 国产成人精品无人区| 亚洲自偷自拍图片 自拍| 亚洲av电影在线进入| 中文字幕av电影在线播放| 亚洲精品美女久久久久99蜜臀| 成人18禁高潮啪啪吃奶动态图| 午夜福利一区二区在线看| 欧美另类亚洲清纯唯美| 午夜影院在线不卡| 可以免费在线观看a视频的电影网站| 老熟女久久久| 女人精品久久久久毛片| 少妇精品久久久久久久| 欧美一级毛片孕妇| 亚洲国产看品久久| av又黄又爽大尺度在线免费看| 91成人精品电影| 亚洲av男天堂| 在线观看一区二区三区激情| 狂野欧美激情性xxxx| 在线观看人妻少妇| 91麻豆av在线| 午夜免费观看性视频| 美女扒开内裤让男人捅视频| 精品一区二区三卡| 中文精品一卡2卡3卡4更新| 亚洲欧美色中文字幕在线| 两人在一起打扑克的视频| 嫩草影视91久久| 亚洲欧美成人综合另类久久久| 999久久久国产精品视频| 欧美日韩一级在线毛片| 日韩制服丝袜自拍偷拍| av片东京热男人的天堂| 国产亚洲精品第一综合不卡| 亚洲成国产人片在线观看| 午夜福利视频在线观看免费| 性少妇av在线| 十八禁高潮呻吟视频| 久久这里只有精品19| 国产深夜福利视频在线观看| 免费不卡黄色视频| 在线观看人妻少妇| 老司机福利观看| 日韩电影二区| 亚洲欧洲精品一区二区精品久久久| 考比视频在线观看| 亚洲情色 制服丝袜| 久久亚洲国产成人精品v| 91大片在线观看| 人妻一区二区av| 人人妻人人添人人爽欧美一区卜| 亚洲国产日韩一区二区| 热re99久久国产66热| 一个人免费在线观看的高清视频 | 国产欧美日韩精品亚洲av| 黄片播放在线免费| 国产三级黄色录像| 精品久久久精品久久久| 精品国产乱码久久久久久男人| 日韩免费高清中文字幕av| 性色av乱码一区二区三区2| 免费日韩欧美在线观看| 男女边摸边吃奶| 国产视频一区二区在线看| 一区二区三区精品91| 激情视频va一区二区三区| 日本av免费视频播放| 亚洲国产欧美日韩在线播放| 国产成人av教育| 女人高潮潮喷娇喘18禁视频| 亚洲第一欧美日韩一区二区三区 | 老汉色av国产亚洲站长工具| 窝窝影院91人妻| 久久久国产精品麻豆| 大片免费播放器 马上看| 精品久久久久久久毛片微露脸 | 亚洲精品粉嫩美女一区| 午夜91福利影院| 免费女性裸体啪啪无遮挡网站| 欧美国产精品va在线观看不卡| cao死你这个sao货| 亚洲欧美激情在线| 精品国产乱码久久久久久小说| 韩国精品一区二区三区| 成年女人毛片免费观看观看9 | 97精品久久久久久久久久精品| 十八禁人妻一区二区| 亚洲精品在线美女| 午夜老司机福利片| 涩涩av久久男人的天堂| 亚洲avbb在线观看| 精品乱码久久久久久99久播| 中文字幕av电影在线播放| 国产一区二区三区在线臀色熟女 | 久久性视频一级片| 自线自在国产av| 亚洲免费av在线视频| 国产日韩欧美在线精品| 夫妻午夜视频| 国产精品二区激情视频| 国产免费一区二区三区四区乱码| 满18在线观看网站| 精品少妇一区二区三区视频日本电影| 亚洲一卡2卡3卡4卡5卡精品中文| 国产在线一区二区三区精| 首页视频小说图片口味搜索| 午夜福利乱码中文字幕| 高潮久久久久久久久久久不卡| 国产精品.久久久| 一区二区三区乱码不卡18| 99国产精品一区二区蜜桃av | 色老头精品视频在线观看| 视频在线观看一区二区三区| 999精品在线视频| 日本wwww免费看| 在线观看一区二区三区激情| 国产片内射在线| 捣出白浆h1v1| 久久精品国产综合久久久| 国产成人精品无人区| 9热在线视频观看99| 日韩人妻精品一区2区三区| 老司机亚洲免费影院| 91av网站免费观看| 亚洲精品国产色婷婷电影| 亚洲欧美日韩高清在线视频 | 久久久国产欧美日韩av| 国产成人免费观看mmmm| 91字幕亚洲| 69精品国产乱码久久久| 999久久久精品免费观看国产| 亚洲精品日韩在线中文字幕| 午夜激情av网站| 国产福利在线免费观看视频| av在线播放精品| 他把我摸到了高潮在线观看 | 免费av中文字幕在线| videos熟女内射| 日本一区二区免费在线视频| 动漫黄色视频在线观看| 久久久久久久久久久久大奶| 91九色精品人成在线观看| 美女高潮到喷水免费观看| 国产精品一区二区免费欧美 | 国产男人的电影天堂91| 女人高潮潮喷娇喘18禁视频| 免费在线观看黄色视频的| 亚洲精品中文字幕在线视频| 丝袜人妻中文字幕| 在线 av 中文字幕| 精品国产乱码久久久久久男人| 午夜日韩欧美国产| 欧美激情极品国产一区二区三区| 窝窝影院91人妻| 欧美激情极品国产一区二区三区| 大片免费播放器 马上看| 永久免费av网站大全| 天堂俺去俺来也www色官网| 黄色片一级片一级黄色片| 男人添女人高潮全过程视频| 黄色怎么调成土黄色| 精品国产一区二区三区久久久樱花| 曰老女人黄片| 精品熟女少妇八av免费久了| 亚洲国产看品久久| 人人妻人人添人人爽欧美一区卜| 中文字幕人妻丝袜制服| 国产日韩欧美视频二区| 日本撒尿小便嘘嘘汇集6| 午夜福利一区二区在线看| 黄色毛片三级朝国网站| 欧美精品一区二区大全| 三上悠亚av全集在线观看| 中文精品一卡2卡3卡4更新| 国产精品二区激情视频| 欧美人与性动交α欧美软件| 两性夫妻黄色片| 日本91视频免费播放| 国产精品一区二区在线不卡| 亚洲性夜色夜夜综合| 侵犯人妻中文字幕一二三四区| bbb黄色大片| av欧美777| 亚洲精品av麻豆狂野| 久久99一区二区三区| 国产一级毛片在线| 中文精品一卡2卡3卡4更新| 国产伦理片在线播放av一区| 亚洲欧美一区二区三区久久| 久久久久国内视频| 人人妻,人人澡人人爽秒播| 久久久精品94久久精品| 成人免费观看视频高清| 水蜜桃什么品种好| 精品国产一区二区久久| 久久久欧美国产精品| 男男h啪啪无遮挡| 色精品久久人妻99蜜桃| 亚洲精品一区蜜桃| 制服人妻中文乱码| 日韩欧美免费精品| 不卡一级毛片| 成人三级做爰电影| 欧美激情极品国产一区二区三区| 欧美日韩av久久| 黄色片一级片一级黄色片| 久久久精品免费免费高清| 热re99久久国产66热| 久久99一区二区三区| 在线亚洲精品国产二区图片欧美| 国产成人啪精品午夜网站| 91精品三级在线观看| 热99国产精品久久久久久7| 免费人妻精品一区二区三区视频| 精品人妻一区二区三区麻豆| 国产精品一区二区免费欧美 | 国产精品一二三区在线看| 一本—道久久a久久精品蜜桃钙片| 18禁国产床啪视频网站| 夜夜骑夜夜射夜夜干| 两性夫妻黄色片| 日本欧美视频一区| 制服人妻中文乱码| 久久人妻熟女aⅴ| 久久久久久免费高清国产稀缺| 精品久久蜜臀av无| 一本一本久久a久久精品综合妖精| 女人爽到高潮嗷嗷叫在线视频| 久久精品亚洲av国产电影网| 女人高潮潮喷娇喘18禁视频| 青青草视频在线视频观看| 亚洲国产精品一区二区三区在线| 狠狠精品人妻久久久久久综合| 一级毛片电影观看| 欧美日韩亚洲综合一区二区三区_| 久久久久久免费高清国产稀缺| 婷婷丁香在线五月| 国产精品.久久久| 亚洲欧美日韩另类电影网站| 十分钟在线观看高清视频www| 99国产精品免费福利视频| 亚洲午夜精品一区,二区,三区| bbb黄色大片| 宅男免费午夜| 超碰成人久久| 欧美日韩福利视频一区二区| 日韩欧美一区视频在线观看| 欧美乱码精品一区二区三区| 国产av又大| 久久亚洲精品不卡| 丰满少妇做爰视频| 亚洲天堂av无毛| 久久精品aⅴ一区二区三区四区| 黑人操中国人逼视频| 国产一区二区三区av在线| 成年动漫av网址| 欧美日韩国产mv在线观看视频| 制服诱惑二区| 久热这里只有精品99| 美国免费a级毛片| 久久久国产成人免费| 两个人免费观看高清视频| 午夜福利影视在线免费观看| 美女主播在线视频| 国产精品国产av在线观看| 亚洲专区字幕在线| 99热国产这里只有精品6| 国产精品久久久人人做人人爽| 一本大道久久a久久精品| 日韩有码中文字幕| a级片在线免费高清观看视频| 不卡av一区二区三区| 一区二区av电影网| 欧美黑人欧美精品刺激| 水蜜桃什么品种好| 国产精品亚洲av一区麻豆| 国产亚洲欧美在线一区二区| 老司机在亚洲福利影院| 亚洲免费av在线视频| 国产在线免费精品| 黄网站色视频无遮挡免费观看| 久久久久国产一级毛片高清牌| 90打野战视频偷拍视频| 韩国高清视频一区二区三区|