楊興武,薛 花,高 淳
(1.上海電力學院 電氣工程學院,上海 200090;2.上海交通大學 電力傳輸與功率變換控制教育部重點實驗室,上海 200240)
隨著全控型電力電子器件的發(fā)展,電壓源變流器型高壓直流輸電技術受到越來越多的關注。受限于單個器件的耐壓等級,多電平技術迅速發(fā)展,21世紀初,一種新型的模塊化多電平換流器(MMC)由于易擴展和模塊化設計等特點而受到廣泛研究。
新型模塊化多電平電壓源型換流器由德國慕尼黑聯(lián)邦國防軍大學的R.Marquart和A.Lesnicar于 2002年提出[1],2009年,國際大電網會議正式將其命名為MMC。由于其模塊化程度高,諧波畸變小,開關損耗低,各相橋臂可實現(xiàn)獨立控制,適合HVDC和無功補償等高電壓大功率場合的應用,具有廣闊的應用前景,國內外學者對MMC的拓撲結構和工作原理[2-5]、系統(tǒng)建模與控制[6-9]、直流側電容電壓的平衡方法[10-14]進行了深入研究。
2004年17電平2MW的MMC樣機研制成功[15],2010年,第一項模塊化多電平換流器直流輸電(MMCHVDC)工程在美國加利福尼亞州的匹茲堡和舊金山之間的海底直流電纜聯(lián)網,解決了當地輸電走廊緊張的問題并增強了系統(tǒng)的安全穩(wěn)定性和可靠性[6],國內MMC-HVDC技術開展較早的中國電力科學研究院已于我國上海南匯風電場換流站進行了示范驗證。
傳統(tǒng)MMC每相上、下橋臂各n個單元,其輸出相電壓的電平數可達到2n+1[16]。本文提出一種含H橋模塊的混合型MMC拓撲結構,即在每相的上、下橋臂各加入1個H橋模塊,該拓撲具有將電平數提高至4n+1的優(yōu)點。針對該新型MMC拓撲,本文提出整體控制策略及直流單元電容電壓平衡方法,并對新拓撲及其控制方法進行了仿真驗證。
傳統(tǒng)三相MMC拓撲結構如圖1所示,每相的上、下橋臂各有n個子模塊級聯(lián)而成,每個子模塊為1個單橋單元。
圖1 傳統(tǒng)三相MMC的拓撲結構Fig.1 Traditional topology of three-phase MMC
圖1中,uj為第j個子模塊輸出電壓,Si和Si分別為上、下兩管的開關狀態(tài),uCj為子模塊直流電壓。上、下2個開關管不同的開關狀態(tài)對應于模塊不同的輸出電壓及電容充放電狀態(tài),如表1所示。
表1 不同開關狀態(tài)對應的輸出電壓和電容狀態(tài)Tab.1 Output voltages and capacitor states corresponding to different switching states
本文提出的新型MMC拓撲與傳統(tǒng)拓撲的區(qū)別在于每相的上下橋臂中各含一H橋模塊,如圖2所示。
圖2 新型三相MMC拓撲結構Fig.2 Improved topology of three-phase MMC
圖2的H橋子模塊中,u為H橋子模塊輸出電壓,Si1、Si2、Si3和 Si4分別為 4 個開關管的開關狀態(tài),直流電壓為uC/2。4個開關管不同的開關狀態(tài)對應于模塊不同的輸出電壓及電容充放電狀態(tài),如表2所示。
表2 H橋模塊中不同開關狀態(tài)對應的輸出電壓及電容狀態(tài)Tab.2 Output voltages and capacitor states corresponding to different switching states of H-bridge cell
對MMC中的一相橋臂進行分析,圖3為單相MMC的電路圖。圖3中,iP和iN分別為流過上、下橋臂的電流;uload和i分別為負載電壓與流過負載的電流;iZ為電路中的環(huán)流;uP和uN分別為上、下橋臂各子模塊級聯(lián)組成的電壓;LP和LN分別為上、下橋臂的電感,且LP=LN。
上、下橋臂的電感LP和LN為并聯(lián)關系,且電感值相同,橋臂電流iP、iN與負載電流i滿足:
圖3 新型單相MMC電路Fig.3 Circuit of proposed single-phase MMC
由式(1)與式(2)相加得到環(huán)流:
對整個環(huán)路運用基爾霍夫電壓定律,得:
將式(3)代入式(4)整理得:
本文中所討論的MMC拓撲結構中包括H橋模塊,且其電容電壓的值為單橋子模塊電容電壓值的一半。和單橋模塊不同的是,它不僅能輸出正電壓uC/2和零電壓,還可輸出負電壓-uC/2。每個橋臂增加1個H橋模塊,可使輸出電平數得到拓寬,在2n+1 個電平數 -nuC、…、-2uC、-uC、0、uC、2uC、…、nuC中間插入了 2n 個電平數-(n-0.5)uC、…、-1.5uC、-0.5uC、0.5uC、1.5uC、…、(n-0.5)uC。
本文提出的整體控制框圖如圖4所示,對于包含H橋模塊的MMC拓撲結構,本文采用載波層疊法實現(xiàn)電平逼近??紤]到H橋模塊的直流電壓須獨立于單橋模塊的直流電壓來控制,同時考慮到便于控制輸出電平數與同一相上下橋臂能量的平衡,對同一相上下2個橋臂采用2路不同的調制信號。
圖4 帶有H橋模塊MMC的整體控制策略框圖Fig.4 Overall control strategy of proposed MMC topology
對某個橋臂而言,對該橋臂的調制信號進行電平數逼近,得到橋臂輸出正電壓數k。H橋模塊控制算法根據該橋臂上H橋模塊的電壓、流過該橋臂的電流方向及電平數來判斷H單元的輸出電壓狀態(tài),得到控制H橋模塊驅動信號,同時計算出該橋臂單橋單元須輸出正電壓的個數。最后,根據欲輸出正電壓的個數、各單橋單元的電壓及橋臂的電流方向,利用排序法則得到各單橋單元驅動信號,達到4n+1個電平數輸出,同時平衡各子模塊電容電壓。
首先對由調制信號得到的電平數n進行判斷,若為偶數,則該橋臂所需輸出的電平數為原有的電平數,不需要H橋模塊參與,即H橋模塊輸出零電壓;若為奇數,則需H橋模塊參與輸出。
其次,對流過該橋臂的電流進行檢測,依據電流方向和當前H橋模塊電容電壓的大小得出其所需的充放電狀態(tài),再根據充放電狀態(tài)及電流方向得出其輸出電壓狀態(tài),由表2可得H橋模塊的控制信號。
排序法用來控制單橋子模塊直流電壓間的相對平衡。
圖4中第4部分為某一橋臂的排序法框圖。對該橋臂各個單橋子模塊的電容電壓進行排序,根據輸出的正電壓個數k,以及該橋臂的電流方向,來輸出該橋臂各單橋子模塊的控制信號。參照表1,當流過該橋臂電流為正的時候,輸出正電壓的子模塊為充電狀態(tài),這時,排序法將挑選電壓較低的k個子模塊輸出;當流過該橋臂電流為負的時候,輸出正電壓的子模塊為放電狀態(tài),這時,選擇k個直流電壓較高的子模塊輸出,從而完成單橋子模塊間電壓的相對平衡控制。
平均直流電壓的平衡控制包括2個閉環(huán):電壓外環(huán)與電流內環(huán),如圖5所示。圖5中,iZ由式(3)得到,由于H橋模塊電容電壓為單橋子模塊的一半,所以子模塊直流電容電壓平均值uC為:
其中,uCi各單橋子模塊電容電壓,uHBi為上下兩橋臂H橋模塊電容電壓。
圖5 平均直流電壓控制框圖Fig.5 Block diagram of average DC voltage control
電流內環(huán)的參考信號i*Z由電壓外環(huán)得到:
平均直流電壓的平衡信號為:
由式(5)可以看出,改變子模塊輸出電壓即可改變環(huán)流iZ的變化。電流內環(huán)使環(huán)流iZ對信號i*Z進行跟蹤。環(huán)流iZ的反饋控制使得平均直流電壓對信號uC*進行跟蹤,從而可達到平衡平均直流電壓的目的,而不用改變外部負載的電流[10]。
上下橋臂直流電壓平衡控制如圖6所示。
圖6 橋臂間直流電壓平衡控制框圖Fig.6 Block diagram of balance control of DC voltage between arms
控制信號u*Pa和u*Na為:
其中,sign(·)為取符號函數,流過上下橋臂的電流iP與iN是正負不定的,而它們的正負決定了單橋子模塊中電容充放電的狀態(tài),參照表1。PI調節(jié)器輸出與橋臂電流方向相乘所得的控制信號,可實現(xiàn)橋臂的平均電壓值的跟蹤控制。
在整個控制中,對H橋模塊輸出狀態(tài)的判斷先于其他單橋子模塊,參照圖4。所以對H橋模塊的直流電壓單獨控制,控制框圖如圖7所示。根據表2,H橋模塊直流側電容充放電的狀態(tài)依賴于流過該橋臂的電流方向。
圖7 H橋模塊直流電壓平衡控制框圖Fig.7 Block diagram of DC voltage balancecontrol for H-bridge
綜上所述,對于MMC一相而言,其上、下橋臂的調制信號為:
其中,u*為負載輸出電壓的調制信號。對于單相系統(tǒng)u*可表示為:
其中,M為調制比,φ為相移角。
調制信號中還包括了平均直流電壓平衡控制信號、上下橋臂直流電壓平衡控制信號、H橋模塊電壓控制信號。通過所提出的控制策略,可控制電容電壓穩(wěn)定并實現(xiàn)4n+1個電平輸出。
利用MATLAB/Simulink對圖2所示三相電路進行仿真,每橋臂含4個單橋單元與1個H橋單元,仿真參數如下:大直流側電壓E/2=9000 V,單橋單元電容電壓uC=2250 V,H橋模塊電容電壓uC/2=1125 V,各單元電容值C=1.9 mF,橋臂電感值LP=LN=3 mH,載波頻率 fc=2000 Hz,調制比 M=0.95,相移角 φ=0°,負載電阻 R=30 Ω,負載電抗 L=7 mH。調節(jié)器參數如下:K1=0.5,K2=150,K3=1.5,K4=150,K5=0.9,K6=80,K7=0.5,K8=20。
圖8為由4個模塊單元組成的傳統(tǒng)MMC輸出結果,輸出相電壓為9電平,圖9為增加H橋單元后的新MMC拓撲輸出電壓與電流的波形,新拓撲的電平數達到17,輸出電流諧波明顯減小。
圖10為新MMC拓撲各單元電容電壓穩(wěn)態(tài)波形,經過平均電壓平衡控制,上下橋臂直流電壓實現(xiàn)平衡,對H橋模塊電容電壓單獨控制以及通過排序法保持單橋子模塊電容電壓的相對平衡,使各模塊電壓保持穩(wěn)定。
圖8 傳統(tǒng)MMC負載電壓波形與電流波形Fig.8 Waveforms of load voltage and current of traditional MMC
圖9 新型MMC負載電壓波形與電流波形Fig.9 Waveforms of load voltage and current of improved MMC
圖10 A相各單元電容電壓穩(wěn)態(tài)波形Fig.10 Steady-state waveforms of phase-A capacitor voltages
圖11為各單元電容初始電壓不等情況下(一部分單元電壓初值2.5 kV,另一部分單元電壓初值為2 kV),直流電容電壓的響應過程,控制策略仍然可以快速穩(wěn)定電容電壓。
圖11 初始值不同情況下A相各單元電容電壓響應曲線Fig.11 Curves of phase-A capacitor voltages responding to different initial values
仿真過程中在每個單元直流側并聯(lián)不同阻值的電阻來模擬每個單元損耗不相等的工況,圖12顯示每個單元損耗不等的情況下,控制策略仍然有效。圖13為流過上下橋臂的電流與MMC的環(huán)流。圖14對負載的輸出電壓進行了諧波分析,負載電壓的總諧波畸變率為1.52%,顯示出新型MMC在單元個數較少的情況下仍然可以獲得良好的輸出特性。
圖12 各模塊損耗不同情況下A相各單元電容電壓響應曲線Fig.12 Curves of phase-A capacitor voltages responding to different module losses
圖13 A相橋臂電流波形Fig.13 Waveforms of phase-A arm current
圖14 輸出電壓諧波分析Fig.14 Harmonic analysis of output voltage
本文提出了一種基于傳統(tǒng)MMC拓撲結構的新型拓撲,即在每個橋臂上級聯(lián)1個H橋模塊,其電壓為單橋單元電壓的一半。同時提出了相應的控制策略,包括H橋模塊控制算法、排序挑選算法、平均直流電壓平衡方法、上下橋臂電壓平衡方法。對本文所討論的拓撲應用相應的控制策略,可以達到4n+1個電平數的電壓輸出,相較于傳統(tǒng)MMC拓撲結構最高輸出2n+1個電平數有很大提高,一定程度上減少輸出的諧波含量。最后通過仿真驗證了本文拓撲的有效性和可行性。