• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanism analyses of coercivity and remanence enhancement in strontium ferrites

    2014-09-21 07:04:20ZANFenlianMAYongqingZHANGXianMAQianZHENGGanhongDAIZhenxiang

    ZAN Fen-lian,MA Yong-qing ,ZHANG Xian,MA Qian,ZHENG Gan-h(huán)ong,DAI Zhen-xiang

    (Anhui Key Laboratory of Information Materials and Devices,School of Physics and Materials Science,Anhui University,Hefei 230039,China)

    0 Introduction

    M-type strontium hexaferrite(SrFe12O19)was discovered in the 1950s by Philips laboratories[1].As one of ferrous magnetic oxide,it has been intensively investigated during the last years due to its appropriate magnetic properties,chemical stability and low cost compared with rare-earth compounds.It has been recognized that it can be used as permanent magnets,high-density magnetic and magneto-optic recording media,and microwave filters[2-9].

    In M-type hexaferrites, the iron ions occupy on five different sites:the octahedral sites,crystallographically known as 2a,12k and 4f2,and the tetrahedral sites 4f1and 2b.In the magnetically ordered state,the 12k,2a and 2b sites(eight Fe3+ions in all)have their spins aligned parallel to each other and to the crystallographic c-axis,whereas spins of 4f1and 4f2sites(four Fe3+ions in all)align in an opposite direction,which leads to the lower saturation magnetization Ms.High-performance permanent magnets for energy-related applications require a large energy product(BH)max.A permanent magnet with a large(BH)maxvalue should exhibit both high remanent magnetization Mrand large coercivity Hc.Both parameters are determined not only by intrinsic properties such as the magnetocrystalline anisotropy Kuand saturation magnetization Ms,but also by structural parameters such as grain sizes and alignment of the granular materials which are sensitive to the preparation conditions.So many reports focus on improving the magnetic properties of SrFe12O19,such as the cationic substitution[10-11],investigation of synthesis method and optimum to the processing conditions,etc.[12-18].In addition,exchange coupling through the interface between hard and soft magnetic phases was found to drastically modify the magnetic properties of nanocomposite combining the high magnetization of a soft-magnetic phase with the high anisotropy of a hard one[19].However,the mechanism for coercivity(Hc)and remanence(Mr)to saturation(Ms)magnetization ratio(Mr/Ms)deserves further investigation which may be useful for improving the magnetic performance of SrFe12O19.

    In this work,crystal structure,magnetic properties and exchange-coupling behavior of M-type SrFe12O19prepared by chemical co-precipitation method have been systematically studied by tuning the Fe3+/Sr2+mole ratios in the precursor solution and calcinating temperature.The results show that the lower Fe3+/Sr2+mole ratio(10∶1)greatly reduces the crystallization temperature(about 200 ℃)of single phase SrFe12O19.For the single phase SrFe12O19with Fe3+/Sr2+mole ratio 11∶1 at calcinating temperature of 1 000℃,the optimum magnetic parameters are obtained,the coercivity and saturation magnetization are 4 751 Oe and 62.68 emu·g-1,respectively.For the sample with Fe3+/Sr2+mole ratio 12∶1,soft magnetic γ-Fe2O3and hard magnetic SrFe12O19phases coexist in the sample.The improvement of both coercivity and saturation magnetization has been observed in this sample,which has not been reported before in nanacomposite SrFe12O19ferrites,because the exchange coupling generally leads to the increase of saturation magnetization but the decrease of coercivity in previous reports[19-20].The related mechanism for coercivity and remanence enhancement has been discussed.

    1 Experiment

    Strontium hexaferrite powders were prepared by the chemical co-precipitation method.The analytically pure ferric nitrate(Fe(NO3)3·9H2O),strontium carbonate(SrCO3),nitric acid(HNO3)and sodium hydroxide(NaOH)were used as starting materials.HNO3was used to dissolve the strontium carbonate and to obtain strontium nitrate solution.First,a series of ferric nitrate(dissolved in distilled water)and strontium carbonate(dissolved in nitric acid)solutions with various Fe3+/Sr2+molar ratios of 12∶1,11∶1 and 10∶1(referred to as A,B and C,respectively)were mixed by gentle heating and stirring for 1 h using a magnetic stirrer.Then,sodium hydroxide as precipitant was slowly poured into the compound solution at room temperature at pH=10.The co-precipitate solution was kept in air for 24 h at room temperature.The coprecipitate was filtered and washed several times using distilled water until the pH value of the solution became neutral,and dried at 90℃ for 24 h.The dried powders were calcined at 500℃ for 5 h,and then sintered at six different temperatures of 600,700,800,900,1 000 and 1 100 ℃ for 2 h in air.The obtained samples are listed in Tab.1.

    Tab.1 A list of the samples with different Fe3+/Sr 2+molar ratio and calcinations temperatures

    The crystalline structural analysis was performed by an X-ray diffractometer using Cu Kα radiation source.The morphology of samples was investigated by scanning electron microscopy(SEM).The magnetic properties were measured by quantum design superconducting quantum interference device(SQUID)MPMSsystem(T=300 K,0≤H≤2 T).

    2 Results and discussion

    2.1 Effects of the Fe3+/Sr 2+ratios on the formation of Sr Fe12O19

    To investigate the effect of Fe3+/Sr2+ratios on the formation of SrFe12O19,the XRD spectra of all prepared samples have been measured,and Fig.1 representatively plots the results of single-phase and approaching single-phase SrFe12O19ferrites.As shown in Fig.1,A and B samples calcinated at 900 ℃ show the coexistence of SrFe12O19and a bit of γ-Fe2O3phases,and they exhibit the single phase SrFe12O19after calcinated at 1 000 ℃.However,for the C sample,there appear three phases of SrFe12O19,γ-Fe2O3and SrCO3in the sample calcinated at 700℃,and it exhibits the single phase of SrFe12O19after calcinated at 800℃.Obviously,the Fe3+/Sr2+mole ratio plays a crucial rule in the crystallization temperature of singlephase SrFe12O19,the smaller Fe3+/Sr2+mole ratio is propitious for reducing the crystallization temperature of SrFe12O19,consistent with the results observed in previous reports[21-22].

    Fig.1 The XRD spectra of the Sr Fe12 O19 samples prepared with different Fe3+/Sr 2+mole ratios under different calcinations temperature

    In the case of the chemical synthesis routes,the deviation of Fe3+/Sr2+mole ratio from 12∶1 may result from the difference of the solubility of the Fe3+and Sr2+cations sources.The optimum Fe3+/Sr2+ratio depends on the use of raw materials as well as the synthesis procedure[23].In the synthesis process of our samples,the solubility of Sr(NO3)2is lower than that of Fe(NO3)3in water which results in the decrease of Sr2+participating in precipitation reaction.And therefore the excess Sr2+or insufficient Fe3+sources facilitates the formation of single-phase SrFe12O19[24].Additionally,the increased diffusion rate of metallic ions in the non-stoichiometric mixture due to induced vacancies permits single-phase SrFe12O19formation at lower temperature[25].

    2.2 Effects of calcinations temperature on the magnetic properties

    The results in the above section indicate that sample C with 10∶1 Fe3+/Sr2+ratio has the lowest crystallization temperature(800 ℃)for single-phase SrFe12O19.In this section,sample C has been chosen to study the effect of calcinations temperature on the magnetic properties.

    The magnetic parameters of the C11-C15samples with Fe3+/Sr2+mole ratio of 10 at the sintering temperatures from 700 to 1 100℃,drawn from the results of magnetic hysteresis loop(not shown here),are shown in Tab.2.

    Tab.2 The magnetic parameters of Sr Fe12O19 with 10∶1 Fe3+/Sr 2+mole ratio

    Where Δσ is stress magnitude and Mssaturation magnetization.For C12,C13and C14samples,Mshardly changes.The decrease of Hcwith increasing calcinations temperature may arise from the decrease of stress magnitude,because repeatedly annealing can effectively remove the stress left in sample.For the C15sample,its saturation magnetization obviously decreases.

    As reported before[26],at the higher calcinations temperature,part of the trivalent Fe3+with electronic configuration of 3d5ions will reduce to bivalent Fe2+ions with electronic configuration of 3d6.According to the Hund’s rule,the molecular magnetic moment of Fe3+(5 μB)is larger than that of Fe2+(4 μB),which is responsible for the low saturation magnetization of the C15sample.Carefully checking the XRD results(not shown here),we observe that the diffraction intensities of the C15sample at 2 θ=23.28,31.14 and 51.88°are 799,1 701 and 526,respectively,which are much stronger than those of the C14sample(23.2,229 and 132,respectively).It maybe indicates a certain phase transformation[26].Therefore the minimum Hcof C15sample may result from the competing interaction between the stress magnitude and the phase transformation.

    The C11sample has the minimum coercivity Hc(957 Oe),saturation magnetization Ms(12.73 emu·g-1)and remnant magnetization Mr(4.92 emu·g-1),respectively,which are due to the presence nonmagnetic impurity of SrCO3and the crystallization of a minute quantity of SrFe12O19as shown in Fig.1.For the singlephase SrFe12O19(samples C12-C15),the coercivity Hcgradually decreases from 4 654 to 1 053 Oe when the calcinations temperature increases from 800 to 1 100℃.According to the technical magnetization theory,the coercivity Hccan be expressed as In addition,the remanence to saturation magnetization ratio Mr/Msfor C12- C14samples exceeds to 0.5,as predicted by Stoner-Wohlfarth model for isotropic nano-crystalline magnetic materials with uniaxial anisotropy,which can be attributed to the intergrain exchange interactions[27-28].The similar phenomenon occurs in the B14sample as discussed below.

    2.3 Effects of the Fe3+/Sr 2+ratios on the magnetic properties

    From the Fig.1 we can see that all samples become the single-phase SrFe12O19at the calcinations temperature of 1 000℃.So we chose samples A14,B14and C14calcinated at 1 000℃ for studying the effects of Fe3+/Sr2+ratios on the magnetic properties.

    Tab.3 shows the magnetic parameters of samples A14,B14and C14with different Fe3+/Sr2+mole ratios,demonstrating that a lower Fe3+/Sr2+mole ratio than stoichiometry can improve magnetic properties of strontium ferrite powder as reported before[21].In reference [21],the authors suggested that a lower Fe3+/Sr2+mole ratio than stoichiometry leads to the production of iron and oxygen vacancies,enhancing the ionic diffusion and improving the magnetic properties.More specifically,we suggest that,for the A14,B14and C14samples,the content of Fe3+vacancies gradually increases,i.e.,the volume concentration of defects(Fe3+vacancies)increases with the Fe3+/Sr2+mole ratio decreasing from 12∶1 to 10∶1.As these three samples are prepared by the same synthetic route and calcinations temperature of 1 000℃,it can be tentatively suggested that these three samples have the equivalent stress.

    Tab.3 The magnetic parameters of A14,B14 and C14

    Therefore the coercivity Hcmainly results from the contribution of defects(Fe3+vacancies).In this situation,the coercivity Hccan be expressed as

    whereβis the volume concentration of defects,and Mssaturation magnetization.The B14and C14samples have the higherβ value than the A14sample,and therefore they have the higher coercivity Hc.Additionally,the decrease of Fe3+/Sr2+mole ratio results in the grain refinement l from58.7 to 50.0 nm(calculated using MDI Jade 5.0 software from the XRD results),leading to the larger grain boundary area and subsequently producing more nuclei of reversed domain.The coercivity Hcdetermined by nuclei of reversed domain is directly proportional to saturation magnetization Ms

    which may be the other reason for the higher coercivity of B14and C14samples than that of the A14sample.

    2.4 Exchange-coupling behavior observed in A 12-A 15 samples

    In section 2.2 and 2.3,we discussed the effect of calcinations temperature and Fe3+/Sr2+mole ratio on the magnetic properties of single-phase SrFe12O19,respectively.In this section,we will discuss the magnetic interactions in the A12-A15samples.

    Fig.2 shows the X-ray diffraction patterns of strontium ferrite powders.The A12and A13samples show the diffraction peak of the γ-Fe2O3.The reflection intensity of the γ-Fe2O3decreases with increasing calcinations temperature and disappears after the sample calcinated at 1 000 ℃ which becomes the single-phase SrFe12O19.

    Fig.2 The XRD spectra of the A12- A15samples

    The magnetic parameters of A12- A15samples are shown in Tab.4.From Tab.4 we can see that A12and A13samples containing two phases of soft magnetic γ-Fe2O3and hard magnetic SrFe12O19,both the coercivity and the saturation magnetization are higher than those of A14and A15samples just containing single-phase SrFe12O19.In addition,the Mr/Msratio of the A12and A13samples is also larger than that of the A14and A15samples.With increasing the calcinations temperature,the coercivity monotonously decreases.As is wellknown,the coercivity Hcis determined by the effective anisotropy constantthrough[29].For the soft and hard composite system,the effective anisotropy constantcan be expressed by

    where fsand fhare the volume fraction,and Ksand Khare anisotropy constant of soft and hard phases,respectively[30].From A12to A15,the volume fraction fsof soft magnetic phase γ-Fe2O3decreases,resulting in the increase of Keff.Khis much larger than Ks,consequently resulting in the increase of Hcdue to.Based on this viewpoint,the single-phase A14and A15samples should have the same Khor Hc,but it is not the case.Therefore,we suggest that the coercivity mechanism here should also be determined by stress anisotropy as given by Eq.(1).

    Tab.4 The magnetic parameters of A 12-A 15 samples

    Generally,for an assembly of randomly oriented non-interaction crystallites with uniaxial anisotropy polycrystalline,the Mr/Msis 0.5.If the γ-Fe2O3crystallites are exchange-coupled with SrFe12O19,the magnetization direction within each of crystallites is determined by a balance between the magneto-crystalline anisotropy energy which favors alignment of the local magnetization to the local preferred axis,and the exchange interaction which favors mutual alignment of the direction of the magnetization of neighboring grains.The net result of latter effect leads to an increase of Mr/Msjust as the sample calcinated at 800 and 900℃.Besides the intergrain exchange interaction,the“exchange-spring”behavior which results from the reversible rotation of the soft magnetic component for fields not large enough to reverse the hard magnetic phase[31]can also result in the enhancement of remanence magnetization.Thus what is the nature(type and strength)of the intergrain interactions in A12-A15samples?

    A usual method to monitor the interactions between the grains is by constructing the δm plots.The δm curves were built using the magnetizing Mr(H)and demagnetizing Md(H)remanent magnetizations.The measuring methods of Mr(H)and Md(H)are identical with those reported in Ref.[20].Mr(H)and Md(H)are normalized by the saturation remanence

    and

    Any deviations from this law are attributed to interactions between grains.These are monitored usually by plotting the quantity δm which measures the deviations from Eq.(4)according to the following definition[33-35]

    The dependence ofδm(H)on the magnetic field H is shown in Fig.3.For the A12and A13samples containing soft magnetic γ-Fe2O3and hard magnetic SrFe12O19phases,theδm values are initially positive(H ≤ 0.6 ×104Oe for the A12sample and H ≤ 0.5 ×104Oe for the A13sample)because the hard phase prevents the demagnetization of the sample due to the presence of magnetizing(exchange-type)interactions.But the values become small negative after reversal,indicating that magnetostatic interactions become dominant.For the A14and A15samples with single-phase SrFe12O19,all the δm values are negative as a result of the cooperative switching of the exchange-coupled grains.The negative peak becomes pronounced for the A15sample.

    Fig.3 δm curves for A 12-A 15 samples

    Subsequently,we will further discuss the magnetic interactions in A12- A15samples.The derivatives of md(H)and mr(H)with respect to the applied field H are the corresponding irreversible susceptibilities(H)which give a measure of the switching field distributions[34,36],as shown in Fig.4.All the(H)curves exhibit the peaks and corresponding valuesanddrawn from d md/d H and d mr/d H,respectively,are listed in Tab.5.For the A12sample,its/44.05 and/73.13 values are obviously greater than those of A13- A15samples,maybe indicating that the“exchange-spring”appears in the A12sample.

    Fig.4 (H)curves for A12- A15 samples

    Tab.5 The(H)peaks values of A 12 - A 15 samples 104 Oe-1

    Tab.5 The(H)peaks values of A 12 - A 15 samples 104 Oe-1

    Samples χmrpeak χmdpeak χmr peak 44.05 χmd peak 73.13 A1259.44 139.34 1.349 38 1.905 37 A13 45.96 110.56 1.043 36 1.511 83 A14 44.55 98.85 1.011 35 1.351 7 A1544.05 73.13 1 1

    3 Conclusion

    By tuning the Fe3+/Sr2+mole ratios and calcinations temperature,the crystal structure,magnetic properties and exchange-coupling behavior of M-type strontium hexaferrite prepared by chemical coprecipitation method have been systematically studied.The results show that the lower Fe3+/Sr2+mole ratio(10∶1)greatly reduces the crystallization temperature.

    For the single phase SrFe12O19with the Fe3+/Sr2+mole ratio of 10∶1,the increase of calcinations temperature results in the monotonous decrease of coercivity.It can be assigned to decreases of the stress magnitude,and results in the decrease of saturation magnetization,which can be assigned to the certain phase transformation.

    For the single phase SrFe12O19calcinated at 1 000℃ with different Fe3+/Sr2+mole ratio,the variation of coercivity may result from the difference of both the volume concentration of deformation(Fe3+vacancies)and nuclei of reversed domain.In addition,the remanence enhancement has been observed in the single phase SrFe12O19samples which can be attributed to the intergrain exchange interactions.

    For the samples with Fe3+/Sr2+mole ratio being 12∶1,δm plots indicate exchange type interaction for fields not large enough to switch the hard magnetic phases and magnetostatic interactions for higher fields in the composite ferrites,and complete magnetostatic interactions in the single-phase SrFe12O19ferrite.The results of the irreversible susceptibilitiesχirr(H)drawn from d md/d H and d mr/d H,respectively,indicate that the“exchange-spring”maybe appears in the A12sample.

    [1]Thompson G K,Evans B J.The structure-property relationships in M-type hexaferrites:hyperfine interactions and bulk magnetic properties[J].Journal of Applied Physics,1993,73:6295 -6297.

    [2]Fu Y P,Lin CH,Pan K Y.Strontium hexaferrite powders prepared by a microwave-induced combustion process and some of their properties[J].Journal of Alloys and Compounds,2003,349:228 -231.

    [3]Iqbal M J,Ashiq M N,Pablo H G,et al.Synthesis,physical,magnetic and electrical properties of Al-Gasubstituted co-precipitated nanocrystalline strontium hexaferrite[J].Journal of Magnetism and Magnetic Materials,2008,320:881-886.

    [4]Bobzin K,Bolelli G,Bruehl M,et al.Characterisation of plasma-sprayed SrFe12O19coatings for electromagnetic wave absorption[J].Journal of the European Ceramic Society,2011,31:1439 -1449.

    [5]Pullar R C,Bdikin I K,Bhattacharya A K.Magnetic properties of randomly oriented BaM,SrM,Co2Y,Co2Z and Co2W hexagonal ferrite fibres[J].Journal of the European Ceramic Society,2012,32:905 -913.

    [6]Thakur A,Singh R R,Barman P B.Crystallization kinetics of strontium hexaferrite:correlation to structural,morphological,dielectric and magnetic properties[J].Electronic Materials Letters,2012,8(6):595 - 603.

    [7]Bsoul I,Mahmood SH,Lehlooh A F,et al.Structural and magnetic properties ofTixRuxO19[J].Journal of Alloys and Compounds,2013,551:490 -495.

    [8]Rai B K,Mishra S R,Nguyen V V,et al.Synthesis and characterization of high coercivity rare-earth ion dopedRE0.1Fe10Al2O19(RE:Y,La,Ce,Pr,Nd,Sm,and Gd)[J].Journal of Alloys and Compounds,2013,550:198-203.

    [9]Yasukawa Y,Liu X X,Morisako A.Observation of magnetic/electric domains and control of electric polarization by magnetic field in BiFeO3/SrFe12O19bilayers[J].Journal of Magnetism and Magnetic Materials,2013,327:95 -102.

    [10]Song F Z,Shen X Q,Xiang J,et al.Characterization and magnetic properties of BaxSr1-xFe12O19(x=0 -1)ferrite hollow fibers via gel-precursor transformation process[J].Journal of Alloys and Compounds,2010,507:297 - 301.

    [11]Rezlescu N,Doroftei C,Rezlescu E,et al.The influence of heat-treatment on microstructure and magnetic properties of rare-earth substituted SrFe12O19[J].Journal of Alloys and Compounds,2008,451:492 -496.

    [12]Ataie A,Heshmati-Manesh S.Synthesis of ultra-fine particles of strontium hexaferrite by a modified co-precipitation method[J].Journal of the European Ceramic Society,2001,21:1951 -1955.

    [13]Zi Z F,Sun Y P,Zhu X B,et al.Structural and magnetic properties of SrFe12O19hexaferrite synthesized by a modified chemical co-precipitation method[J].Journal of Magnetism and Magnetic Materials,2008,320:2746 -2751.

    [14]Wang J F,Ponton C B,Harris I R.A study of Pr-substituted strontium hexaferrite by hydrothermal synthesis[J].Journal of Alloys and Compounds,2005,403:104 -109.

    [15]Brito P CA,Gomes R F,Duque J G S,et al.SrFe12O19prepared by the proteic sol-gel process[J].Physica B,2006,384:91 -93.

    [16]Ding J,Miao W F,McCormick P G,et al.High-coercivity ferrite magnets prepared by mechanical alloying[J].Journal of Alloys and Compounds,1998,281:32 -36.

    [17]Guo Z B,Ding W P,Zhong W,et al.Preparation and magnetic properties of SrFe12O19particles prepared by the salt-melt method[J].Journal of Magnetism and Magnetic Materials,1997,175:333 -336.

    [18]Nikkhah-Moshaie R,Ataie A,Ebrahimi SA.Processing of nano-structured barium hexaferrite by self-propagating high temperature synthesis(SHS)using nitrate precursor[J].Journal of Alloys and Compounds,2007,429:324 -328.

    [19]Liu X S,Zhong W,Gu B X,et al.Exchange-coupling interaction in nanocomposite SrFe12O19/γ - Fe2O3permanent ferrites[J].Journal of Applied Physics,2002,92:1028 -1032.

    [20]Soares J M,Cabral F A O,Araújo J H D,et al.Exchange-spring behavior in nanopowders of CoFe2O4- CoFe2[J].Applied Physics Letters,2011,98:072502.

    [21]Fu Y P,Lin C H.Fe/Sr ratio effect on magnetic properties of strontium ferrite powders synthesized by microwaveinduced combustion process[J].Journal of Alloys and Compounds,2005,386:222 -227.

    [22]Hessien M M,Rashad M M,El-Barawy K.Controlling the composition and magnetic properties of strontium hexaferrite synthesized by co-precipitation method[J].Journal of Magnetism and Magnetic Materials,2008,320:336-343.

    [23]Mali A,Ataie A,Mali A,et al.Influence of Fe/Ba molar ratio on the characteristics of Ba-h(huán)exaferrite particles prepared by sol-gel combustion method[J].Journal of Alloys and Compounds,2005,399:245 -250.

    [24]Liua X Y,Wanga J,Ganb L M,et al.An ultrafine barium ferrite powder of high coercivity from water-in-oil microemulsion[J].Journal of Magnetism and Magnetic Materials,1998,184:344 -354.

    [25]Ranea M V,Bahadura D,Kulkarnib SD,et al.Magnetic properties of Ni/Zr substituted barium ferrite[J].Journal of Magnetism and Magnetic Materials,1999,195:256 -260.

    [26]Seifert D,T?pfer J,Langenhorst F,et al.Synthesis and magnetic properties of La-substituted M-type Sr hexaferrites[J].Journal of Magnetism and Magnetic Materials,2009,321:4045 - 4051.

    [27]Hadjipanayis G C,Gong W.Magnetic hysteresis in melt-spun Nd-Fe-Al-B-Si alloys with high remanence[J].Journal of Applied Physics,1988,64:5559 -5561.

    [28]Schrefl T,F(xiàn)idler J,Kronmiiller H.Remanence and coercivity in isotropic nanocrystalline permanent magnets[J].Physical Review B,1994,49:6100 -6114.

    [29]Sun T,Borrasso A,Liu B,et al.Synthesis and characterization of nanocrystalline zinc manganese ferrite[J].Journal of the American Ceramic Society,2011,94(5):1490 -1495.

    [30]Skomski R,Coey JM D.Giant energy product in nanostructured two-phase magnets[J].Physical Review B,1993,48(21):15812-15815.

    [31]Kneller E F,Hawig R.The exchange-spring magnet:a new material principle for permanent magnets[J].IEEE Transaction on Magnetics,1991,27:3588 -3560.

    [32]Wohlfarth E P.Relations between different modes of acquisition of the remanent magnetization of ferromagnetic particles[J].Journal of Applied Physics,1958,29:595 -596.

    [33]Zeng H,Sun S H.Exchange-coupled FePt nanoparticle assembly[J].Applied Physics Letters,2002,80:2583 -2585.

    [34]O'Grady K,EI-Hilo M,Chantrell R W.The characterisation of interaction effects in fine particle systems[J].IEEE Transaction on Magnetics,1993,29:2608 -2613.

    [35]Che R X,Gao H,Zhao H B.Preparation of permanent magnetic nanocomposite by sol-gel method and the magnetic properties[J].Journal of Functional Materials,2006,37:146 -149.

    [36]Soares J M,Machado F L A.Fe interparticle interactions in Fexgranular alloys(2 < x<50)[J].Physical Review B,2005,72:184405.

    色尼玛亚洲综合影院| 人人妻,人人澡人人爽秒播| 亚洲激情在线av| 免费观看人在逋| 日韩有码中文字幕| 欧美最黄视频在线播放免费| 熟女电影av网| 在线视频色国产色| 国内毛片毛片毛片毛片毛片| 亚洲一区高清亚洲精品| 国产熟女xx| 日韩人妻高清精品专区| 国产成人福利小说| 好男人在线观看高清免费视频| 非洲黑人性xxxx精品又粗又长| 久久久久国产一级毛片高清牌| 亚洲欧美日韩高清在线视频| av天堂中文字幕网| 热99在线观看视频| 99久久无色码亚洲精品果冻| 色视频www国产| 看黄色毛片网站| 久久久久久人人人人人| 哪里可以看免费的av片| 日本一二三区视频观看| 国产精品一区二区免费欧美| 国产99白浆流出| 久久精品国产清高在天天线| 午夜免费激情av| 国产精品永久免费网站| 一级黄色大片毛片| 午夜免费观看网址| 毛片女人毛片| 国产激情欧美一区二区| 成年女人看的毛片在线观看| 午夜免费观看网址| 男插女下体视频免费在线播放| 精品久久蜜臀av无| 老熟妇乱子伦视频在线观看| 在线永久观看黄色视频| 欧美成人一区二区免费高清观看 | 亚洲精品一区av在线观看| 色综合站精品国产| 99久久精品国产亚洲精品| 小蜜桃在线观看免费完整版高清| 日本免费一区二区三区高清不卡| 国产一区二区在线av高清观看| 嫁个100分男人电影在线观看| 又爽又黄无遮挡网站| 国产1区2区3区精品| 国产99白浆流出| 五月玫瑰六月丁香| 99精品久久久久人妻精品| 脱女人内裤的视频| 国产高潮美女av| 亚洲精品美女久久久久99蜜臀| 精品久久久久久久末码| 成人18禁在线播放| 女同久久另类99精品国产91| 美女高潮喷水抽搐中文字幕| 99精品久久久久人妻精品| 免费观看精品视频网站| 日韩精品青青久久久久久| 欧美性猛交黑人性爽| 国产淫片久久久久久久久 | 国产精品久久久久久人妻精品电影| 很黄的视频免费| 一级毛片高清免费大全| 日本黄大片高清| 亚洲av成人av| 国产美女午夜福利| 久久久久免费精品人妻一区二区| 国产一级毛片七仙女欲春2| 国产高清激情床上av| 久久久精品欧美日韩精品| 亚洲av日韩精品久久久久久密| 色综合亚洲欧美另类图片| 国产精品一及| 午夜免费激情av| 制服人妻中文乱码| 一级毛片精品| 亚洲一区二区三区色噜噜| 天堂动漫精品| 精品一区二区三区四区五区乱码| 波多野结衣巨乳人妻| 男人舔女人的私密视频| 日韩欧美免费精品| 亚洲avbb在线观看| 亚洲成人免费电影在线观看| 女生性感内裤真人,穿戴方法视频| 国产欧美日韩一区二区精品| 免费在线观看日本一区| 嫩草影视91久久| 亚洲狠狠婷婷综合久久图片| 99久久综合精品五月天人人| 麻豆成人av在线观看| 九九久久精品国产亚洲av麻豆 | 99国产精品99久久久久| 午夜免费成人在线视频| 亚洲aⅴ乱码一区二区在线播放| 精品午夜福利视频在线观看一区| 757午夜福利合集在线观看| 国产一区二区在线观看日韩 | 亚洲精品久久国产高清桃花| 国产激情欧美一区二区| 精品久久久久久,| 男女之事视频高清在线观看| 伦理电影免费视频| 国产爱豆传媒在线观看| 一个人免费在线观看的高清视频| 美女高潮的动态| 欧美日韩瑟瑟在线播放| 99热只有精品国产| 黄色片一级片一级黄色片| 亚洲国产欧美网| 国产精品久久久久久亚洲av鲁大| 久久精品综合一区二区三区| 精品久久蜜臀av无| 亚洲 欧美 日韩 在线 免费| 听说在线观看完整版免费高清| 国产真实乱freesex| 中文字幕久久专区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美xxxx黑人xx丫x性爽| 国产综合懂色| 国产精品久久久久久亚洲av鲁大| 黄色视频,在线免费观看| 欧美黄色淫秽网站| 国产精品一区二区三区四区免费观看 | 亚洲精品在线美女| 99在线人妻在线中文字幕| 精品一区二区三区四区五区乱码| www日本在线高清视频| 男人舔女人下体高潮全视频| 美女cb高潮喷水在线观看 | 久久久国产精品麻豆| x7x7x7水蜜桃| 黄色成人免费大全| 美女黄网站色视频| 可以在线观看的亚洲视频| 9191精品国产免费久久| 一区福利在线观看| 亚洲欧美日韩高清专用| 国产精品亚洲美女久久久| 亚洲片人在线观看| 久久九九热精品免费| 美女被艹到高潮喷水动态| 欧美日本亚洲视频在线播放| 日韩高清综合在线| 久久精品国产综合久久久| 亚洲国产精品sss在线观看| 最近最新免费中文字幕在线| 一区二区三区国产精品乱码| 一区福利在线观看| 日韩有码中文字幕| 国产黄片美女视频| 嫩草影院精品99| 成人亚洲精品av一区二区| 亚洲国产精品合色在线| 一级a爱片免费观看的视频| 五月玫瑰六月丁香| 波多野结衣巨乳人妻| 亚洲精品一卡2卡三卡4卡5卡| 日本黄色视频三级网站网址| 午夜福利高清视频| 成年女人永久免费观看视频| 欧美日韩福利视频一区二区| 真人一进一出gif抽搐免费| 国产人伦9x9x在线观看| 国产精品1区2区在线观看.| 久久精品aⅴ一区二区三区四区| 天堂√8在线中文| 老鸭窝网址在线观看| 两性夫妻黄色片| 国产精品永久免费网站| 国产亚洲精品一区二区www| 又粗又爽又猛毛片免费看| 亚洲成人中文字幕在线播放| 久久精品91无色码中文字幕| 最近最新中文字幕大全电影3| 日韩欧美国产在线观看| 国产精品99久久久久久久久| 99视频精品全部免费 在线 | 国产精品九九99| 久久九九热精品免费| 久99久视频精品免费| 99久久99久久久精品蜜桃| 伊人久久大香线蕉亚洲五| 床上黄色一级片| 18禁裸乳无遮挡免费网站照片| 最新在线观看一区二区三区| 亚洲欧美日韩高清在线视频| 日韩免费av在线播放| 免费高清视频大片| 欧美xxxx黑人xx丫x性爽| www.精华液| 真人做人爱边吃奶动态| 欧美又色又爽又黄视频| 国产一区二区在线观看日韩 | 91av网一区二区| 五月玫瑰六月丁香| 最近最新中文字幕大全免费视频| 亚洲一区高清亚洲精品| 久久久久免费精品人妻一区二区| 亚洲中文字幕一区二区三区有码在线看 | 女警被强在线播放| 丰满人妻熟妇乱又伦精品不卡| 少妇的逼水好多| 成年女人看的毛片在线观看| 香蕉av资源在线| 免费看十八禁软件| 窝窝影院91人妻| 国产精品1区2区在线观看.| 97超视频在线观看视频| 国产高潮美女av| 天天躁狠狠躁夜夜躁狠狠躁| 日韩av在线大香蕉| 精品日产1卡2卡| 久久精品亚洲精品国产色婷小说| 成人特级黄色片久久久久久久| 神马国产精品三级电影在线观看| 久久精品综合一区二区三区| 亚洲成人久久爱视频| 久久精品亚洲精品国产色婷小说| 亚洲精品在线观看二区| 床上黄色一级片| 最近最新免费中文字幕在线| 亚洲第一欧美日韩一区二区三区| 国产激情欧美一区二区| 黑人巨大精品欧美一区二区mp4| 天堂av国产一区二区熟女人妻| 两人在一起打扑克的视频| 亚洲av片天天在线观看| 久久人人精品亚洲av| 淫秽高清视频在线观看| 老司机午夜十八禁免费视频| 高潮久久久久久久久久久不卡| 动漫黄色视频在线观看| av天堂在线播放| 国内毛片毛片毛片毛片毛片| 欧美黄色淫秽网站| 亚洲专区字幕在线| av国产免费在线观看| or卡值多少钱| 亚洲第一欧美日韩一区二区三区| 亚洲国产日韩欧美精品在线观看 | 午夜福利18| 日本a在线网址| 99久久国产精品久久久| 国产伦在线观看视频一区| av国产免费在线观看| 亚洲欧美一区二区三区黑人| 级片在线观看| 欧美三级亚洲精品| 国产一区二区激情短视频| 午夜激情欧美在线| 精品久久久久久久久久免费视频| 757午夜福利合集在线观看| 欧美午夜高清在线| 欧美乱妇无乱码| 真人做人爱边吃奶动态| 搞女人的毛片| 丁香欧美五月| 99国产精品一区二区蜜桃av| av片东京热男人的天堂| 老司机深夜福利视频在线观看| av中文乱码字幕在线| 国内精品久久久久久久电影| 国产欧美日韩一区二区精品| 国产精品永久免费网站| 又紧又爽又黄一区二区| 日韩免费av在线播放| 国产成年人精品一区二区| 天天躁日日操中文字幕| 99在线视频只有这里精品首页| 国产视频内射| 精品久久久久久久人妻蜜臀av| 亚洲自偷自拍图片 自拍| 1000部很黄的大片| 搡老岳熟女国产| 嫩草影院入口| 两人在一起打扑克的视频| 99国产精品99久久久久| 午夜影院日韩av| 日韩欧美三级三区| 俺也久久电影网| 精品久久久久久久毛片微露脸| 欧美乱妇无乱码| 久久国产精品人妻蜜桃| 女同久久另类99精品国产91| 一进一出抽搐gif免费好疼| 国产私拍福利视频在线观看| 一边摸一边抽搐一进一小说| 欧美黄色淫秽网站| 欧美乱码精品一区二区三区| 无遮挡黄片免费观看| 久久中文字幕人妻熟女| 午夜精品在线福利| 亚洲天堂国产精品一区在线| 免费无遮挡裸体视频| 亚洲av五月六月丁香网| 搞女人的毛片| 午夜免费成人在线视频| 变态另类丝袜制服| 欧美在线一区亚洲| 国模一区二区三区四区视频 | 欧美不卡视频在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 黄色视频,在线免费观看| 亚洲欧美激情综合另类| 亚洲在线自拍视频| 亚洲国产精品合色在线| 亚洲真实伦在线观看| 老鸭窝网址在线观看| 日本 欧美在线| 国产成人啪精品午夜网站| 婷婷亚洲欧美| 草草在线视频免费看| 久久香蕉国产精品| 这个男人来自地球电影免费观看| 91麻豆av在线| 在线十欧美十亚洲十日本专区| 无遮挡黄片免费观看| 18禁国产床啪视频网站| 亚洲aⅴ乱码一区二区在线播放| 午夜精品久久久久久毛片777| 国产成人啪精品午夜网站| 小蜜桃在线观看免费完整版高清| 精品福利观看| 日韩欧美精品v在线| 国内毛片毛片毛片毛片毛片| 热99re8久久精品国产| 一区二区三区国产精品乱码| 国产乱人视频| 精品久久久久久久毛片微露脸| 香蕉av资源在线| 国产黄a三级三级三级人| 90打野战视频偷拍视频| 国产黄色小视频在线观看| 三级毛片av免费| 搡老熟女国产l中国老女人| 三级国产精品欧美在线观看 | 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利高清视频| 久久精品影院6| 最近最新中文字幕大全免费视频| 欧美日韩福利视频一区二区| 99国产精品99久久久久| 日本五十路高清| 久久香蕉国产精品| 欧美成人性av电影在线观看| 在线看三级毛片| 在线观看舔阴道视频| 午夜影院日韩av| 亚洲av成人av| 毛片女人毛片| 一级毛片女人18水好多| 色老头精品视频在线观看| 久久亚洲精品不卡| 99久久无色码亚洲精品果冻| 亚洲人与动物交配视频| 亚洲 欧美一区二区三区| 欧美+亚洲+日韩+国产| 久久香蕉国产精品| 久9热在线精品视频| 中文资源天堂在线| 国产伦精品一区二区三区视频9 | 狂野欧美激情性xxxx| 国产乱人伦免费视频| 国产欧美日韩一区二区三| 久久久久国内视频| 亚洲avbb在线观看| 国产亚洲精品av在线| 成人三级黄色视频| 欧美激情在线99| 蜜桃久久精品国产亚洲av| 久久香蕉精品热| 少妇丰满av| 久久亚洲真实| 成人亚洲精品av一区二区| 脱女人内裤的视频| 在线观看66精品国产| 国产高清视频在线观看网站| 久久久国产成人免费| 两个人看的免费小视频| av在线蜜桃| 欧美性猛交╳xxx乱大交人| 法律面前人人平等表现在哪些方面| 成年免费大片在线观看| 国产精品乱码一区二三区的特点| 亚洲成人久久性| 精品乱码久久久久久99久播| 欧美zozozo另类| 国产精品亚洲av一区麻豆| 高潮久久久久久久久久久不卡| 国产伦一二天堂av在线观看| 不卡一级毛片| 美女免费视频网站| 麻豆国产97在线/欧美| 嫩草影院入口| 久久午夜综合久久蜜桃| 搡老岳熟女国产| 久久久久九九精品影院| 不卡av一区二区三区| 亚洲真实伦在线观看| 欧美成人性av电影在线观看| 国产1区2区3区精品| 久久婷婷人人爽人人干人人爱| 一级a爱片免费观看的视频| 成在线人永久免费视频| www国产在线视频色| 久久香蕉精品热| 黄片小视频在线播放| 99国产精品一区二区蜜桃av| 亚洲人成电影免费在线| 国产av麻豆久久久久久久| 成人国产一区最新在线观看| 欧美性猛交╳xxx乱大交人| 亚洲第一欧美日韩一区二区三区| 精品久久久久久久久久免费视频| 欧美绝顶高潮抽搐喷水| 国产男靠女视频免费网站| 久久中文字幕人妻熟女| e午夜精品久久久久久久| 又黄又粗又硬又大视频| 国产精品久久久人人做人人爽| tocl精华| 在线观看66精品国产| 成在线人永久免费视频| 欧美大码av| 五月玫瑰六月丁香| 久久热在线av| 老汉色av国产亚洲站长工具| 波多野结衣巨乳人妻| 19禁男女啪啪无遮挡网站| 操出白浆在线播放| 精品国产亚洲在线| 禁无遮挡网站| 欧美日韩综合久久久久久 | av片东京热男人的天堂| 又粗又爽又猛毛片免费看| 麻豆国产av国片精品| 精品一区二区三区视频在线观看免费| 99久久无色码亚洲精品果冻| h日本视频在线播放| 俺也久久电影网| 99国产精品99久久久久| 中文字幕人成人乱码亚洲影| 这个男人来自地球电影免费观看| 99热这里只有精品一区 | 女同久久另类99精品国产91| 欧美在线黄色| 母亲3免费完整高清在线观看| 国产高清三级在线| www.自偷自拍.com| а√天堂www在线а√下载| 九色国产91popny在线| 91字幕亚洲| 51午夜福利影视在线观看| 久久草成人影院| 欧美日韩综合久久久久久 | 精品一区二区三区视频在线观看免费| 亚洲av免费在线观看| 在线看三级毛片| 女同久久另类99精品国产91| 国产黄色小视频在线观看| 亚洲av成人精品一区久久| 在线视频色国产色| 久久午夜亚洲精品久久| 搡老熟女国产l中国老女人| 午夜免费观看网址| 97超级碰碰碰精品色视频在线观看| 超碰成人久久| 男女之事视频高清在线观看| 看片在线看免费视频| 精品免费久久久久久久清纯| 日韩精品中文字幕看吧| 啪啪无遮挡十八禁网站| 婷婷精品国产亚洲av| 亚洲色图 男人天堂 中文字幕| 国产精品98久久久久久宅男小说| 亚洲七黄色美女视频| 韩国av一区二区三区四区| 极品教师在线免费播放| 国产午夜精品论理片| 极品教师在线免费播放| 国产午夜精品论理片| 亚洲av熟女| 老熟妇乱子伦视频在线观看| 精品久久久久久久末码| 亚洲熟女毛片儿| 无人区码免费观看不卡| 神马国产精品三级电影在线观看| 亚洲国产色片| 欧美+亚洲+日韩+国产| 在线免费观看不下载黄p国产 | 在线免费观看的www视频| 亚洲欧洲精品一区二区精品久久久| 国产又色又爽无遮挡免费看| 日本三级黄在线观看| 久久亚洲精品不卡| 午夜精品一区二区三区免费看| 久久天堂一区二区三区四区| 99热这里只有是精品50| 亚洲熟妇熟女久久| 美女被艹到高潮喷水动态| 久久久久久大精品| 亚洲国产日韩欧美精品在线观看 | 免费人成视频x8x8入口观看| www日本在线高清视频| 色播亚洲综合网| www日本在线高清视频| 香蕉国产在线看| 国内少妇人妻偷人精品xxx网站 | 精品国产超薄肉色丝袜足j| 亚洲五月天丁香| 99视频精品全部免费 在线 | 99久久精品一区二区三区| 岛国视频午夜一区免费看| 亚洲在线观看片| 成年女人永久免费观看视频| 成人一区二区视频在线观看| 久久久久久国产a免费观看| 亚洲国产日韩欧美精品在线观看 | cao死你这个sao货| 免费在线观看视频国产中文字幕亚洲| 天天添夜夜摸| 国产成+人综合+亚洲专区| 亚洲av第一区精品v没综合| 亚洲av五月六月丁香网| 久久久久九九精品影院| 黑人巨大精品欧美一区二区mp4| 国产一区二区激情短视频| 午夜日韩欧美国产| 香蕉丝袜av| 亚洲午夜精品一区,二区,三区| 欧美zozozo另类| 久久国产精品影院| 日本 欧美在线| www.自偷自拍.com| 又爽又黄无遮挡网站| 午夜a级毛片| 久久热在线av| 亚洲av美国av| 欧美乱色亚洲激情| 母亲3免费完整高清在线观看| 黄色日韩在线| 欧美色视频一区免费| 人妻夜夜爽99麻豆av| 免费看日本二区| 国产精品av视频在线免费观看| 人妻久久中文字幕网| 婷婷六月久久综合丁香| 亚洲人成网站高清观看| 久久久久久国产a免费观看| 国产精品一区二区精品视频观看| 国产亚洲欧美在线一区二区| 精品一区二区三区四区五区乱码| 无人区码免费观看不卡| av片东京热男人的天堂| 日本黄色视频三级网站网址| 变态另类成人亚洲欧美熟女| 免费大片18禁| 国产成人精品久久二区二区免费| 91av网一区二区| 91av网站免费观看| 一级毛片精品| 欧美在线黄色| 69av精品久久久久久| 丁香六月欧美| 日韩欧美三级三区| 亚洲国产中文字幕在线视频| 国产乱人视频| 国内毛片毛片毛片毛片毛片| 亚洲人成网站高清观看| 国产一区在线观看成人免费| 在线观看免费午夜福利视频| 亚洲 欧美 日韩 在线 免费| 1024手机看黄色片| 午夜免费成人在线视频| 老司机午夜福利在线观看视频| 巨乳人妻的诱惑在线观看| 日韩大尺度精品在线看网址| 久久亚洲真实| 欧美日本亚洲视频在线播放| 啦啦啦观看免费观看视频高清| 国产伦人伦偷精品视频| 日韩欧美 国产精品| 国产成人欧美在线观看| 亚洲精品粉嫩美女一区| 又紧又爽又黄一区二区| 国产成人欧美在线观看| 19禁男女啪啪无遮挡网站| 久久国产精品影院| 国产成人欧美在线观看| 国产一区二区激情短视频| 女同久久另类99精品国产91| 久久草成人影院| 久久精品综合一区二区三区| 日韩国内少妇激情av| 丝袜人妻中文字幕| 亚洲成人久久性| 性欧美人与动物交配| 变态另类丝袜制服| 看黄色毛片网站| 久久亚洲真实| 午夜视频精品福利| 老司机福利观看| 亚洲熟妇中文字幕五十中出| 在线观看舔阴道视频| 高清毛片免费观看视频网站| 日韩免费av在线播放| 国产 一区 欧美 日韩| a级毛片a级免费在线| 午夜福利在线观看免费完整高清在 |