• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    4-(1H-1,2,4-三唑-1-亞甲基)苯甲酸過(guò)渡金屬配合物的合成、結(jié)構(gòu)、抑菌活性及DNA 裂解活性

    2014-09-21 08:59:46熊萍萍步懷宇陳三平
    物理化學(xué)學(xué)報(bào) 2014年7期
    關(guān)鍵詞:西北大學(xué)三唑教育部

    李 婕 熊萍萍 步懷宇 陳三平

    (1西北大學(xué)西部資源生物與現(xiàn)代生物技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,陜西省生物技術(shù)重點(diǎn)實(shí)驗(yàn)室,西安710069;2西北大學(xué)化學(xué)與材料科學(xué)學(xué)院,合成與天然功能分子化學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,西安710069)

    1 Introduction

    Over the past decades,many studies on the rational design of polymeric metal-organic frameworks(MOFs)and their potential applications in catalysis,separation,gas storage,and even biological activity caused much interest in the field of inorganic chemistry.1-4DNAcleavage studies would count for much for the evolution of the new therapeutic reagents and DNAprobes,5-8and drug researches suggest that many anticancer agents,antiviral agents,and antiseptic agents take action through binding to DNA.9-14In addition,transition metal compounds can interact covalently or non-covalently with DNA in the mode of intercalation,groove binding,or external electrostatic binding.15-18This inspires growing interest in the study of the biochemical behavior of these compounds including their interactions with DNA and antifungal activity.19-25

    As well-known,triazole derivatives,specifically their corresponding transition metal coordination compounds,have been concerned as a highly effective antifungal fungicide.26In our earlier research on the antifungal activity of copper(II)compounds,novel copper(II)compounds with the ligand(4-(1H-1,2,4-triazol-1-ylmethyl)benzoic acid)showed a higher antifungal effect than those of ligand and CuCl2especially compound 1(the antifungal percentage is 72.5%on Fusarium graminearum).Based on our earlier research,27we are interested in exploring the relationships between DNAcleavage and antifungal activity of the transition metal compounds derived from a triazole ligand.

    Hence,we synthesized the ligand(4-(1H-1,2,4-triazol-1-ylmethyl)benzoic acid(HL))and the three transition metal compounds(Cu-L,Ni-L,Co-L).The thermal analyses and luminescent properties of the compounds were investigated.Furthermore,comparative study of the interactions of the compounds with plasmid DNA(pUC 18)as well as the related antifungal activities against five agriculture related fungi was experimentally explored.The remarkable DNA cleavage and antifungal activity suggested that the compounds above would have potential utilization for developing new drugs for agricultures.

    2 Experimental

    2.1 Materials and methods

    All of the reagents were purchased and used without further purification.CuCl2·2H2O(99.9%),NiCl2·6H2O(99.9%),CoCl2·6H2O(99.9%),NaN3(>99.5%),KOH(>86%),methanol anhydrous(>99.5%),N,N-dimethylformamide(>99.5%),4-methylbenzoic acid(>99.5%),succinbromimide(>99.5%),benzoyl peroxide(>99.5%),tetrachloromethane(>99.5%),dichloromethane(>99.5%),and 1H-1,2,4-triazole(>99.5%)were purchased fromXi′anChemblossom Pharmaceutical Technology Co.,Ltd.NaOH(97%)was purchased from Sigma-Aldrich.Elemental analyses(C,H,N)were performed on an Elementar Vario EL III analyzer(USA).Infrared(IR)spectra were recorded on a Tensor 27 spectrometer(Bruker Optics,Ettlingen,Germany)as KBr pellets in the range of 400-4000 cm-1.Powder X-ray diffraction(XRD)patterns were measured on a Bruker D8 Advance X-ray powder diffractometer with Cu Kαradiation(λ=0.15405 nm).Ultraviolet(UV)absorption studies were carried out with a Shimadzu UV-2450 spectrophotometer.Fluorescent spectra were measured at room temperature with an Edinburgh FLSP920 fluorescence spectrometer.Thermogravimetric(TG)measurements were performed with a Netrzsch STA 449C apparatus(Germany)under asimulatednitrogenatmospherewithaheatingrateof 10°C·min-1from room temperature to 1000°C.

    2.2 Syntheses

    2.2.1 Preparation of 4-(1H-1,2,4-triazol-1-ylmethyl)benzoic acid

    The ligand was synthesized according to the literature procedure.28,29A mixture of 4-methylbenzoic acid(5.44 g,40.0 mmol),succinbromimide(7.12 g,40.0 mmol),benzoyl peroxide(0.10 g,412.0 mmol),and tetrachloromethane(60 mL)were refluxed for 5 h.Cooling to room temperature and washing with tetrachloromethane and distilled water.White solid was obtained by recrystallization from dichloromethane.Subsequently,a mixture of KOH(0.30 g,0.50 mmol),the above products(0.22 g,0.10 mmol),and 1H-1,2,4-triazole(0.07 g,0.10 mmol)was dissolved in distilled water(6 mL)and sealed in a 10 mL Teflon-lined stainless steel autoclave after stirring them for 30 min.The mixture was heated at 90 °C for 72 h and cooled to room temperature at a rate of 5 °C·h-1.Colorless crystals(HL)were formed and washed with distilled water.Yield:91.4%.IR(KBr pellet,cm-1)for HL:3453(b),3119(b),2952(w),2363(w),1914(w),1694(b),1515(s),1433(m),1275(s),1141(s),1011(m),919(m),731(s),677(m)(Fig.S1a(see Supporting Information)).m.p.215.1-215.5°C.

    2.2.2 Preparation of[Cu0.5L]n(1)

    Amixture of HL(20.3 mg,0.10 mmol)and CuCl2·2H2O(17.1 mg,0.10 mmol)was dissolved in distilled H2O(3 mL),Teflonlined stainless reactor at 140 °C for 72 h,cooled to 100 °C at a rate of 5 °C·h-1,and held at this temperature for 10 h.Then,it was cooled to room temperature at the same rate.Purple lump crystals were isolated and washed with distilled water.Yield:45%(based on HL).IR(KBr pellet,cm-1):3455(b),1608(s),1562(m),1371(s),1288(m),1119(m),736(m),674(m)(Fig.S1b).Elemental analyses(%)calculated for C20H16CuN6O4:C 51.29,H 3.41,N 17.95;found:C 51.11,H 3.74,N 17.80.

    2.2.3 Preparation of{[Ni(L)2·(H2O)2]·(H2O)2}n(2)

    A mixture containing HL(20.3 mg,0.10 mmol),NiCl2·6H2O(23.8 mg,0.10 mmol),NaOH(4.0 mg,0.10 mmol),NaN3(12.6 mg,0.20 mmol),were dissolved in the solution of CH3OH/H2O(6 mL)(1:2,V/V),Teflon-lined stainless reactor at 160°C for 10 h,cooled to 100 °C at a rate of 5 °C·h-1,and held at this temperature for 72 h.Then,it was cooled to room temperature at the same rate.The resulting solution was filtered and transfered in a vial for two weeks.Light blue fusiform crystals were formed and washed with EtOH and dried in air.Yield:90%(based on HL).IR(KBr pellet,cm-1):3455(w),1600(s),1555(s),1398(s),1292(m),1138(m),730(m),678(m)(Fig.S1c).Elemental analysis(%)calculated for C20H24NiN6O8:C 44.85,H 4.48,N 15.70;found:C 44.93,H 4.16,N 15.94.

    2.2.4 Preparation of{[Co(L)2·(H2O)2]·(H2O)2}n(3)

    Compound 3 was synthesized by the identical pathway with compound 2 except that NiCl2·6H2O was replaced by CoCl2·6H2O(23.8 mg,0.10 mmol)and pink fusiform crystals were obtained in the mother liquor after it standing for seven days.Yield:90%(based on HL).IR(KBr pellet,cm-1):3455(w),1600(s),1555(s),1398(s),1292(m),1138(m),730(m),678(m)(Fig.S1d).Elemental analysis(%)calculated for C20H24CoN6O8:C 44.83,H 4.48,N 15.69;found:C 44.97,H 4.08,N 15.95.

    2.3 Single-crystal structure determination

    All single crystal X-ray experiments were collected on a Bruker Smart Apex II CCD diffractometer(Germany)equipped with graphite monochromated Mo Kαradiation(λ=0.071073 nm)using ω and φ scan mode at 296(2)K.The single-crystal structures of compounds were both solved by direct methods and refined with full-matrixleast-squares refinements based on F2using SHELXS-97 and SHELXL-97.30,31All non-hydrogen atoms were refined anisotropically.Crystallographic data,data collection parameters,and refinement for 1-3 are listed in Table 1,selected bond distances(nm)and angles(°)are given in Table S1(see Supporting Information).CCDC numbers:970263 for 1,969965,969966 for 2 and 3,respectively.

    2.4 Antifungal activity tests

    The tested microorganisms in the present study are Fusarium graminearum,Vasa mali,Macrophoma kawatsukai,Colletotrichum,gloeosporioides,and Alternaria alternate.Due to their close relationship to crop,such as wheat,apple,and tobacco,we selected these fungi to carry out the research and valued the compounds in agriculture.The method of determining antifungal activity was according to the radial growth method.32Sterilized hot PDA(potato dextrose agar)nutrient medium(composition:potato(200.0 g),dextrose(15.0 g),agar(18.0 g),and distilled water(1000 mL))and 4 mm diameter hole punch were used in the method.4.64 mg Cu-L(1),5.35 mg Ni-L(2),and 5.35 mg Co-L(3)were used to prepare the 2.5 mmol·L-1mother liquid with distilled water(the compound solutions were prepared by formerly dis-solving in a small quantity of DMSO and then diluting using distilled water).Five final concentration solutions in PDA,0,40,80,120,and 160 μmol·L-1were prepared for compounds 1-3 to against five kinds of fungi respectively.The 0 μmol·L-1treatment was regarded as control.

    The titled compounds were mixed with 40 mL PDA in 50 mL centrifuge tubes at each concentration,divided into three Petri dishes,and allowed to solidify.Then dishes were incubated with 4 mm diameter of the fungi culture which was obtained by the hole punch.Then these Petri dishes were cultured at 28°C for four days.The diameter of fungi growth was for measuring the antifungal activities.All procedures of the above were repeated three times.

    2.5 DNA cleavage tests

    Plasmid DNA(pUC 18)was acquired from Takara Biotechnology(Da Lian)Co.Ltd.Aliquots of plasmid DNA(0.06 μg·μL-1)was mixed with a series of concentrations of the three compounds from 0 to 0.8 μmol·L-1.The mixtures were mixed in the same sequence,with plasmids being added first,followed by the titled three compounds and H2O which was used to replenish the volume in the control.Then,those mixtures were incubated in a DK-8D Thermostatic water bath for 150 min at 37°C.

    Table 1 Crystallographic data for compounds 1-3

    The cleavage reaction could be monitored by agarose gel electrophoresis(AGE).Agarose was purchased from Promega Co.(Germany).Gel electrophoresis experiments were worked out with plasmid DNA,in 0.8%agarose solution,at 100 V 40 min using TAE(tris-acetate-EDTA)buffer(45 mmol·L-1Tris(tris(hydroxymethyl)aminomethane),1 mmol·L-1EDTA(ethylene diamine tetraacetic acid),pH 7.44).The cleavage reactions were terminated by the addition of EDTA and bromphenol blue.The plasmid DNA was stained with 1 μL·mL-1gold view.The cleavage products were analyzed by Gel Doc XR gel documentation and analysis system(Bio-rad).

    2.6 Absorption peak of DNA displacement tests

    This part was performed by absorption spectral titration,33keeping the concentration of DNA(Salmon sperm)constant while varying the title compound concentration.The displacement was measured at 260 nm HALO DB-30 UV-Vis spectrophotometer(Dynamica).The solution of the compound was dropwise added into 3 mL salmon sperm DNA(50 μg·mL-1),and the mixture solution was monitored by UV-Vis spectrum.

    3 Results and discussion

    3.1 Crystal structure analysis

    Over the past few decades,the metal-triazole-based materials have attracted tremendous attention.Undoubtedly,hydrothermal synthesis provides a convenient method for preparation of such composite materials,allowing more routine structural characterization by single crystal X-ray diffraction.34,35The structures of 1-3 were determined using single crystal X-ray diffraction.1-3 crystallize in space groups P2(1)/c,P2(1)/n,P2(1)/n,respectively.

    In compound 1,the crystallographically unique copper(II)atom adopts a distorted octahedral coordination sphere,with four carboxylate O atoms from the different carboxylate groups,bidentate coordination in the equatorial plane,and two N atoms from triazoles in the axial positions(Fig.1(a)).As shown in Fig.1(b),each copper(II)atom coordinates with four ligands,and each ligand coordinates to two Cu ions.As a bridging ligand,triazole N atoms and carboxylate O atoms are involved in coordination with copper(II)to form an infinite one-dimensional(1D)Z-shaped double-chain.

    Compounds 2 and 3 have the same structure(Fig.2(a,b)).Hence,only the structure of 2 is described in detail.Single-crystal structure analysis shows a three-dimensional(3D)extended high density framework based on ligand and metal salts building blocks.Each nickel(II)center adopts a distorted octahedral coordination sphere,which is occupied by two O atoms from the coordinated water molecules and two carboxylate O atoms from the different carboxylate groups in the equatorial plane.The coordination sphere is completed by two N atoms from triazoles occupying the axial positions(Fig.2(a)).Anotable feature for the difference between compounds 1 and 2 is that carboxylate group of 2 is monodentate coordination.As shown in Fig.2(c),each nickel(II)atom coordinates with four ligands,and each ligand coordinates to two nickel(II)ions.Like compound 1,as a bridging ligand,the ligand takes end to end coordination modes with the metal ions and forming an infinite 1D Z-shaped double-chain.

    There are two guest water molecules in each coordination unit(Fig.2(a)),and each guest water molecule connects to three adjacent chains through hydrogen bonds.As shown in Fig.2(d),the hydrogen bond systems make the whole framework into a network structure.The O…H―O distance is 0.1904 nm and 0.1928 nm,N…H―O distance is 0.2052 nm.In this case,these 1D chains are linked together by such interchain hydrogen bond systems into a 3D framework(Fig.2(e)).

    3.2 X-ray powder diffraction and thermal analyses

    As shown in the Fig.3,X-ray powder diffraction patterns of the samples of 1-3 are quite similar to the simulated data of the crystal structure.

    Compounds 1-3 are air stable,the typical TG curves for the crystal samples of 1-3 were performed between room temperature up to 1000 °C at a heating rate of 10 °C·min-1under nitrogen atmosphere.The polymers are thermally stable up to 285.2,57.8,57.6°C for 1-3,respectively.In the TG curve of 1 shown in Fig.4,with increasing temperature,the whole framework of the compound collapses with a huge mass loss of 42.21%.Thermogravimetric analyses reveal that compounds 2 and 3 have a similar thermal decomposition behavior due to that they possess the same polymeric motif.2 remains stable up to 57.8°C and then undergoes one-step mass loss of 14.2%from 57.8 to 103.4°C,attributing to the loss of the crystal water molecules and the coordinated water molecules.The dehydration substance shows great stability before 339.3°C and then experiences a mass loss.Following that,the intermediates of 1-3 are slowly decomposed,and do not form stable compounds until 1000°C.

    3.3 Photoluminescent property

    The solid-state photoluminescent properties of ligand and their polymeric compounds 1-3 were investigated at room temperature.The excitation bands(λex)of the three compounds and the ligand are at about 362nm for 1,336nm for 2,373nm for 3,359 nm for the ligand,respectively(Fig.S2(see Supporting Information)and Table 2).As indicated in Fig.5,in the solid state,all compounds and the ligand in this study exhibit strong emission in high energy region.There are two intense fluorescent emission bands(λem)at 421,463 nm for 1,419,457 nm for 2,421,481 nm for 3,respectively(Table 2).The emissions bands of 1-3 and the ligand at about 421 nm show that the nature of ligand plays an important role in the photoluminescence of coordination compounds.The maximum emission of compounds 1-3 excited at discrepancy wavelengths would be attributed to dual effects of the terminal coordination water molecules and the coordination environment around Cu(II).The luminescence of compounds 1-3 may be ascribed to an intraligand phosphorescent emission and ligand-to-metal charge transfer(LMCT).36

    3.4 UV-Vis spectra of the ligand and the compounds

    Fig.1 (a)Coordination unit of compound 1 and(b)1D Z-shaped double-chain

    Fig.2 (a,b)Central atom coordination configurations of 2 and 3,(c)Z-shaped double-chains in 2,and(d,e)hydrogen bond systems in 2 and the 3D framework

    Fig.3 X-ray powder diffraction patterns of 1-3

    UV-Vis spectra of the ligand and the compounds could be reliably recorded over the full range.Compared to UV-Vis spectrum of the ligand,little changes in the wavelengths of absorption maxima were observed in those of the corresponding compounds(Fig.S3(see Supporting Information)and Table 3),indicating that the compounds in solvated molecule state occur in dimethyl sulfoxide(DMSO).

    3.5 Solubility and molar conductivity of the compounds

    All of the three compounds are insoluble in water and methanol,carbon tetrachloride,chloroform,and acetonitrile,while moderately soluble(50 mg/100 mL solvent)in dimethylformamide(DMF)and DMSO.The solid state compounds are fairly stable in air so as to allow physical measurements.Molar conductivities on those compounds fall in the expected range for nonelectrolytes,37,38as shown in Table 3.

    3.6 Antifungal activities of compounds

    Fig.4 TG curves of compounds 1-3

    Table 2 Photoluminescent properties of the ligand and compounds 1-3 in the solid state

    According to the results and analyses,the three compounds show a degree of antifungal efficacy(Fig.6 and Table S2(see Supporting Information)).Compound 1 presents the best antifungal capacity among the three compounds.It is worth mentioning that at 120 μmol·L-1antifungal percentage of compound 1 is 73.5%against Fusarium graminearum,whereas compounds 2 and 3 are only 52.2%and 50.0%,repectively(Table S3(see Supporting Information)).Through our calculation,compound 1 always shows a higher antifungal percentage than the other two compounds on all the five fungi.It means that compound 1 has a decent antifungal activity.

    Fig.5 Emission spectra of the ligand and compounds in the solid state at ambient temperature

    Table 3 Molar conductivities and UV-Vis data for the ligand and compounds in dimethyl sulfoxide(DMSO)solvent at room temperature

    The five closely agriculture related fungi show the different sensitivity to the three titled compounds treatment.Vasa mali and Alternaria alternate are much more sensitive than the other three fungi.Data reveal that at the concentration of 160 μmol·L-1the antifungal percentages are almost high to 96.9%on Vasa mali and 94.6%on Alternaria alternate(Table S3(see Supporting Information)).

    3.7 DNA cleavage of compounds

    Fig.6 Virulence regression curves of three compounds against on five fungi

    Different DNAshapes lead to different moving rates in AGE.39For instance,the intact supercoil form(Form I)will exhibit relatively fast migration when circular plasmid DNA is subjected to AGE.40If cleavage occurs on one strand,supercoil form DNAwill relax to produce a slower-migrating open circular form(Form II).If both strands are cleaved,a linear form DNA(Form III)will be generated and its migration is between the intact supercoil form and open circular form.41Since the plasmid DNA migration pattern under AGE condition is:supercoil>linear>open circular,42that is,F(xiàn)orm I>Form III>Form II.Hence,the cleavages obtained by the titled compounds could be carried out and analyzed byAGE.43

    As the images after AGE of solutions in different combinations show,the compounds could degrade plasmid DNA(pUC 18).With increasing concentration of compounds,the amount of supercoil(Form I)DNA diminishes gradually.In Fig.7(a),F(xiàn)orm I vanishes gradually with the increasing concentration of compound 1,whereas the amount of Form II and Form III begins to increase.At 0.06 μmol·L-1(Lane 4),F(xiàn)orm I is cut into Form II and Form III thoroughly and Form III has a significant increase compared to Lanes 2 and 3.Compound 1 promotes complete degradation of plasmid DNAat the concentration of 0.08 μmol·L-1(Lane 5).

    Fig.7 Agarose gel electrophoresis patterns for the cleavage of plasmid DNAby compounds

    As for compound 2 at 0.08 μmol·L-1,there still are open circular and linear forms but the supercoil isabsent(Fig.7(b)).All the forms are present at 0.06 μmol·L-1,whereas compound 1 is not.There is no significant difference between compounds 2 and 3 on proportions of plasmid DNA forms.Compounds 2 and 3 almost present an identical pattern on DNA cleavage.With increasing concentration of compounds 2 and 3(Fig.7(b)and Fig.7(c)),the amount of Form I of plasmid DNA diminishes gradually.At 0.08μmol·L-1,both compounds can change Form I into Form II and III completely.

    3.8 Absorption peak of DNA displacement

    Fig.8 Absorption spectra of the compounds upon the plasmid DNA

    To explore the interaction pattern between the titled compounds and plasmid DNA,the absorption peak of DNAdisplacement tests are also performed.The intrinsic absorption peak of DNAis at 260 nm.If the compounds intercalate into DNA,the unique structure of DNA will be changed,and the absorption peak will move.In our tests,as shown in Fig.8,the absorbance of DNA at 260 nm shows a remarkable decreasing tendency with increasing the concentration of the compounds.In test concentration,the endpoint of compound 1 is 0.33 at 260 nm while those of the other compounds are around 0.47.The decreased absorbance indicates that the compounds change DNA double-helix structure,which may be elucidated as the intercalation of the compounds between the base pairs of DNA.44,45Among the three compounds,compound 1 presents the lowest absorbance at 260 nm,showing that the more base pairs are intercalated by 1 compared to the others.46

    The antifungal activities of compounds exhibit strong antifungal efficacy,following the order of 1>3≥2.Significantly,further investigations on DNA cleavage experiments reveal that such compounds show different intercalation activities.Notably,1 had an obviously higher inhibitory rate than other compounds,which is related with its DNAcleavage activities.Compared with compounds 2 and 3,compound 1 demonstrates an infinite 1D double-chain without interchain interaction.The better cleavage properties of the compound 1 may be attributed to the simple structure,which means that supramolecular interaction decreases the ability of the compounds to intercalate into DNA,and further influences the DNA cleavage activities.Although 2 and 3 show the isomorphous structure,their DNA cleavage activities are not exactly the same.The difference reveals that metal ion also affects the intercalation ability.As noticed,Cu(II)compounds have been the theme aimed at establishing the presumed synergy between the Cu(II)ion and the drug.47-50In conclusion,the cooperative effect of the supramolecular interaction and metal ions results in DNA cleavage activities.

    4 Conclusions

    In the present work,three transition metal compounds 1-3 with 4-(1H-1,2,4-triazol-1-ylmethyl)benzoic acid have been hydrothermally synthesized.Single-crystal X-ray diffraction analysis revealed that compound 1 features a 1D chain,while 2 and 3 exhibit 3D network structure.The detailed optical property investigations reveal that:1-3 exhibit remarkable luminescence emissions,which may be ascribed to the cooperative effects of intraligand emission and ligand-to-metal charge transfer(LMCT).Antifungal activities analyses show that compound 1 has the greatest antifungal efficacy compared to 2 and 3 on the five fungi.Photographs taken after agarose gel electrophoresis demonstrate the three titled compounds could cause plasmid DNAcleavage.In order to evaluate the effect of compounds concentration increase and research the pattern of cleavage,we studied different combination of the plasmid DNA(pUC 18)and compounds.The addition of increasing amount of compounds causes a significant increase in the DNA breakage.It is understandable that the three compounds can beak the DNAof fungi even cause its degradation.Although the three compounds can break the DNA,their breakage situations are not same.Among our presupposed concentrations compounds 2 and 3 can promote the conversion of DNA from Form I to Forms II and III,whereas compound 1 can fully degrade DNAat 0.08 μmol·L-1.This means that compound 1 has the highefficacy capacity on DNA breakage and that is the reason for compound 1 to present such high antifungal efficacy.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1)Yaghi,O.M.;Davis,C.E.;Li,G.M.;Li,H.L.J.Am.Chem.Soc.1997,119,2861.doi:10.1021/ja9639473

    (2) Seo,J.S.;Whang,D.;Lee,H.;Jun,S.I.;Oh,J.;Jeon,Y.J.;Kim,K.Nature 2000,404,982.doi:10.1038/35010088

    (3) Datta,A.;Karan,N.K.;Mitra,S.;Gramlich,V.J.J.Chem.Cryst.2003,33,579.doi:10.1023/A:1024299005045

    (4) Gillon,B.;Mathoniere,C.;Ruiz,E.;Alvarez,S.;Cousson,A.;Kahn,T.M.J.Am.Chem.Soc.2002,124,14433.doi:10.1021/ja020188h

    (5) Kozlov,I.A.;Kubareva,E.A.;Ivanovskaya,M.G.Antisense Nucleic A 1997,7,279.doi:10.1089/oli.1.1997.7.279

    (6) Purmal,A.A.;Shabarv,T.V.;Gumport,R.I.Nucleic Acids Res.1998,20,3713.

    (7)Trawick,B.N.;Daniher,A.T.;Bashkin,J.K.Chem.Rev.1998,98,939.doi:10.1021/cr960422k

    (8) Budrìa,J.G.;Raugei,S.;Cavallo,L.J.Inorg.Chem.2006,22,1732.

    (9) Liu,J.;Mei,W.J.;Xu,A.W.;Shi,S.;Tan,C.P.;Ji,L.N.Antivir.Res.2004,62,65.doi:10.1016/j.antiviral.2003.12.004

    (10) Chabner,B.A.;Roberts,T.G.Nat.Rev.Cancer 2005,5,65.

    (11) Chen,L.M.;Liu,J.;Chen,J.C.;Shi,S.J.Mol.Struct.2008,881,156.doi:10.1016/j.molstruc.2007.09.010

    (12)Li,V.S.;Choi,D.;Wang,Z.;Jimenez,L.S.;Tang,M.S.;Kohn,H.J.Am.Chem.Soc.1996,18,2326.

    (13)Zuber,G.;James,C.Q.;Hecht,S.M.J.Am.Chem.Soc.1998,120,9368.doi:10.1021/ja981937r

    (14) Hecht,S.M.J.Nat.Prod.2000,63,158.doi:10.1021/np990549f

    (15) Liu,J.G.;Ye,B.H.;Li,H.;Zhen,Q.X.;Ji,L.N.;Fu,Y.H.J.Inorg.Biochem.1999,76,265.doi:10.1016/S0162-0134(99)00154-3

    (16) Strekowski,L.;Wilson,B.Mutat.Res.2007,623,3.doi:10.1016/j.mrfmmm.2007.03.008

    (17) Zhou,C.Y.;Zhao,J.;Wu,Y.B.;Yin,C.X.;Yang,P.J.Inorg.Biochem.2007,101,10.doi:10.1016/j.jinorgbio.2006.07.011

    (18) Gao,F(xiàn).;Chao,H.;Zhou,F(xiàn).;Yuan,Y.X.;Peng,B.;Ji,L.N.J.Inorg.Biochem.2006,100,1487.doi:10.1016/j.jinorgbio.2006.04.008

    (19) Cater,D.C.;Ho,J.X.Adv.Protein Chem.1994,45,153.doi:10.1016/S0065-3233(08)60640-3

    (20) He,X.M.;Cater,D.C.Nature 1992,358,209.doi:10.1038/358209a0

    (21) Curry,S.;Brick,P.;Frank,N.P.Biochim.Biophys.A 1999,1141,131.

    (22)Shen,X.C.;Yuan,Q.;Liang,H.Sci.Chin.Ser.B-Chem.2003,46,387.doi:10.1360/02yb0062

    (23)Wang,Y.M.;Song,Y.;Kong,D.L.Chin.Sci.Bull.2005,50,1839.doi:10.1360/982004-405

    (24) Mehra,R.K.;Tran,K.;Scott,G.W.;Mulchandani,P.;Saini,S.S.J.Inorg.Biochem.1996,61,125.doi:10.1016/0162-0134(95)00046-1

    (25) Koh,L.L.;Ranford,J.O.;Robinson,W.T.;Swensson,J.O.;Tan,A.L.;Wu,D.Inorg.Chem.1996,35,6466.doi:10.1021/ic9606441

    (26)Zhang,P.Z.;Fu,Q.Y.;Chi,R.X.;Yang,C.X.;Xu,J.G.J.Zhejiang Univ.Sci.Technol.2003,15,143.

    (27) Xiong,P.P.;Li,J.;Bu,H.Y.;Wei,Q.;Zhang,R.L.;Chen,S.P.J.Solid State Chem.2014,215,292.doi:org/10.1016/j.jssc.2014.04.012

    (28)Zhao,X.X.;Ma,J.P.;Dong,Y.B.;Huang,R.Q.Cryst.Growth Des.2007,7,1058.doi:10.1021/cg060583+

    (29)Qin,J.;Ma,J.P.;Liu,L.L.;Huang,R.Q.;Dong,Y.B.Acta Cryst.2009,65,66.

    (30) Sheldrick,G.M.SHELXS-97,Program for Solution of Crystal Structures;University of G?ttingen:G?ttingen,Germany,1990.

    (31) Sheldrick,G.M.SHELXK-97,Program for Refinement of Crystal Structures;University of G?ttingen:G?ttingen,Germany,1997.

    (32) Mann,A.;Banso,A.;Clifford,L.C.;Tan.J.Health.Res.2008,10,34.

    (33)Li,Y.T.;Liu,Z.Q.;Wu,Z.Y.J.Inorg.Biochem.2008,102,1790.doi:org/10.1016/j.jinorgbio.2008.05.011

    (34)Zhang,J.P.;Chen,X.M.Chem.Commun.2006,1689.

    (35) Ouellette,W.;Hudson,B.S.;Zubieta,J.Inorg.Chem.2007,46,4887.doi:10.1021/ic062269a

    (36) Zheng,L.L.;Li,H.X.;Leng,J.D.;Wang,J.;Tong,M.L.Eur.J.Inorg.Chem.2008,213.

    (37)AbouEl,E.S.;El,S.A.;Emam,S.M.;Ell,S.M.A.Spectrochim.Acta Part A 2008,71,421.doi:10.1016/j.saa.2007.12.031

    (38) Valent,A.;Melnik,M.;Hudecova,D.;Dudova,B.;Kivekas,R.;Sundberg,M.R.Inorg.Chim.Acta 2002,340,15.doi:10.1016/S0020-1693(02)01062-9

    (39)Song,Y.M.;Wu,Q.;Yang,P.J.;Luan,N.N.J.Inorg.Biochem.2006,100,1685.doi:10.1016/j.jinorgbio.2006.06.001

    (40) Zavitsanos,K.;Nunes,A.M.;Malandrinos,G.;Hadjiliadis,N.J.Inorg.Biochem.2011,105,1329.doi:10.1016/j.jinorgbio.2011.07.014

    (41) Barton,J.K.;Raphael,A.L.J.Am.Chem.Soc.1984,106,2466.doi:10.1021/ja00320a058

    (42) Scheppler,J.A.;Cassin,P.E.;Gambier,R.M.Biotechnology Explorations:Applying the Fundamentals;ASM Press:Washington DC,2000.

    (43) Xi,P.X.;Xu,Z.H.;Chen,F(xiàn).J.;Zeng,Z.Z.J.Inorg.Biochem.2009,103,210.doi:10.1016/j.jinorgbio.2008.10.010

    (44) Li,Y.T.;Liu,Z.Q.;Wu,Z.Y.J.Inorg.Biochem.2008,102,1790.doi:10.1016/j.jinorgbio.2008.05.011

    (45) Rajendiran,V.;Karthik,R.;Palaniandavar,M.;Evans,S.H.;Periasamy,V.S.;Akbarsha,M.A.;Srinag,B.S.;Krishnamurthy,H.Inorg.Chem.2007,46,8208.doi:10.1021/ic700755p

    (46)Khoramdareh,Z.K.;Yazdi,S.A.;Spingler,H.B.;Khandar,A.A.Inorg.Chim.Acta 2014,415.7.

    (47)Jiang,J.;Tang,X.L.;Dou,W.;Zhang,H.H.;Liu,W.S.;Wang,C.X.;Zheng,J.R.J.Inorg.Biochem.2010,104,583.doi:10.1016/j.jinorgbio.2010.01.011

    (48)Melnik,M.Coord.Chem.Rev.1982,42,259.doi:10.1016/S0010-8545(00)80537-8

    (49) Kato,M.;Muto,Y.Coord.Chem.Rev.1988,92,45.doi:10.1016/0010-8545(88)85005-7

    (50)Weder,J.E.;Dillon,C.T.;Hambley,T.W.;Kennedy,B.J.;Lay,P.A.;Biffin,J.R.;Regtop,H.L.;Davies,N.M.Coord.Chem.Rev.2002,232,95.doi:10.1016/S0010-8545(02)00086-3

    猜你喜歡
    西北大學(xué)三唑教育部
    西北大學(xué)木香文學(xué)社
    《西北大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡(jiǎn)則
    《我們》、《疑惑》
    西北大學(xué)博物館
    教育部召開(kāi)座談會(huì)推進(jìn)一流大學(xué)和一流學(xué)科建設(shè)
    新課程研究(2016年1期)2016-12-01 05:52:14
    不同濃度三唑錫懸浮劑防治效果研究
    教育部:高考地方性加分項(xiàng)目2018年減至35個(gè)
    三組分反應(yīng)高效合成1,2,4-三唑烷類(lèi)化合物
    我校兩教育部重大課題攻關(guān)項(xiàng)目開(kāi)題
    1,1′-二(硝氧甲基)-3,3′-二硝基-5,5′-聯(lián)-1,2,4-三唑的合成及性能
    欧美精品一区二区免费开放| 免费看不卡的av| 色婷婷久久久亚洲欧美| 熟女人妻精品中文字幕| 成年av动漫网址| 久久久国产欧美日韩av| 在线观看一区二区三区激情| 午夜福利,免费看| 黄色一级大片看看| 久久久久久久久久久久大奶| 亚洲精品亚洲一区二区| 国产 一区精品| 草草在线视频免费看| 亚洲美女视频黄频| 国产精品免费大片| 国产日韩一区二区三区精品不卡 | 成人亚洲欧美一区二区av| 精品国产一区二区三区久久久樱花| 你懂的网址亚洲精品在线观看| 大陆偷拍与自拍| 欧美区成人在线视频| 亚洲av日韩在线播放| 国产成人精品无人区| 99热国产这里只有精品6| 国产亚洲91精品色在线| 日日摸夜夜添夜夜爱| 久久精品夜色国产| 亚洲成人一二三区av| 纯流量卡能插随身wifi吗| 乱码一卡2卡4卡精品| 中文乱码字字幕精品一区二区三区| 久久久久精品性色| 美女内射精品一级片tv| 久久久久人妻精品一区果冻| 卡戴珊不雅视频在线播放| 成人无遮挡网站| 99久国产av精品国产电影| 亚洲欧美日韩另类电影网站| 中文字幕免费在线视频6| 91精品一卡2卡3卡4卡| 一级,二级,三级黄色视频| 99久久中文字幕三级久久日本| 国产男女内射视频| 免费av中文字幕在线| 大片电影免费在线观看免费| 青青草视频在线视频观看| 亚洲,一卡二卡三卡| 欧美日韩国产mv在线观看视频| 黄色视频在线播放观看不卡| 免费看不卡的av| 婷婷色麻豆天堂久久| 男女国产视频网站| 水蜜桃什么品种好| 内射极品少妇av片p| 欧美精品一区二区免费开放| 日日爽夜夜爽网站| 日本91视频免费播放| 国产高清不卡午夜福利| 精品午夜福利在线看| 欧美 亚洲 国产 日韩一| 亚洲第一av免费看| 成人毛片a级毛片在线播放| 日韩av免费高清视频| 简卡轻食公司| 亚洲久久久国产精品| 建设人人有责人人尽责人人享有的| av视频免费观看在线观看| 亚洲激情五月婷婷啪啪| 国产黄片视频在线免费观看| 亚洲av在线观看美女高潮| 亚洲成色77777| 精品久久久久久电影网| 五月天丁香电影| 在线观看一区二区三区激情| 男人舔奶头视频| 久久ye,这里只有精品| 国产精品国产三级国产专区5o| 欧美高清成人免费视频www| 国产极品天堂在线| 久久 成人 亚洲| 久久久久久人妻| 成人免费观看视频高清| 99久久中文字幕三级久久日本| 中文字幕精品免费在线观看视频 | 国产精品久久久久久精品古装| 久久精品国产亚洲av涩爱| 如日韩欧美国产精品一区二区三区 | 如日韩欧美国产精品一区二区三区 | 国产亚洲午夜精品一区二区久久| 国产视频内射| 内射极品少妇av片p| 久久精品国产自在天天线| 日日爽夜夜爽网站| 在线观看人妻少妇| 久久免费观看电影| 欧美日韩视频高清一区二区三区二| 91精品国产九色| 国产av一区二区精品久久| 91精品一卡2卡3卡4卡| 久久影院123| 在现免费观看毛片| 国产乱人偷精品视频| 日本黄色日本黄色录像| 亚洲av日韩在线播放| 一区二区av电影网| 久久ye,这里只有精品| 成年人午夜在线观看视频| 国产在线一区二区三区精| 伦精品一区二区三区| 欧美精品一区二区大全| 99热国产这里只有精品6| 久久人人爽av亚洲精品天堂| 大香蕉97超碰在线| 午夜激情福利司机影院| 91精品国产九色| 夜夜爽夜夜爽视频| 十八禁网站网址无遮挡 | 中文字幕av电影在线播放| 香蕉精品网在线| 久久久国产精品麻豆| 色婷婷av一区二区三区视频| 欧美xxxx性猛交bbbb| 人人妻人人看人人澡| 成人黄色视频免费在线看| 国产成人免费无遮挡视频| 老女人水多毛片| 伊人亚洲综合成人网| 欧美性感艳星| 美女视频免费永久观看网站| 人人妻人人澡人人爽人人夜夜| 97超视频在线观看视频| 三级国产精品片| 免费看光身美女| 亚洲av成人精品一二三区| 亚洲va在线va天堂va国产| 久久狼人影院| 亚洲美女黄色视频免费看| 中文字幕av电影在线播放| 久久久a久久爽久久v久久| 人妻夜夜爽99麻豆av| 国产视频首页在线观看| 九九爱精品视频在线观看| 成年美女黄网站色视频大全免费 | 99热6这里只有精品| 国产毛片在线视频| 亚洲精品乱久久久久久| 国产日韩欧美视频二区| 国产男女超爽视频在线观看| 欧美日本中文国产一区发布| 久久精品国产自在天天线| 一本久久精品| 在线播放无遮挡| 国产一区二区在线观看日韩| 丝袜脚勾引网站| 伦精品一区二区三区| 九九久久精品国产亚洲av麻豆| 国产精品嫩草影院av在线观看| 日韩在线高清观看一区二区三区| 美女国产视频在线观看| 国产日韩欧美视频二区| 亚洲第一区二区三区不卡| av天堂久久9| 久久精品久久久久久久性| 久久久欧美国产精品| 一个人看视频在线观看www免费| 2021少妇久久久久久久久久久| 简卡轻食公司| 亚洲精品中文字幕在线视频 | 成人美女网站在线观看视频| 在线精品无人区一区二区三| 一级毛片黄色毛片免费观看视频| 亚洲精品,欧美精品| 少妇的逼好多水| 久久久久精品性色| 久久久国产精品麻豆| 中文精品一卡2卡3卡4更新| 韩国av在线不卡| 老司机影院毛片| 欧美国产精品一级二级三级 | 亚洲精品乱久久久久久| 久热久热在线精品观看| 亚洲精品aⅴ在线观看| 精品少妇久久久久久888优播| 老女人水多毛片| 亚洲精品久久久久久婷婷小说| 免费观看无遮挡的男女| 欧美97在线视频| 亚洲精品日韩av片在线观看| 久久久久精品性色| 只有这里有精品99| 男人和女人高潮做爰伦理| 亚洲国产精品999| 国产精品秋霞免费鲁丝片| 亚洲精品日本国产第一区| 午夜福利,免费看| 桃花免费在线播放| 如何舔出高潮| 久久久亚洲精品成人影院| 久久久久久久精品精品| a级一级毛片免费在线观看| 日韩精品有码人妻一区| 日韩一区二区三区影片| 大话2 男鬼变身卡| 精品国产国语对白av| 午夜免费观看性视频| 国产极品粉嫩免费观看在线 | 天堂俺去俺来也www色官网| 波野结衣二区三区在线| 久久人人爽av亚洲精品天堂| 精品一品国产午夜福利视频| 搡女人真爽免费视频火全软件| 日韩 亚洲 欧美在线| 久久久久久久久久久免费av| av一本久久久久| 亚洲av在线观看美女高潮| 亚洲av中文av极速乱| 亚洲国产最新在线播放| a级片在线免费高清观看视频| 亚洲天堂av无毛| 国产老妇伦熟女老妇高清| 九草在线视频观看| 国产精品女同一区二区软件| 日韩精品免费视频一区二区三区 | 国产精品一区二区在线观看99| 精品久久久久久久久av| 中文字幕免费在线视频6| 在线观看av片永久免费下载| 2021少妇久久久久久久久久久| 一个人看视频在线观看www免费| 中文精品一卡2卡3卡4更新| 欧美日韩亚洲高清精品| 日日啪夜夜撸| 久久久久网色| 最近中文字幕2019免费版| 在线观看国产h片| 91成人精品电影| 深夜a级毛片| 麻豆成人午夜福利视频| 欧美日韩一区二区视频在线观看视频在线| 少妇猛男粗大的猛烈进出视频| 赤兔流量卡办理| 桃花免费在线播放| 亚洲不卡免费看| 亚洲精品视频女| 王馨瑶露胸无遮挡在线观看| 看免费成人av毛片| 亚洲av电影在线观看一区二区三区| 亚洲国产毛片av蜜桃av| 日本vs欧美在线观看视频 | 菩萨蛮人人尽说江南好唐韦庄| 三级国产精品片| 亚洲国产精品一区二区三区在线| 午夜老司机福利剧场| 蜜桃在线观看..| 国产精品人妻久久久影院| 丝袜在线中文字幕| 亚洲精品久久久久久婷婷小说| 大香蕉97超碰在线| 插逼视频在线观看| 毛片一级片免费看久久久久| 一个人看视频在线观看www免费| 日本猛色少妇xxxxx猛交久久| 伊人久久国产一区二区| 国产极品粉嫩免费观看在线 | av线在线观看网站| 国产一区二区在线观看日韩| 亚洲精品中文字幕在线视频 | 国产亚洲精品久久久com| 国产精品一区二区三区四区免费观看| 色视频在线一区二区三区| av专区在线播放| 九九久久精品国产亚洲av麻豆| 啦啦啦啦在线视频资源| 国产永久视频网站| 男人和女人高潮做爰伦理| 亚洲av二区三区四区| 91久久精品国产一区二区三区| 丝袜喷水一区| 色婷婷av一区二区三区视频| 久久精品国产亚洲av天美| 国产真实伦视频高清在线观看| 曰老女人黄片| 成年美女黄网站色视频大全免费 | videos熟女内射| 国产 一区精品| 少妇人妻精品综合一区二区| 精品人妻偷拍中文字幕| 夜夜骑夜夜射夜夜干| 久久久久国产网址| av国产精品久久久久影院| 久久毛片免费看一区二区三区| 18禁裸乳无遮挡动漫免费视频| 特大巨黑吊av在线直播| av免费观看日本| 免费在线观看成人毛片| 91午夜精品亚洲一区二区三区| 一本一本综合久久| 亚洲欧美一区二区三区黑人 | 日韩av不卡免费在线播放| 国产亚洲精品久久久com| h日本视频在线播放| 国产黄片视频在线免费观看| 久久精品国产亚洲av涩爱| 狂野欧美激情性xxxx在线观看| 国产高清三级在线| 爱豆传媒免费全集在线观看| 国产一区有黄有色的免费视频| 国产伦精品一区二区三区视频9| 欧美丝袜亚洲另类| av播播在线观看一区| 欧美精品亚洲一区二区| 中文天堂在线官网| 国产精品一区www在线观看| 天堂中文最新版在线下载| 王馨瑶露胸无遮挡在线观看| av福利片在线观看| 大片免费播放器 马上看| 久久鲁丝午夜福利片| 99九九线精品视频在线观看视频| 亚洲国产精品999| 男女国产视频网站| 少妇精品久久久久久久| freevideosex欧美| 大片免费播放器 马上看| 亚洲美女搞黄在线观看| 你懂的网址亚洲精品在线观看| 又粗又硬又长又爽又黄的视频| 免费看日本二区| 中文天堂在线官网| 久久97久久精品| 亚洲av成人精品一区久久| 中文欧美无线码| 亚洲欧美日韩卡通动漫| 一级av片app| a级片在线免费高清观看视频| 日日啪夜夜撸| 91在线精品国自产拍蜜月| 亚洲人成网站在线播| 熟女电影av网| 国产亚洲最大av| 三级国产精品片| 人人妻人人澡人人爽人人夜夜| 精品午夜福利在线看| 麻豆乱淫一区二区| 精品酒店卫生间| 精品午夜福利在线看| 性色av一级| 亚洲av二区三区四区| 在线播放无遮挡| 日本vs欧美在线观看视频 | 国产有黄有色有爽视频| 日本av手机在线免费观看| 蜜桃在线观看..| 亚洲精品国产色婷婷电影| 国产在线男女| 91久久精品国产一区二区三区| 久久久精品免费免费高清| 亚洲内射少妇av| h视频一区二区三区| 啦啦啦在线观看免费高清www| 国产亚洲av片在线观看秒播厂| 少妇人妻久久综合中文| 丝袜喷水一区| 2018国产大陆天天弄谢| a级一级毛片免费在线观看| 男女边吃奶边做爰视频| 日韩在线高清观看一区二区三区| 青青草视频在线视频观看| 国产伦在线观看视频一区| 免费大片18禁| 国产欧美亚洲国产| 18禁在线无遮挡免费观看视频| 三级经典国产精品| 国产精品久久久久久精品电影小说| 亚洲电影在线观看av| 夜夜骑夜夜射夜夜干| 中文字幕人妻丝袜制服| 亚洲国产精品成人久久小说| a级毛片在线看网站| 最近的中文字幕免费完整| 午夜日本视频在线| 久久99热6这里只有精品| 国产精品成人在线| 纯流量卡能插随身wifi吗| 精品国产乱码久久久久久小说| 亚洲人成网站在线播| 少妇人妻 视频| 高清毛片免费看| 菩萨蛮人人尽说江南好唐韦庄| av黄色大香蕉| 国产一区亚洲一区在线观看| 人妻 亚洲 视频| 国国产精品蜜臀av免费| 午夜福利,免费看| 黄色怎么调成土黄色| 一个人看视频在线观看www免费| 免费观看性生交大片5| 国产在线视频一区二区| 王馨瑶露胸无遮挡在线观看| 成年美女黄网站色视频大全免费 | 青春草视频在线免费观看| 午夜激情久久久久久久| 久久久精品免费免费高清| 国产视频首页在线观看| 精品人妻熟女毛片av久久网站| 天美传媒精品一区二区| 大香蕉久久网| 插阴视频在线观看视频| 午夜福利网站1000一区二区三区| 韩国av在线不卡| 欧美日韩在线观看h| 在线亚洲精品国产二区图片欧美 | 性色avwww在线观看| 国产有黄有色有爽视频| 丝袜脚勾引网站| 这个男人来自地球电影免费观看 | 日本黄色日本黄色录像| 王馨瑶露胸无遮挡在线观看| 免费观看在线日韩| 久久精品夜色国产| av免费观看日本| 亚洲不卡免费看| 丰满人妻一区二区三区视频av| 国产免费又黄又爽又色| 搡老乐熟女国产| 亚洲性久久影院| 亚洲欧美日韩卡通动漫| 全区人妻精品视频| 人妻少妇偷人精品九色| 街头女战士在线观看网站| 女的被弄到高潮叫床怎么办| 欧美精品一区二区免费开放| 国产精品99久久99久久久不卡 | 伦理电影免费视频| 欧美激情国产日韩精品一区| 18禁在线无遮挡免费观看视频| 国产精品久久久久久久电影| 丝袜脚勾引网站| 婷婷色麻豆天堂久久| 亚洲成人一二三区av| 成人国产麻豆网| 免费黄频网站在线观看国产| 国产精品免费大片| 欧美人与善性xxx| 伦理电影大哥的女人| 18禁在线无遮挡免费观看视频| 免费观看av网站的网址| 国产精品一区www在线观看| 只有这里有精品99| 国产深夜福利视频在线观看| 国产亚洲91精品色在线| 久久av网站| 久久国产亚洲av麻豆专区| 国产有黄有色有爽视频| 免费黄色在线免费观看| 精品久久久久久久久亚洲| av在线app专区| 久久久久久久久大av| 青春草视频在线免费观看| 我要看日韩黄色一级片| 成人亚洲精品一区在线观看| 久久久久网色| 国产一区二区三区av在线| 亚洲人成网站在线播| 一本色道久久久久久精品综合| 久热这里只有精品99| 观看美女的网站| .国产精品久久| 男人爽女人下面视频在线观看| 国产黄色免费在线视频| 熟妇人妻不卡中文字幕| 国产亚洲欧美精品永久| 久久av网站| 嫩草影院入口| 22中文网久久字幕| 国产乱来视频区| 亚洲欧美成人综合另类久久久| 一个人免费看片子| 青春草亚洲视频在线观看| 性高湖久久久久久久久免费观看| 久久久久网色| 一区在线观看完整版| 丁香六月天网| av一本久久久久| 久久久久国产网址| 老司机亚洲免费影院| 最新的欧美精品一区二区| 午夜精品国产一区二区电影| 黑人高潮一二区| 国产精品不卡视频一区二区| 国产成人a∨麻豆精品| 熟女电影av网| 国产亚洲精品久久久com| av.在线天堂| 日本-黄色视频高清免费观看| 久久久久久久精品精品| 尾随美女入室| 午夜久久久在线观看| 伊人久久国产一区二区| 观看av在线不卡| 秋霞在线观看毛片| 亚洲精品自拍成人| 丝袜脚勾引网站| 日本黄大片高清| 大香蕉97超碰在线| 大话2 男鬼变身卡| 国产淫片久久久久久久久| 国产免费一级a男人的天堂| 国产老妇伦熟女老妇高清| 高清黄色对白视频在线免费看 | 精品少妇黑人巨大在线播放| 一级毛片久久久久久久久女| 十八禁网站网址无遮挡 | www.av在线官网国产| 高清不卡的av网站| 久久久久国产网址| 国产免费视频播放在线视频| 波野结衣二区三区在线| 一本久久精品| 欧美xxⅹ黑人| 男人和女人高潮做爰伦理| 永久免费av网站大全| 水蜜桃什么品种好| 国语对白做爰xxxⅹ性视频网站| 国产有黄有色有爽视频| 性色avwww在线观看| 欧美精品一区二区大全| 国产91av在线免费观看| 国国产精品蜜臀av免费| 波野结衣二区三区在线| 99热全是精品| 日韩不卡一区二区三区视频在线| 两个人免费观看高清视频 | 中文天堂在线官网| 99热这里只有精品一区| 国产精品免费大片| 性高湖久久久久久久久免费观看| 水蜜桃什么品种好| 国产一区二区在线观看av| 久久毛片免费看一区二区三区| 大片免费播放器 马上看| 男女边摸边吃奶| 久久久久久久久久久丰满| 狂野欧美激情性xxxx在线观看| 成人亚洲欧美一区二区av| 国产乱来视频区| 国产精品国产三级国产av玫瑰| 麻豆成人av视频| 夜夜骑夜夜射夜夜干| 亚洲美女黄色视频免费看| 成人美女网站在线观看视频| 久久97久久精品| 22中文网久久字幕| 亚洲av在线观看美女高潮| av天堂久久9| 你懂的网址亚洲精品在线观看| 另类精品久久| 欧美精品国产亚洲| 五月开心婷婷网| 乱系列少妇在线播放| 亚洲国产av新网站| 国产伦理片在线播放av一区| 日本欧美国产在线视频| 哪个播放器可以免费观看大片| 免费人成在线观看视频色| 毛片一级片免费看久久久久| 最新的欧美精品一区二区| 丝袜喷水一区| 一区二区三区四区激情视频| 男女啪啪激烈高潮av片| 丁香六月天网| 久久久久久久精品精品| 欧美精品人与动牲交sv欧美| 亚洲国产精品国产精品| 一级毛片久久久久久久久女| 国产成人精品无人区| 高清毛片免费看| 青春草亚洲视频在线观看| 制服丝袜香蕉在线| 久久久久久人妻| 我要看日韩黄色一级片| 国产成人精品久久久久久| 国产精品蜜桃在线观看| a级毛片免费高清观看在线播放| 欧美区成人在线视频| 美女视频免费永久观看网站| 国产亚洲午夜精品一区二区久久| 亚洲成人av在线免费| 成人二区视频| 色哟哟·www| 久久国产精品大桥未久av | 国产精品国产三级国产av玫瑰| 不卡视频在线观看欧美| 国产黄色视频一区二区在线观看| av免费在线看不卡| 亚洲在久久综合| 日韩 亚洲 欧美在线| 色吧在线观看| 伊人久久精品亚洲午夜| 少妇 在线观看| 一级毛片 在线播放| 看免费成人av毛片| 亚洲精品成人av观看孕妇| 国产欧美另类精品又又久久亚洲欧美| 亚洲中文av在线| 久久人人爽人人片av| 亚洲精品日本国产第一区| 国产精品国产三级专区第一集| 欧美一级a爱片免费观看看| 亚洲成人手机| 国产精品无大码| 国产在线男女| 亚洲av免费高清在线观看| 九九久久精品国产亚洲av麻豆| 99国产精品免费福利视频|