羅曉梅 黃魯成
摘要 相對燃油汽車而言,純電動車具有能耗低、污染小等特點。但僅用汽車使用階段的能源消耗判斷汽車的節(jié)能環(huán)保情況是片面的。論文基于能源足跡模型對燃油汽車和純電動車生命周期各階段的能源足跡進行了實證研究,研究范圍包括原材料生產(chǎn)、制造和使用三個階段。其中,原材料生產(chǎn)階段能源足跡的核算范圍包括車輛主體原材料生產(chǎn)、汽油生產(chǎn)和電池原材料生產(chǎn)三個階段的能源消耗,制造階段能源足跡的核算范圍包括車輛主體制造和電池制造兩個階段的能源消耗,使用階段能源足跡的核算范圍為汽車報廢里程內(nèi)的能源消耗。研究結(jié)果表明:燃油汽車和純電動車在原材料生產(chǎn)階段、制造階段和使用階段的能源足跡總量分別為31.18 hm2和9.74 hm2,其中,燃油汽車和純電動車車輛主體原材料生產(chǎn)階段的能源足跡分別為0.015 hm2和0.014 hm2,汽油生產(chǎn)階段的能源足跡為2.83 hm2,電池原材料生產(chǎn)過程的總能源足跡為0.003 2 hm2;燃油汽車和純電動車車輛主體制造階段的能源足跡均為0.29 hm2,電池制造過程的能源足跡為0.000 037 hm2;燃油汽車和純電動車使用過程中的能源足跡分別為28.04 hm2和9.4 hm2。從能源足跡的階段構(gòu)成來看,燃油汽車和純電動車的能源足跡主要源于汽車使用階段,原材料生產(chǎn)階段和制造階段的能源足跡相對較小。從能源足跡的來源看,汽油生產(chǎn)階段的能源消耗是燃油汽車能源足跡的主要構(gòu)成部分,發(fā)電廠的能源消耗是純電動車能源足跡的主要構(gòu)成部分。因此,控制汽油煉制和使用過程的能源消耗是減少燃油汽車能源足跡的主要途徑,控制發(fā)電廠的能源消耗是減少純電動車能源足跡的主要途徑。本文提供了一種核算汽車產(chǎn)品生命周期內(nèi)能源消耗的量化方法,研究過程和方法可為評價工業(yè)產(chǎn)品的能源消耗提供參考。
關(guān)鍵詞 燃油汽車;純電動車;能源足跡
中圖分類號 X322 文獻標識碼 A 文章編號 1002-2104(2014)09-0084-07
純電動車具有能耗低、污染小等特點,其研發(fā)、生產(chǎn)、推廣和使用備受關(guān)注。但是,有些學(xué)者認為,僅從汽車上路后的能源消耗來衡量汽車由內(nèi)燃機向電驅(qū)動轉(zhuǎn)化的環(huán)保與否是片面的。主要原因是:一方面,生產(chǎn)純電動車電池消耗稀有金屬、有色金屬等原材料,這些原材料的開采、冶煉、加工過程伴隨嚴重污染;另一方面,純電動車雖然不消耗汽油、柴油等能源,但電池的充放電過程要消耗電能。在我國,電能主要源于火力發(fā)電。1994年至今,我國的火電發(fā)電量占比一直在80%以上?;鹆Πl(fā)電廠所使用的燃料基本上都是煤炭(有小部分的天然氣和石油),全國煤炭消費總量的49%用于發(fā)電(數(shù)據(jù)來源:《2011年電力工業(yè)統(tǒng)計快報》)。鑒于上述兩點,純電動車相對于傳統(tǒng)燃油汽車在多大程度上節(jié)約能源,是否真正實現(xiàn)了“生態(tài)友好效應(yīng)”,是理論界和實踐界爭論的焦點問題[1]。
目前,比較研究燃油汽車和純電動車能源消耗的文獻數(shù)量較少。在CNKI中以“燃油汽車+純電動車+能源”為主題進行檢索(檢索時間為2013年12月30日),檢索結(jié)果為0篇;以“純電動車+能源”和“燃油汽車+能源”為主題在CNKI中檢索索(檢索時間為2013年12月30日),檢索結(jié)果為1 256篇和428篇,且文獻的主要來源為報紙、新聞報道,學(xué)術(shù)期刊文章較少;在ScienceDirect Online 中以“fuel or gasoline or petrol automobile”或者“BEV or Battery Electric Vehicles or Pure electric vehicle”和“energy”為主題進行檢索(檢索時間為2013年12月30日),檢索結(jié)果僅為2篇。現(xiàn)有的相關(guān)研究主要核算了純電動車和燃油汽車在生產(chǎn)、裝配過程中的能源消耗和污染排放問題。如KiHoon Lee以現(xiàn)代汽車為例研究了汽車產(chǎn)業(yè)鏈的碳足跡[2],S.I.Bartsev, A.G.Degermendzhi,V.A Okhonin,M.Y.Saltykov 從環(huán)境管理優(yōu)化的角度比較分析了燃油汽車和純電動車生產(chǎn)過程對生態(tài)環(huán)境的影響[3],Z.J. Li, X.L. Chen, M. Ding比較分析了電動車和非電動車生產(chǎn)過程中的能源消耗和污染物排放情況[1],寧艷紅基于濟南工況實證研究了純電動車和燃油汽車的能耗排放[4],史占國研究了汽車產(chǎn)業(yè)的生態(tài)足跡[5],王壽兵分析了某轎車生命周期內(nèi)的能源消耗和和環(huán)境排放情況[6]。
綜合前人研究成果可知,國內(nèi)外學(xué)者目前的研究主要集中在燃油汽車和純電動車生產(chǎn)過程中的能源消耗、污染排放、環(huán)境污染等,尚未見到比較研究燃油汽車和純電動車生命周期內(nèi)能源足跡的相關(guān)研究。筆者從汽車產(chǎn)業(yè)生命周期角度出發(fā),比較研究燃油汽車和純電動車在原材料生產(chǎn)、汽車制造和汽車使用三個階段的能源消耗情況,依據(jù)能源足跡理論將其“特征化”為能源足跡。在此基礎(chǔ)上,綜合比較、分析純電動車和燃油汽車能源足跡的結(jié)構(gòu)特征。研究結(jié)果一方面可為企業(yè)研發(fā)、產(chǎn)業(yè)發(fā)展和政府決策部門提供支撐,另一方面可為研究相似產(chǎn)業(yè)的能源足跡提供理論參考。
1 研究對象、范圍和假設(shè)
1.1 研究對象
比較燃油汽車和純電動車的能源足跡需要保證兩類產(chǎn)品的原材料工藝、車輛主體構(gòu)造完全相同。這樣的樣本和數(shù)據(jù)即使在同一廠家生產(chǎn)的燃油汽車和純電動車中也很難找到。朱一方等人研究了混合動力車的能耗,研究過程中將混合動力車分為車身系統(tǒng)、發(fā)動機系統(tǒng)、傳動系統(tǒng)、底盤系統(tǒng)(無電池組)、牽引電機、發(fā)電機和控制器[7]。為了達到比較研究燃油汽車和純電動車的能源足跡的目標,本文假設(shè)混合動力車、燃油汽車和純電動車的區(qū)別主要體現(xiàn)在動力系統(tǒng),即發(fā)動機系統(tǒng)、牽引電機、發(fā)電機和電池。據(jù)此,本文將朱一方研究成果中混合動力車的相關(guān)數(shù)據(jù)進行調(diào)整,設(shè)定本文研究對象的相關(guān)參數(shù)如下:
(1)燃油汽車:驅(qū)動方式為發(fā)動機驅(qū)動、前輪驅(qū)動,車體為兩廂式,發(fā)動機為1.8 L直列四缸汽油機,燃油經(jīng)濟性為10 L/百公里(90號汽油),最高時速140 km/h,報廢里程為60萬km(15年),車輛總質(zhì)量(不加燃油)為1 143.7 kg。
(2)純電動車:驅(qū)動方式為電力驅(qū)動、前輪驅(qū)動,動力電池組為鎳氫電池,車體為兩廂式,百公里電耗為16 kWh(已上市純電動車平均耗電量),最高時速170 km/h,報廢里程為60萬km(15年),車輛總質(zhì)量為990.9 kg(不包含電池)。
其中,百公里油耗、電耗參照已上市汽車的平均消耗量確定;報廢里程根據(jù)商務(wù)部出臺的《機動車強制報廢標準規(guī)定》確定。
1.2 階段范圍
汽車的生命周期經(jīng)歷從原材料獲取到最終焚燒、填埋、循環(huán)利用的整個過程。但是,收集一個產(chǎn)品整個生命周期內(nèi)所有過程的數(shù)據(jù)是不可能完成的工作。因此,在比較研究燃油汽車和純電動車生命周期內(nèi)的能源足跡時,需要重新界定其評價環(huán)節(jié)。本文將研究對象的階段范圍確定為與汽車制造存在直接物質(zhì)關(guān)聯(lián)的環(huán)節(jié),與汽車制造產(chǎn)業(yè)間接相關(guān)的電網(wǎng)架設(shè)、廠房建設(shè)與產(chǎn)品設(shè)計等環(huán)節(jié)不在評價范圍內(nèi)。汽車維修、報廢過程中的能源消耗與汽車整個生命周期中的能源消耗相比很小,且數(shù)據(jù)收集很難[8],本文暫不考慮汽車維修、報廢過程中的能源消耗。綜上所述,本文將研究對象的階段范圍界定為原材料生產(chǎn)、汽車制造、汽車使用三個階段。其中,原材料生產(chǎn)階段的能源足跡是指原材料生產(chǎn)過程中耗用的煤、石油、天然氣等各類能源對應(yīng)的足跡,不包括原材料的材質(zhì)對應(yīng)的能源足跡。汽車制造階段的能源足跡是指原材料進廠、加工、制造、裝配、出廠整個過程中消耗的能源對應(yīng)的足跡。汽車使用階段的能源足跡是指汽車在報廢里程內(nèi)的油耗和電耗對應(yīng)的能源足跡。
1.3 研究假設(shè)
燃油汽車和純電動車的原材料來源復(fù)雜、制造工藝和系統(tǒng)往往存在很大差異,為了實現(xiàn)研究目標,本文對研究對象進行了如下假設(shè):
(1)燃油汽車、純電動車的原料來源和工藝相同,除動力系統(tǒng)外,二者的零件構(gòu)成和加工工藝均相同;
(2)假定原材料中所用到的鋼材(不論牌號)均為普通鋼材,所用鋁合金均當普通鋁材看待。銅材、橡膠、塑料、玻璃、油漆也一樣,不分牌號和品種,均以總量計。假定公司外購的配套件與本廠生產(chǎn)的同類零件的平均工藝系數(shù)相同;
(3)假定能源消耗的種類由煤、石油和天然氣構(gòu)成,能源全球平均足跡為三類能源全球平均足跡的平均值;
(4)假定所有電能均為火力發(fā)電,發(fā)電能耗為全國平均水平。
2 燃油汽車和純電動車能源足跡核算
2.1 能源足跡計算方法
1992年,加拿大生態(tài)經(jīng)濟學(xué)家Wackernagel 和Rees首次提出了生態(tài)足跡的概念[9-10]。能源足跡(ENF)是生態(tài)足跡計算中的一個獨立的重要構(gòu)成部分,是用吸收能源消耗產(chǎn)生的CO2的林地面積來衡量國家、產(chǎn)業(yè)、產(chǎn)品能耗情況的一種量化方法[11]。能源足跡的分量包括化石能源足跡[12]、核能足跡[13]、可再生能源足跡[14]、風(fēng)能足跡[15]和太陽能足跡[16]等,本文中的能源足跡是指化石能源足跡?;茉醋阚E的計算方法包括傳統(tǒng)的替代法、自然資本存量法和碳吸收法三種[17-19]。其中,碳吸收法采用估算新增CO2所需要的林地面積來計算生態(tài)足跡,將CO2排放轉(zhuǎn)化成對應(yīng)的生物生產(chǎn)性土地面積,應(yīng)用比較廣泛[20]。本文采用碳吸收法比較研究燃油汽車和純電動車的能源足跡,計算公式如下:
EFE=Σ(Eq(ghm2/hm2)×Ci(kg)×Ji(coal equivalent)×7 000(kcal)×4.186 8×103(J))/mi(GJ/ghm2)×106
=Σ(Eq(ghm2/hm2)×Ci(kg)×29.307 6(J)/mi(GJ/ghm2)(1)
EFE為人均能源足跡,i(i=1,2…n),分別表示能源消費項目煤、焦炭、燃料油、煤油、汽油、柴油、液化石油氣、電力等;Eq為林地均衡因子,本文取值1.4[21];Ci為第i項能源消耗量,Ji為第i項能源消費的標準煤折算系數(shù);mi為第i項能源消耗的全球平均足跡,本文取煤、石油和天然氣的全球平均足跡的平均值80 GJ/ghm2[7];計算過程中需將不同品種、不同含量的能源按各自的熱值換算成每千克熱值為7 000 kcal的標準煤,其中,1 kg標準煤=7 000 kcal, 1 kcal=4.186 8×103 J。
2.2 原材料生產(chǎn)階段能源足跡
原材料生產(chǎn)階段的能源足跡主要包括車輛主體原材料、汽油產(chǎn)以及電池生產(chǎn)過程的能源足跡。電池是隨著電動汽車技術(shù)的發(fā)展應(yīng)用于汽車動力系統(tǒng)的部件,其生產(chǎn)過程的能耗尚沒有被系統(tǒng)的研究過,本文將其作為一個關(guān)鍵部件單獨研究其生產(chǎn)過程的能源足跡。汽油的特性與車輛主體原材料區(qū)別較大,本文也單獨研究其生產(chǎn)過程的能源足跡。
2.2.1 車輛主體原材料生產(chǎn)階段的能源足跡
確定原材料生產(chǎn)階段能源足跡的前提是要明確汽車的“系統(tǒng)構(gòu)成”和“材料構(gòu)成”。本文對朱一方關(guān)于混合動力車的研究數(shù)據(jù)進行了“總質(zhì)量等比例處理”和“系統(tǒng)部件加減處理”,得到了燃油汽車和純電動車車輛主體的系統(tǒng)構(gòu)成和總質(zhì)量,見表1[22]。
為了計算車輛主體各子系統(tǒng)的能源消耗,需要收集各子系統(tǒng)對應(yīng)的“材料”類型和質(zhì)量。本文對上述數(shù)據(jù)進行簡化處理:以上表所列的各子系統(tǒng)為單位,將同一系統(tǒng)中采用相似原材料、相似加工方法制造的一類零件視為同一“材料”,并將這一類零件的質(zhì)量作為該系統(tǒng)中這種“材料”的質(zhì)量[6,22-23]。如此,便可將整個車輛主體部分的原材料簡化為鋼、鑄鐵、鑄鋁、鍛鋁、銅、鎂、玻璃、塑料、橡膠、鉑等“材料”。
考慮到數(shù)據(jù)的可獲得性和各種材料的質(zhì)量,本文僅考慮鋼材、鑄鐵、鋁材、銅材、橡膠、塑料、玻璃和油漆八種質(zhì)量較大的材料。燃油汽車和純電動車材料組成清單見表2[22]。汽車的原材料使用量應(yīng)該采用實際的物料消耗量,而不能采用汽車構(gòu)成“材料”的質(zhì)量。因此,計算車輛主體部分的原材料消耗量時要考慮物料利用率[5]。此外,計算車輛主體原材料的能源足跡時需考慮每種原材料的攜帶能源。攜帶能源是指工業(yè)產(chǎn)品生命周期內(nèi)制造、運輸、使用、丟棄等消耗的能源,通常用能源密度表示。汽車制造過程中各原材料的能源密度見表2[6]。
根據(jù)各類“材料”的質(zhì)量、物料利用率以及能源密度,可計算出車輛主體部分原材料生產(chǎn)過程的能源消耗量,見表2。將能源消耗總量依次代入公式(1)可得燃油汽車和純電動車車輛主體原材料生產(chǎn)過程的能源足跡,分別為0.015 hm2和0.014 hm2。
2.2.2 汽油生產(chǎn)階段的能源足跡
石油煉制過程一般同時有多種產(chǎn)品產(chǎn)生,汽油只是其中的一種。所以,要得到汽油生產(chǎn)過程中的能源消耗就必須對總的能耗進行分配。等質(zhì)量的汽油熱值是石油的1.03倍,所以汽油生產(chǎn)的能耗應(yīng)等于開采和煉制石油的總能耗的1.03倍。石油開采的能耗為13.40 kg標油/t石油,煉油的綜合能耗為73.50 kg標油/t石油[24]。所以可得生產(chǎn)汽油的綜合能耗為89.51 kg標油/t汽油。
本文設(shè)定的燃油汽車的報廢里程為60萬km,百公里油耗為10 L。則可計算出汽車的總油耗為6萬L,約合43 200 kg。由此可得汽油生產(chǎn)環(huán)節(jié)消耗的能源為3 866.83 kg標油,約合161.90 GJ(標油的熱值為41.87 GJ/t),將其代入公式(1)可得汽油生產(chǎn)過程的能源足跡為2.83 hm2。
2.2.3 電池原材料生產(chǎn)階段的能源足跡
動力電池是電動汽車最主要的部件之一。動力電池的發(fā)展主要經(jīng)歷了鉛酸電池階段、鎳氫電池階段和鋰離子(Liion)電池階段。鎳氫電池已經(jīng)進入成熟期,實現(xiàn)了規(guī)模化生產(chǎn);鋰電池將是未來動力電池的發(fā)展方向,技術(shù)成熟后,將逐步取代鎳氫電池市場。本文研究對象純電動車的電池為鎳氫電池,質(zhì)量為38.2 kg。同樣,將整個電池的“材料”組成簡化為鋼、鐵、鋁、銅、鎂、鈷、鎳、鉛、稀土、玻璃纖維、塑料、橡膠等,具體清單如表3所示。根據(jù)各類“材料”的質(zhì)量、能源密度和物料利用率可得電池原材料生產(chǎn)過程的能源消耗量,見表3[5-6]。依據(jù)公式(1)可得鎳氫電池原材料生產(chǎn)過程的能源足跡為0.000 8 hm2。一般一輛純電動車上需要裝載四塊電池,因此本文電池原材料生產(chǎn)過程的總能源足跡為0.003 2 hm2。
2.3 制造階段能源足跡
汽車制造階段的能源足跡包括車輛主體制造和電池制造能源足跡兩個部分。由于燃油汽車和純電動車結(jié)構(gòu)上的區(qū)別主要在動力系統(tǒng),單獨區(qū)分動力系統(tǒng)制造過程的能源消耗的難度極大。因此,本文假定燃油汽車和純電動車車輛主體制造階段的能源消耗相同。
2.3.1 車輛主體制造階段能源足跡
汽車制造環(huán)節(jié)的數(shù)據(jù)幾乎都是廠家所有,計算能源消耗必須依據(jù)生產(chǎn)廠家的實際生產(chǎn)數(shù)據(jù)。但是,汽車產(chǎn)業(yè)的最大特點之一是廠商之間協(xié)作多。一個轎車的零配件可由幾個、十幾個甚至幾十個廠商生產(chǎn)。獲得汽車制造和裝配過程的能源消耗數(shù)據(jù)的難度很大。因此,本文假設(shè)文中燃油汽車純電動車的生產(chǎn)模式為廠家自己生產(chǎn)主要部分零配件,外購一些小配件。筆者設(shè)計了一套滿足LCA清單分析要求和各類廠家及零部件生產(chǎn)廠家的一套調(diào)查表格,對汽車制造企業(yè)和銷售企業(yè)的能源消耗情況進行了調(diào)研。同時參考了朱一方、黃志甲、王壽兵、史占國、Vanni Badno, Gian Luca Baldo等人的研究成果[25,6,5]。綜合以上數(shù)據(jù),得到汽車制造過程中的平均能源消耗為16.5 GJ。將該數(shù)據(jù)代入式(1)可得車輛主體制造階段的能源足跡為0.29 hm2。
2.3.2 電池制造階段能源足跡
電池制造階段的能耗是指報告期內(nèi)企業(yè)電池產(chǎn)品從原材料進廠至成品入庫的生產(chǎn)全過程中所消耗的所有能源。鎳氫電池單位產(chǎn)量能耗應(yīng)為企業(yè)生產(chǎn)鎳氫電池的總綜合能耗與同期內(nèi)產(chǎn)出的該產(chǎn)品合格品總量的比值,如式(2):
e=FM(2)
式中:e為鎳氫電池單位產(chǎn)量綜合能耗,單位為kg(標準煤)/萬只;E為電池生產(chǎn)總綜合能耗,單位為t(標準煤);M為合格品總量,單位為萬只。
按照《鎳氫電池單位產(chǎn)量綜合能耗計算方法及限額》規(guī)定,鎳氫電池單位產(chǎn)量綜合能耗應(yīng)不大于180 kg(標準煤)/萬只[26]。因此,本文將鎳氫電池生產(chǎn)過程的能源消耗確定為鎳氫電池單位產(chǎn)量綜合能耗限額,即0.018 kg標準煤/只。四只電池的總能源消耗為0.072 kg標準煤[27]。按照公式(1)計算可得電池制造過程的能源足跡為0.000 037 hm2。
2.4 使用階段能源足跡
2.4.1 燃油汽車使用階段能源足跡
汽車燃油消耗量的計算方法如下:
Q=q×s (3)
其中,Q代表單車燃油消耗總量,單位為升,s代表單車報廢里程,q代表單車百公里油耗。
本文燃油汽車百公里油耗為10 L,汽車的報廢里程為60萬km。將兩個參數(shù)代入公式可得單車燃油消耗總量為6萬L(43 200 kg)。又已知汽油的熱量折算系數(shù)為43.12 GJ/t,全球平均足跡為93 GJ/ghm2,依據(jù)公式(1)可計算出燃油汽車使用過程中的能源足跡為28.04 hm2。由于轎車行駛過程中的油耗與工況、轎車壽命、行駛里程等諸多因素相關(guān),所以轎車的實際油耗量與經(jīng)濟油耗量之間往往有較大差別。經(jīng)濟油耗量(10 L/百公里)只能作為能源消耗的下限。
2.4.2 純電動車使用階段能源足跡
純電動車耗電量的計算方法如下:
E=e×s(4)
其中,E代表單車耗電總量,s代表單車報廢里程,q代表單車百公里電耗。
純電動車報廢里程為60萬km,百公里電耗為16 kWh。將兩個參數(shù)代入公式可得單車耗電總量為96 000 kWh,合345.6 兆焦耳(GJ)。因此,在不計及發(fā)電廠碳排放的基礎(chǔ)上,依據(jù)公式(1)可得純電動車使用過程中的能源足跡為0.48 hm2。
如果進一步追蹤發(fā)電廠的能源足跡,視全部電量來自于火電廠,忽略輸電網(wǎng)損,已知火電機組煤炭平均利用率η=50%,單位千瓦時電量煤耗349 g[28],則可依據(jù)公式(1)計算出純電動車使用過程中總的能源足跡為9.4 hm2。
2.5 燃油汽車和純電動車能源足跡結(jié)構(gòu)分析
綜合以上分析,燃油汽車和純電動車的能源足跡總量及構(gòu)成見表4:
3 結(jié) 論
本文應(yīng)用能源足跡模型核算了燃油汽車和純電動車原材料生產(chǎn)、制造和使用三個階段的能源足跡。研究結(jié)果顯示:燃油汽車和純電動車在原材料生產(chǎn)階段、制造階段和使用階段的能源足跡總量分別為31.18 hm2和9.74 hm2,燃油汽車生命周期內(nèi)的能源消耗遠大于純電動車生命周期內(nèi)的能源消耗。從能源足跡的階段構(gòu)成來看,燃油汽車和純電動車的能源足跡主要均源于使用階段,原材料生產(chǎn)和制造階段的能源足跡相對較小。從能源足跡的來源看,汽油生產(chǎn)和使用過程的能源消耗是燃油汽車能源足跡的主要構(gòu)成部分,發(fā)電廠的能源消耗是純電動車使用過程能源足跡的主要構(gòu)成部分。由此可知,為了全面評價燃油汽車和純電動車的能源足跡,不僅要考慮汽車使用階段的能源消耗,還要考慮原材料生產(chǎn)和車輛制造階段的能源消耗??刂破蜔捴坪褪褂眠^程的能源消耗是減少燃油汽車能源足跡的主要途徑,控制發(fā)電廠的能源消耗是減少純電動車能源足跡的主要途徑。本文提供了一種評價產(chǎn)品生命周期內(nèi)能源消耗情況的量化方法,研究過程和方法可為評價工業(yè)產(chǎn)品的能源消耗提供參考。
(編輯:田 紅)
參考文獻(References)
[1]Li Z J, Chen X L, Ding M. Welltowheel Energy Consumption and Pollutant Emissions Comparison between Electric and Nonelectric Vehicles: A Modeling Approach[J]. Procedia Environmental Sciences,2012,(13): 550-554.
[2]Lee K H.Integrating Carbon Footprint Into Supply Chain Management: The Case of Hyundai. Motor Company (HMC) in the Automobile Industry[J]. Journal of Cleaner Production, 2011,(19): 1216-1223.
[3]Bartsev S I, Degermendzhi A G , Okhonin V A, Saltykov M Y. An Integrated Approach to the Assessment of an Ecological Impact of Industrial Products and Processes[J]. Procedia Environmental Sciences,2012,(13): 837-846.
[4]寧艷紅. 基于運行工況的純電動車與汽油車能耗排放比較分析[D].濟南:山東大學(xué), 2010年.[Ning Yanhong. Energy Consumption and Emission Comparison between EV and Gasoline Vehicle[D].Jinan: Shandong University,2010.]
[5]史占國. 生態(tài)足跡評價與物質(zhì)流分析[D].武漢:武漢理工大學(xué), 2007. [Shi Zhanguo. Evaluation of the Ecological Footprint and Material Flow Analysis[D]. Wuhan:Wuhan University of Technology,2007.]
[6]王壽兵. 中國某轎車生命周期內(nèi)能耗和環(huán)境排放特性[J]. 復(fù)旦學(xué)報:自然科學(xué)版,2006,45(3):329-334. [Wang Shoubing. Energy Consumption and Environmental Emissions in Chinese Car Life Cycle[J]. Journal of Fudan University :Natural Science, 45(3):329-334.]
[7]朱一方.混合動力汽車制造過程的能源消耗與影響評價[D].吉林:吉林大學(xué),2012.[Zhu Yifang. Energy Consumption and Impact Assessment of Hybrid Car in Manufacturing Process[D]. Jilin: Jilin University, 2012.]
[8]姚猛.中國汽車產(chǎn)業(yè)生態(tài)足跡情景分析[D].蘇州:蘇州科技大學(xué),2009.[Yao Meng. Chinas Automobile Industry Ecological Footprint Scenario Analysis[D]. Suzhou:Suzhou University of Science and Technology, 2009.]
[9]Wackernagel M, Rees W. Our Ecological Footprintreducing Human Impact on the Earth[J]. Environment and Urbanization,1996,8 (2), 216-216.
[10]Wackernagel M, Rees W E. Perceptual and Structural Barriers to Investing in Natural Capital: Economics from an Ecological Footprint Perspective[J]. Ecological Economics, 1997, 20 (1), 3-24.
[11]Palmer A R. Evaluating Ecological Footprints[J]. Electronic Green Journal,1994,4(6):200-204.
[12]Stoeglehner G, Narodoslawsky M. How Sustainable Are Biofuels? Answers and Further Questions Arising From An Ecological Footprint Perspective[J].Bioresource Technology 2009,100(3):3825-3830.
[13]Stoeglehner G, Levy J K, Neugebauer G C. Improving the Ecological Footprint of Nuclear Energy: A Riskbased Lifecycle Assessment Approach for Critical Infrastructure Systems[J]. International Journal of Critical Infrastructures, 2005, 1 (4):394-403.
[14]Chen C Z, Lin Z S. Multiple Timescale Analysis and Factor Analysis of Energy Ecological Footprint Growth in China 1953-2006[J]. Energy Policy, 2008,36: 1666-1678.
[15]Stamford L, Azapagic A. Sustainability Indicators for the Assessment of Nuclear Power[J]. Energy, 2011,36 (10):6037-6057.
[16]Brown N. Ongoing Case: Solar Energy PEIS, In: Case Digest: Section 106 in Action, Advisory Council on Historic Preservation. 2009.
[17]Stoglehner G. Ecological Footprint: A Tool for Assessing Sustainable Energy Supplies[J].
Joumal of Cleaner Production,2003,11:267-277.
[18]Ferng J J. Toward a Scenario Analysis Framework for Energy Footprints[J].Ecological Economies,2002,40:53-69.
[19]劉森,胡遠滿,李月輝等.生態(tài)足跡方法及研究進展[J].生態(tài)學(xué)雜志,2006,25(3):334-339.[Liu Sen, Hu Yuanman,Li Yuehui. The Ecological Footprint Method and Research Progress[J]. Chinese Journal of Ecology, 2006,25(3):334-339.]
[20]Hardi P,Barg S,Hodge T,et a1.Measuring Sustainable Development:Review of Current Practice[J].Occasional Paper,1997,17:1-2,49-51.
[21]GFN. National Footprint and Biocapacity Accounts 2005: The Underlying Calculation Method[EB/OL]. http://www.footprint standards org.
[22]MacLean H L, Lave L B. Evaluating Automobile Fuel Propulsion System Technologies [J].Progress in Energy and Combustion Science, 2003,(29):1-69.
[23]Sullivan J L,Burnham A,Wang M.Energyconsumption and Carbonemission Analysis of Vehicle and Component Manufacturing[R].Energy Systems Division,Argonne National Laboratory, 2013.
[24]林而達,李玉娥.全球氣候變化和溫室氣體清單編制方法[M].北京:氣象出版社,1998年.[Lin Erda, Li Yue. Compilation Method of Global Climate Change and Greenhouse Gas List[M].Beijing: Meteorological Press,1998.]
[25]黃志甲,張旭.汽車燃料的生命周期評價模型[J].同濟大學(xué)學(xué)報,2003,31(12):1472-1476. [Huang Zhijia, Zhang Xu. Life Cycle Assessment Model of Vehicle Fuel[J]. Journal of Tongji University,2003,31(12): 1472-1476.]
[26]天津市質(zhì)量技術(shù)監(jiān)督局. DB12/046-2008產(chǎn)品單位產(chǎn)量綜合能耗計算方法及限額[S].2011. [Tianjin Municipal Bureau of Quality and Technical Supervision. DB12/046-2008 Method and Limit of Comprehensive Energy Consumption Per Unit Product [S]. 2011.]
[27]何小明,楊林,等.電動汽車用鎳氫蓄電池組熱量仿真與控制[J].汽車技術(shù),2004,(6):10-12.[He Xiaoming, Yang Lin,et al. NIMH Battery Heat Simulation and Control of Electric Vehicles[J]. AutomotiveTechnology,2004,(6):10-12.]
[28]王善生,甘凌霄. 基于“能源碳足跡”的純電動汽車的技術(shù)經(jīng)濟研究[J].電網(wǎng)與清潔能源,2012, 28 (4):77-85.[Wang Shansheng, Gan Lingxiao. Technology Economic Research Based on the ‘Carbon Footprint Energy of Pure Electric Vehicle [J]. Grid and Clean Energy, 2012,28 (4):77-85.]
Abstract In contrast with Petrol Automobile, Battery Electric Vehicle have the advantages of low energy consumption and low pollution and so on. But it is biased to endow the Battery Electric Vehicle with the characteristics of energy conservation and environmental protection only based on the utilization phase. The paper carried on the empirical research on the energy footprint of each life cycle of Petrol Automobile and Battery Electric Vehicle base on energy footprint model and the life cycle included the raw material production, manufacture and use stages. The energy footprint in raw material production phase included the energy consumption in the stages of vehicle body raw materials production, gas production and battery raw materials production, the energy footprint in manufacturing stage included the energy consumption in the stages of vehicle body and battery material manufacturing, and the energy footprint in utilization stage is the whole energy consumption in scrap mileage. The research results show that the total energy footprints in the stages of raw materials production, manufacturing and utilization were respectively 31.18 hm2 and 9.74 hm2, and among them, the energy footprints in stage of raw materials production of Petrol Automobile and Battery Electric Vehicle were respectively 0.015 hm2 and 0.014 hm2, and the energy footprints in the stages of gas production and battery raw materials production process were respectively 2.83 hm2 and 0.003 2 hm2; the energy footprint in the stage of Petrol Automobile and Battery Electric Vehicle body manufacturing was 0.29 hm2 and the energy footprint in battery raw materials production was 0.000 037 hm2; the energy footprints in the utilization stage of Petrol Automobile and Battery Electric Vehicle were respectively 28.04 hm2 and 9.4 hm2. From the point of the phase composition of energy footprint, the energy footprint of Petrol Automobile and Battery Electric Vehicle was mainly sourced the stage of utilization stage, and the energy footprint in the material production and manufacturing stage was relatively small. From the point of the source of energy footprint, the energy consumption in gas production stage is the main part of energy footprint of Petrol Automobile and the energy consumption in power plant is the main part of energy footprint of Battery Electric Vehicle. Therefore, controlling the energy consumption in the process of gasoline refining and utilization is the main way to reduce Petrol Automobile energy footprint and controlling the energy consumption of power plant is the main way to reduce the energy footprint of Battery Electric Vehicle. The paper provided a quantitative method to calculate the energy consumption of the product life cycle and the research process and method would benefit the evaluation of energy consumption of industrial products.
Key words petrol automobiles; battery electric vehicles; energy footprints
[26]天津市質(zhì)量技術(shù)監(jiān)督局. DB12/046-2008產(chǎn)品單位產(chǎn)量綜合能耗計算方法及限額[S].2011. [Tianjin Municipal Bureau of Quality and Technical Supervision. DB12/046-2008 Method and Limit of Comprehensive Energy Consumption Per Unit Product [S]. 2011.]
[27]何小明,楊林,等.電動汽車用鎳氫蓄電池組熱量仿真與控制[J].汽車技術(shù),2004,(6):10-12.[He Xiaoming, Yang Lin,et al. NIMH Battery Heat Simulation and Control of Electric Vehicles[J]. AutomotiveTechnology,2004,(6):10-12.]
[28]王善生,甘凌霄. 基于“能源碳足跡”的純電動汽車的技術(shù)經(jīng)濟研究[J].電網(wǎng)與清潔能源,2012, 28 (4):77-85.[Wang Shansheng, Gan Lingxiao. Technology Economic Research Based on the ‘Carbon Footprint Energy of Pure Electric Vehicle [J]. Grid and Clean Energy, 2012,28 (4):77-85.]
Abstract In contrast with Petrol Automobile, Battery Electric Vehicle have the advantages of low energy consumption and low pollution and so on. But it is biased to endow the Battery Electric Vehicle with the characteristics of energy conservation and environmental protection only based on the utilization phase. The paper carried on the empirical research on the energy footprint of each life cycle of Petrol Automobile and Battery Electric Vehicle base on energy footprint model and the life cycle included the raw material production, manufacture and use stages. The energy footprint in raw material production phase included the energy consumption in the stages of vehicle body raw materials production, gas production and battery raw materials production, the energy footprint in manufacturing stage included the energy consumption in the stages of vehicle body and battery material manufacturing, and the energy footprint in utilization stage is the whole energy consumption in scrap mileage. The research results show that the total energy footprints in the stages of raw materials production, manufacturing and utilization were respectively 31.18 hm2 and 9.74 hm2, and among them, the energy footprints in stage of raw materials production of Petrol Automobile and Battery Electric Vehicle were respectively 0.015 hm2 and 0.014 hm2, and the energy footprints in the stages of gas production and battery raw materials production process were respectively 2.83 hm2 and 0.003 2 hm2; the energy footprint in the stage of Petrol Automobile and Battery Electric Vehicle body manufacturing was 0.29 hm2 and the energy footprint in battery raw materials production was 0.000 037 hm2; the energy footprints in the utilization stage of Petrol Automobile and Battery Electric Vehicle were respectively 28.04 hm2 and 9.4 hm2. From the point of the phase composition of energy footprint, the energy footprint of Petrol Automobile and Battery Electric Vehicle was mainly sourced the stage of utilization stage, and the energy footprint in the material production and manufacturing stage was relatively small. From the point of the source of energy footprint, the energy consumption in gas production stage is the main part of energy footprint of Petrol Automobile and the energy consumption in power plant is the main part of energy footprint of Battery Electric Vehicle. Therefore, controlling the energy consumption in the process of gasoline refining and utilization is the main way to reduce Petrol Automobile energy footprint and controlling the energy consumption of power plant is the main way to reduce the energy footprint of Battery Electric Vehicle. The paper provided a quantitative method to calculate the energy consumption of the product life cycle and the research process and method would benefit the evaluation of energy consumption of industrial products.
Key words petrol automobiles; battery electric vehicles; energy footprints
[26]天津市質(zhì)量技術(shù)監(jiān)督局. DB12/046-2008產(chǎn)品單位產(chǎn)量綜合能耗計算方法及限額[S].2011. [Tianjin Municipal Bureau of Quality and Technical Supervision. DB12/046-2008 Method and Limit of Comprehensive Energy Consumption Per Unit Product [S]. 2011.]
[27]何小明,楊林,等.電動汽車用鎳氫蓄電池組熱量仿真與控制[J].汽車技術(shù),2004,(6):10-12.[He Xiaoming, Yang Lin,et al. NIMH Battery Heat Simulation and Control of Electric Vehicles[J]. AutomotiveTechnology,2004,(6):10-12.]
[28]王善生,甘凌霄. 基于“能源碳足跡”的純電動汽車的技術(shù)經(jīng)濟研究[J].電網(wǎng)與清潔能源,2012, 28 (4):77-85.[Wang Shansheng, Gan Lingxiao. Technology Economic Research Based on the ‘Carbon Footprint Energy of Pure Electric Vehicle [J]. Grid and Clean Energy, 2012,28 (4):77-85.]
Abstract In contrast with Petrol Automobile, Battery Electric Vehicle have the advantages of low energy consumption and low pollution and so on. But it is biased to endow the Battery Electric Vehicle with the characteristics of energy conservation and environmental protection only based on the utilization phase. The paper carried on the empirical research on the energy footprint of each life cycle of Petrol Automobile and Battery Electric Vehicle base on energy footprint model and the life cycle included the raw material production, manufacture and use stages. The energy footprint in raw material production phase included the energy consumption in the stages of vehicle body raw materials production, gas production and battery raw materials production, the energy footprint in manufacturing stage included the energy consumption in the stages of vehicle body and battery material manufacturing, and the energy footprint in utilization stage is the whole energy consumption in scrap mileage. The research results show that the total energy footprints in the stages of raw materials production, manufacturing and utilization were respectively 31.18 hm2 and 9.74 hm2, and among them, the energy footprints in stage of raw materials production of Petrol Automobile and Battery Electric Vehicle were respectively 0.015 hm2 and 0.014 hm2, and the energy footprints in the stages of gas production and battery raw materials production process were respectively 2.83 hm2 and 0.003 2 hm2; the energy footprint in the stage of Petrol Automobile and Battery Electric Vehicle body manufacturing was 0.29 hm2 and the energy footprint in battery raw materials production was 0.000 037 hm2; the energy footprints in the utilization stage of Petrol Automobile and Battery Electric Vehicle were respectively 28.04 hm2 and 9.4 hm2. From the point of the phase composition of energy footprint, the energy footprint of Petrol Automobile and Battery Electric Vehicle was mainly sourced the stage of utilization stage, and the energy footprint in the material production and manufacturing stage was relatively small. From the point of the source of energy footprint, the energy consumption in gas production stage is the main part of energy footprint of Petrol Automobile and the energy consumption in power plant is the main part of energy footprint of Battery Electric Vehicle. Therefore, controlling the energy consumption in the process of gasoline refining and utilization is the main way to reduce Petrol Automobile energy footprint and controlling the energy consumption of power plant is the main way to reduce the energy footprint of Battery Electric Vehicle. The paper provided a quantitative method to calculate the energy consumption of the product life cycle and the research process and method would benefit the evaluation of energy consumption of industrial products.
Key words petrol automobiles; battery electric vehicles; energy footprints