方霽,楊麗 ,沈家珍,梁恒,張榮華
(1.暨南大學(xué) 醫(yī)學(xué)院,廣東 廣州 510632;2.暨南大學(xué) 藥學(xué)院,廣東 廣州 510632)
骨碎補總黃酮對去卵巢骨質(zhì)疏松大鼠骨內(nèi)谷氨酸信號Glu、mGluR5以及EAAT1的影響
方霽1?,楊麗2?,沈家珍1,梁恒1,張榮華2Δ
(1.暨南大學(xué) 醫(yī)學(xué)院,廣東 廣州 510632;2.暨南大學(xué) 藥學(xué)院,廣東 廣州 510632)
目的探討骨碎補總黃酮(Total Flavonoids of Rhizoma Drynariae,TFRD)對去卵巢骨質(zhì)疏松(osteoporosis,OP)大鼠骨內(nèi)谷氨酸信號的影響,以明確其通過參與大鼠骨內(nèi)谷氨酸信號通路介導(dǎo)骨重建的可能機制。方法45只3月齡SPF級雌性SD大鼠隨機分為假手術(shù)組(Sham,n=15)和去卵巢組(OVX,n=30)。采取雙側(cè)卵巢切除術(shù)復(fù)制OP大鼠模型,14周后行雙能X線測定骨密度,模型復(fù)制成功,將OVX組隨機分為模白組(OVX,n=15)和給藥組(OVX+TFRD,n=15)。藥物干預(yù)12周后處死動物,免疫組化法觀察左股骨骨骺端谷氨酸(Glutamate,Glu)、代謝型Glu受體-5(metabotropic glutamate receptor 5,mGluR 5)及L-谷氨酸/L-門冬氨酸轉(zhuǎn)運體(Glutamate/Aspartate transporter,EAAT1)表達(dá)。結(jié)果Glu和mGluR5主要分布于骨髓區(qū)細(xì)胞和緊貼骨髓腔壁的成骨細(xì)胞(osteoblasts,OB);Glu的陽性標(biāo)記在Sham、OVX和OVX+TFRD組的表達(dá)差異均無統(tǒng)計學(xué)意義;OVX+TFRD組代謝型受體mGluR5的陽性表達(dá)顯著高于Sham組(P=0.009),而Sham組與OVX組之間的差異無統(tǒng)計學(xué)意義;轉(zhuǎn)運子EAAT1除了大量分布于骨髓區(qū)細(xì)胞以外,還有少量表達(dá)于骨陷窩中的骨細(xì)胞,其陽性表達(dá)在Sham、OVX和OVX+TFRD組的差異均無統(tǒng)計學(xué)意義。結(jié)論在骨內(nèi)Glu信號通路中,TFRD可顯著提高代謝型受體mGluR5的表達(dá),但尚不能認(rèn)為其對Glu和轉(zhuǎn)運子EAAT1有影響。
骨質(zhì)疏松癥;去卵巢大鼠;骨碎補總黃酮;谷氨酸;代謝型Glu受體-5
1.1 實驗動物及藥品制備 清潔級3月齡雌性SD大鼠45只,體質(zhì)量(249.58±15.65)g,由廣東省醫(yī)學(xué)實驗動物中心提供,合格證號:SCXK(粵)2008-0002。飼養(yǎng)于(22±20)℃,相對濕度40%的清潔環(huán)境。強骨膠囊購自廣州寶芝林大藥房,主要成分為TFRD,每1 g提取物相當(dāng)于生藥66.7 g,取0.25 g×12粒,將膠囊內(nèi)容物取出,置于500 mL錐形瓶中,加入144 mL蒸餾水,配制成濃度為15 mg/mL的溶液,置于4℃冰箱保存。
1.2 主要儀器及試劑 Prodigy型雙能X線骨密度儀(Lunar)、2-16 K 型臺式高速冷凍離心機(Sigma)、BX 43型奧林巴斯顯微鏡(Olympus)、Finesse 325型輪轉(zhuǎn)切片機(Shandon)、DAB顯色試劑盒、即用型SABC免疫組化染色試劑盒以及抗體稀釋液均購自武漢博士德生物工程有限公司;抗Glu多克隆抗體(兔抗)、抗mGluR5抗體(兔抗)以及EAAT1抗體(兔抗)為英國Abcam公司產(chǎn)品。
1.3 方法
1.3.1 動物模型與分組45只3月齡雌性SD大鼠隨機分為Sham組(n=15)與OVX組(n=30),OVX組行雙側(cè)卵巢切除術(shù),造模14周后行雙能X線掃描測定骨密度(bone mineral density,BMD),確定OP模型復(fù)制成功后再將OVX組隨機分成OVX組(n=15)和OVX+TFRD 組(n=15)。Sham組找到卵巢不切除。
1.3.2 給藥方法造模14周后,測定各組BMD。確定造模成功后,將模型組隨機分為OVX和OVX+TFRD組,將強骨膠囊配制成濃度為15 mg/mL的溶液,按臨床成人劑量根據(jù)大鼠體重?fù)Q算給藥量為 45 mg/(kg·d)。Sham 組與 OVX 組按 10 mL/(kg·d)的蒸餾水灌胃。灌胃為1次/天,連續(xù)6天/周,停1 d。連續(xù)灌胃12周。
1.3.3 骨組織標(biāo)本制備留取左側(cè)股骨為觀察指標(biāo):大鼠稱重,2%戊巴比妥鈉按0.1 mL/100 g腹腔內(nèi)注射麻醉。取仰臥位,固定四肢及頭部,沿側(cè)胸壁打開胸腔,暴露心臟, 將灌注針從心尖部經(jīng)左心室插入升主動脈,立即剪開右心耳,注入4%多聚甲醛300 mL進(jìn)行內(nèi)固定,直至流出清亮液體、大鼠四肢僵直為灌注完畢,取出左側(cè)股骨,置于4%多聚甲醛液放置在4℃冰箱內(nèi)固定15~20 h。
1.3.4 免疫組織化學(xué)染色①切片常規(guī)烤片,脫蠟,進(jìn)行SABC染色。具體步驟如下:3%H2O2室溫靜置孵育10 min;0.1%胰蛋白酶37℃修復(fù)抗原15 min;5滴封閉液(加正常山羊血清)室溫下靜置20~30 min,甩去多余液體,不洗;滴加一抗(Glu 為 1∶300;mGluR5 為 1∶500;EAAT1為 1∶500)室溫靜置2 h,陰性對照以蒸餾水代替一抗,滴加Ⅱ抗20℃~37℃靜置1 h;滴加SABC 20℃~37℃靜置20 min;滴加DAB顯色劑,顯微鏡下觀察控制反應(yīng)時間。以上步驟間均用0.01 M PBS(pH 7.2)緩沖液洗滌5 min×3次。蘇木素復(fù)染,常規(guī)脫水,透明,封片。②結(jié)果分析:胞漿或者包膜為淡黃色、棕黃色或褐色為陽性標(biāo)記。以德國Leica公司產(chǎn)的圖像分析軟件LeicaQwin-Plus在陽性區(qū)域進(jìn)行分析,每張切片在100倍的視野下隨機選取5個視野拍照,運用Image-pro plus 6.0圖像分析軟件對每張圖片陽性表達(dá)區(qū)的平均光密度進(jìn)行分析,陽性表達(dá)區(qū)的選取采用吸管法。
2.1 去卵巢OP大鼠模型復(fù)制成功 大鼠去卵巢14周,OVX組與Sham組的BMD比較情況見表1。
表1 大鼠去卵巢14 wBMD的比較(g/cm2)Tab.1 Comparison of BMD 14 weeks after ovariectomy(g/cm2)
去卵巢14 w,采用雙能X射線骨密度儀測定L5~L6、右股骨近端、右股骨遠(yuǎn)端、左股骨近端、左股骨遠(yuǎn)端、右肱骨近端、左肱骨近端等部位BMD,OVX組L5~L6腰椎、右股骨近端、右股骨遠(yuǎn)端、左股骨近端、左股骨遠(yuǎn)端、右肱骨近端 BMD均顯著低于Sham組(P<0.05),提示去卵巢OP大鼠模型復(fù)制成功。
2.2 TFRD對去卵巢OP大鼠左股骨Glu免疫標(biāo)記的影響Glu的陽性表達(dá)可見于Sham、OVX及OVX+TFRD的骨髓區(qū)細(xì)胞和緊貼骨髓腔的OB(見圖1)。其在各組陽性表達(dá)的平均光密度值,3組之間的差異無統(tǒng)計學(xué)意義(見表2)。
圖1 大鼠股骨Glu的表達(dá)(×100)Fig.1 The expression of Glu in rat bone tissue(×100)
表2 大鼠骨組織Glu陽性表達(dá)的平均光密度(AU/單位面積)Tab.2 The average optical density of Glu expression in bone tissue (AU/unit area)
2.3 TFRD對去卵巢OP大鼠左股骨mGluR5免疫標(biāo)記的影響 mGluR5的陽性表達(dá)見于Sham、OVX及OVX+TFRD的骨髓區(qū)細(xì)胞和緊貼骨髓腔壁的OB(見圖2),其在各組陽性表達(dá)的平均光密度值見表3。統(tǒng)計結(jié)果顯示OVX+TFRD組mGluR5陽性標(biāo)記的平均光密度顯著高于Sham組(P<0.05)。
圖2 大鼠股骨mGluR5的表達(dá)(×100)Fig.2 The expression of mGluR 5 in rat bone tissue(×100)
表3 大鼠骨組織mGluR5陽性表達(dá)的平均光密度(AU/單位面積)Tab.3 The average optical density of mGluR5 expression in bone tissue (AU/unit area)
2.4 TFRD對去卵巢OP大鼠左股骨EAAT1免疫標(biāo)記的影響 EAAT1大量表達(dá)于Sham、OVX及OVX+TFRD組的骨髓區(qū)細(xì)胞和緊貼骨髓腔的OB,少量表達(dá)于骨陷窩中的骨細(xì)胞(見圖3)。其在各組陽性表達(dá)的平均光密度值見表4,3組之間的差異無統(tǒng)計學(xué)意義。
圖3 大鼠股骨EAAT1的表達(dá)(×100)Fig.3 The expression of EAAT1 of rat bone tissue(×100)
表4 大鼠骨組織EAAT1陽性表達(dá)的平均光密度(AU/單位面積)Tab.4 The average optical density of EAAT1expression in bone tissue (AU/unit area)
Glu信號控制OB的骨形成和調(diào)節(jié)成骨祖細(xì)胞的分化。激活的離子型受體促使成骨祖細(xì)胞增殖,并通過激活Cbfa-1刺激成骨祖細(xì)胞的分化,促進(jìn)骨形成。離子型受體的激活也刺激核轉(zhuǎn)錄因子-kB(Nuclear Factor-kB,NF-kB)介導(dǎo)的破骨細(xì)胞(osteoclasts,OC)的分化和抑制成熟OC的凋亡,升高OC數(shù)量和骨吸收。然而骨量的最終變化則是由各信號通路作用于成骨細(xì)胞骨形成和破骨細(xì)胞骨吸收的凈效益決定。在Glu信號通路中,Glu離子型受體的激活主要與鈣信號(包括胞外鈣內(nèi)流以及胞內(nèi)鈣庫外流)有關(guān),并由此觸發(fā)各種鈣-依賴酶的級聯(lián)反應(yīng),導(dǎo)致各種細(xì)胞的生理變化[5-8]。而Glu代謝型受體的激活發(fā)揮第二信使作用,同時激活PKC信號通路,介導(dǎo)骨組織細(xì)胞的長程增強反應(yīng)或者類似中樞記憶信號反應(yīng)[9],調(diào)節(jié)骨組織細(xì)胞的生理活性和分化成熟等細(xì)胞進(jìn)程。本研究目的在于探究Glu信號受體的骨內(nèi)分布特征及TFRD對其干預(yù)的影響。研究發(fā)現(xiàn)OP大鼠股骨內(nèi)Glu表達(dá)于骨髓區(qū)細(xì)胞及OB,與文獻(xiàn)報道一致[10],但TFRD對其表達(dá)沒有直接影響;Glu代謝型受體mGluR5在骨髓區(qū)細(xì)胞與緊貼著骨髓腔壁的OB上均有表達(dá),與文獻(xiàn)報道一致[11-12],并且TFRD干預(yù)12周可顯著提高去卵巢OP大鼠股骨mGluR5的表達(dá),可能是其通過參與骨內(nèi)谷氨酸信號轉(zhuǎn)導(dǎo)介導(dǎo)骨重建的可能機制之一。Glu轉(zhuǎn)運體是起到滅活多余的Glu,以達(dá)到終止其信號的功能。Takarada等人證明OB表達(dá)有多種Glu轉(zhuǎn)運體(如EAAT1、EAAT2和EAAT3/EAAC1)并證明其具有吸收功能[1,13-14]。這些轉(zhuǎn)運體的存在可以保證骨組織細(xì)胞Glu濃度保持在一定水平,并可以防止Glu信號的持續(xù)刺激占據(jù)受體從而影響信號交流[15-16]。本研究發(fā)現(xiàn)Glu轉(zhuǎn)運子EAAT1表達(dá)于骨髓區(qū)細(xì)胞、OB及少量骨細(xì)胞,與Kalariti N等[17]發(fā)現(xiàn)EAAT1與mGluR5表達(dá)于MG-63成骨細(xì)胞樣骨肉瘤細(xì)胞具有一定的相似性,但并沒有發(fā)現(xiàn)TFRD的干預(yù)對其表達(dá)增高或降低有明顯作用。
綜上所述,在骨內(nèi)Glu信號通路中,本研究通過免疫組化法觀察到使用TFRD干預(yù)12周可顯著提高去卵巢OP大鼠股骨mGluR5的表達(dá),但尚不能認(rèn)為有增加或降低Glu和EAAT1表達(dá)的作用。
[1] Spencer GJ,Genever PG.Long-term potentiation in bone--a role for glutamate in strain-induced cellular memory?[J].BMC Cell Bio,2003(4):9-12.
[2] Mason DJ.Glutamate signalling and its potential application to tissue engineering of bone[J].Eur Cell Mater,2004(7):12-26.
[3] Mason DJ,Huggett JF.Glutamate transporters in bone[J].J Musculoskelet Neuronal Interact,2002(2):406-414.
[4] Noble BS,Reeve J.Osteocyte function, osteocyte death and bone fracture resistance[J].Mol Cell Endocrinol,2000(159):7-13.
[5] Katz S,Boland R,Santillan G.Modulation of ERK 1/2 and p 38 MAPK signaling pathways by ATP in osteoblasts: involvement of mechanical stress-activated calcium influx, PKC and Src activation[J].Int J Biochem Cell Biol,2006(38):2082-2091.
[6] Yang D,Guo J,Divieti P,et al.Parathyroid hormone activates PKC-delta and regulates osteoblastic differentiation via a PLC-independent pathway[J].Bone,2006(38):485-496.
[7] Liu BY,Wu PW,Bringhurst FR,et al.Estrogen inhibition of PTH-stimulated osteoclast formation and attachment in vitro:involvement of both PKA and PKC[J].Endocrinology,2002(143):627-635.
[8] Hinoi E.Functional glutamate signaling in bone[J].Yakugaku Zasshi,2010(130):1175-1179.
[9] Ren BX,Gu XP,Zheng YG,et al.Intrathecal injection of metabotropic glutamate receptor subtype 3 and 5 agonist/antagonist attenuates bone cancer pain by inhibition of spinal astrocyte activation in a mouse model[J].Anesthesiolo gy,2012(116):122-132.
[10] 黎波.去卵巢骨質(zhì)疏松大鼠骨內(nèi)谷氨酸信號通路及益骨膠囊干預(yù)研究[M].暨南大學(xué)博士學(xué)位論,2009.
[11] Szczesniak AM,Gilbert RW,Mukhida M,et al.Mechanical loading modulates glutemate receptor subunit expression in bone[J].Bone,2005(37):63-73.
[12] Gilbert RW,Szczesniak AM.Expression of metabotropic glutamate receptor subtypes in skeletal tissue:effeets of mechanical loading on subtype expression[J].Bone Miner,2000(15 Suppl 1):S 499.
[13] Spencer GJ,McGrath CJ,Genever PG.Current perspectives on NMDA-type glutamate signalling in bone[J].Int J Biochem Cell Biol,2007(39):1089-1104.
[14] Taylor AF.Functional osteoblastic ionotropic glutamate receptors are a prerequisite for bone formation[J].J Musculoskelet Neuronal Interact,2002(2):415-422.
[15] Yu HS,Noh WC,Park JW,et al.Comparative study on the cellular activities of osteoblast-like cells and new bone formation of anorganic bone mineral coated with tetra-cell adhesion molecules and synthetic cell binding peptide[J].J Periodontal Implant Sci,2011(41):293-301.
[16] Zhou S,Bueno EM,Kim SW,et al.Effects of age on parathyroid hormone signaling in human marrow stromal cells[J].Aging Cell,2011(10):780-788.
[17] Kalariti N,Lembessis P,Papageorgiou E,et al.Regulation of the mGluR 5,EAAT 1 and GS expression by glucocorticoids in MG-63 osteoblast-like osteosarcoma cells[J].J Musculoskelet Neuronal Interact,2007(7):113-118.
Effect of total fl avonoids of rhizome drynariae on the expression of Glu,mGluR5 and EAAT1 in bone tissues of ovariectomized osteoporotic rats
FANG Ji1?, YANG Li2?, SHEN Jia-zhen1, LIANG Heng1, ZHANG Rong-hua2Δ
(1.School of Medicine, Jinan University, Guangzhou 510632, China; 2.Pharmacy college, Jinan University,Guangzhou 510632, China)
ObjectiveTo observe the expression of Glu、mGluR 5 and EAAT 1 in bone tissues of ovariectomized osteoporotic rats and the effects of Total Flavonoids of Rhizoma Drynariae (TFRD) on it.Methods45 SPF 3-month-old Sprague-Dawley (SD) female rats were randomly divided into sham operation (Sham, n=15) group and ovariectomized (OVX, n=30) group. The osteoporotic(OP) model was established by bilateral ovariectomy, 14 weeks later, we measured bone mineral density(BMD) by dual-energy X-ray and determined that OP model was successfully replicated, OVX group rats were then divided into OVX group (n=15) and OVX+TFRD group (n=15). The OVX+TFRD group was given TFRD for 12 weeks. Glutamate (Glu), metabotropic glutamate receptor 5 (mGluR 5), and Glutamate/Aspartate Transporter (GLAST/EAAT1)’s expression of femur was examined in order to clarify the characteristics of bone glutamate signaling pathway and the effects of TFRD on it.ResultsGlu and ionotropic receptors mGluR 5 mainly distributed in bone marrow cells and osteoblasts closed to the bone marrow cavity walls. There were no significant differences in Glu expression among Sham group, OVX group and OVX+TFRD group. The mGluR 5 expression of OVX+TFRD group was significantly higher than that of Sham group and OVX group(P=0.009), while no significant difference was found between the latter two groups.In addition to large distribution in bone marrow cells, small amount of transporter EAAT1was noted to express in bone cells of the bone lacunae.There were no significant differences in EAAT 1 expression among the three groups.ConclusionIn bone glutamate signaling pathway, this study demonstrated that TFRD could significantly improve the ionotropic receptor mGluR 5’s expression, but had no influence for Glu and EAAT1.
osteoporosis; ovariectomized rat; total flavonoids of rhizoma drynariae; glutamate; metabotropic glutamate receptor 5
R 932
A
1005-1678(2014)02-0010-04
骨組織中谷氨酸(Glutamate,Glu)信號通路的組成與中樞神經(jīng)系統(tǒng)類似[1],由Glu、相關(guān)轉(zhuǎn)運體、轉(zhuǎn)運囊泡、相關(guān)受體、受體激活后鈣信號、環(huán)磷酸腺苷(cyclic adenosine monophos Phate,cAMP)信號的級聯(lián)以及Glu代謝有關(guān)的酶如谷氨酰胺合成酶及Glu胺酶組成[2-4]。本研究通過免疫組化法觀察去卵巢骨質(zhì)疏松(osteoporosis,OP)大鼠骨組織Glu、代謝型Glu受體-5(metabotropic Glumatemate receptor 5,mGluR 5)及 L-谷氨酸/L-門冬氨酸轉(zhuǎn)運體(Glutamate/Aspartate transporter,GLAST/EAAT1)表達(dá)特點,探討骨碎補總黃酮(total flavonoids of rhizoma drynariae,TFRD)通過參與大鼠骨內(nèi)谷氨酸信號通路介導(dǎo)骨重建可能的作用機制。
國家自然科學(xué)基金(81173619)
方霽,女,碩士,研究方向:中西醫(yī)結(jié)合防治常見老年病,E-mail:fangji_luxixi 910@126.com;楊麗,共同第一作者,女,博士,研究方向:臨床中藥學(xué),E-mail:doctormonkey@126.com;張榮華,通信作者,男,博士,教授,博士生導(dǎo)師,研究方向:臨床中藥學(xué),E-mail:tzrh@jnu.edu.cn。