林松竹,李婷婷,賈若琨
(東北電力大學(xué) 化學(xué)工程學(xué)院,吉林 吉林 132012)
CoFeMg氧化物納米晶Fenton-降解亞甲基藍(lán)的反應(yīng)動(dòng)力學(xué)
林松竹,李婷婷,賈若琨
(東北電力大學(xué) 化學(xué)工程學(xué)院,吉林 吉林 132012)
采用溶膠-凝膠法制備CoFeMg氧化物納米晶,并用掃描電子顯微鏡(SEM)和X射線衍射(XRD)表征樣品形貌,考察亞甲基藍(lán)催化劑與H2O2的協(xié)同降解作用. 采用穩(wěn)態(tài)近似法研究氧化降解亞甲基藍(lán)的動(dòng)力學(xué)過(guò)程. 結(jié)果表明: CoFeMg氧化物納米晶和H2O2組成的Fenton反應(yīng)體系可有效降解亞甲基藍(lán),當(dāng)催化劑和H2O2的加入量分別為0.8 g/L和2 mmol/L,初始pH≈7.15時(shí),亞甲基藍(lán)的降解率為95%; 與傳統(tǒng)的Fenton反應(yīng)體系相比,溶出鐵的質(zhì)量濃度降低為0.2 mg/L; Fenton反應(yīng)是羥基自由基(·OH)氧化降解有機(jī)物的過(guò)程,其反應(yīng)可近似為二級(jí)動(dòng)力學(xué)反應(yīng).
鈷鐵鎂氧化物納米晶; Fenton反應(yīng); 溶出鐵; 穩(wěn)態(tài)近似
由于Fenton氧化法產(chǎn)生大量活潑的·OH自由基,其氧化能力(2.80 V)僅次于氟(2.87 V),可將廢水中的污染物降解為二氧化碳、 水和無(wú)害物,不產(chǎn)生二次污染,因此關(guān)于Fenton試劑的研究受到人們廣泛關(guān)注[1-3]. Fenton氧化法是一種可控的物理-化學(xué)處理過(guò)程,能在較短時(shí)間內(nèi)達(dá)到處理的要求[4-7]. 目前,各種非均相Fenton試劑廣泛用于降解偶氮染料、 2,6-二甲基苯胺、 多氯酚類、 苯酚和羅丹明B等有機(jī)物[8-10]. 非均相Fenton體系適應(yīng)的pH=3~5[11-17]. Liu等[18]合成了非均相Fenton試劑Fe3O4/CeO2復(fù)合物,在pH=4~5時(shí)可有效降解4-氯酚; Luo等[19]研究了BiFeO3磁性納米顆粒降解羅丹明B,在pH=5.0時(shí),BiFeO3磁性納米顆粒對(duì)羅丹明B的總有機(jī)碳降解率為85%; Cornu等[20]研究了硫改性鐵酸鋅的光Fenton降解效果,在pH=6.0時(shí),鐵酸鋅對(duì)活性KN-GR總有機(jī)碳的去除率為90%,色度的去除率為100%. 文獻(xiàn)[21-23]研究了Fenton的反應(yīng)機(jī)理; 文獻(xiàn)[24]研究表明,·OH具有很強(qiáng)的氧化性,能夠氧化降解反應(yīng)體系中的有機(jī)物,因此在反應(yīng)過(guò)程中生成·OH達(dá)到能去除有機(jī)物的作用; 文獻(xiàn)[25]研究表明,在Fenton反應(yīng)過(guò)程中起主要作用的是高價(jià)態(tài)鐵氧體; 文獻(xiàn)[26]利用反應(yīng)的有機(jī)物建立分子模型,討論了Fenton反應(yīng)的反應(yīng)過(guò)程,并采用動(dòng)力學(xué)方程對(duì)反應(yīng)進(jìn)行了擬合.
本文采用溶膠凝膠法合成CoFeMg氧化物納米晶. 該材料提高了Fenton試劑降解有機(jī)物的適用pH值(pH≈7),并降低了溶出鐵的質(zhì)量濃度(0.2 mg/L),同時(shí)得到反應(yīng)速率與濃度變化的規(guī)律,確立了Fenton反應(yīng)動(dòng)力學(xué)方程. 采用穩(wěn)態(tài)近似法研究反應(yīng)體系的反應(yīng)機(jī)理,結(jié)果表明,Fenton反應(yīng)是羥基自由基(·OH)氧化降解有機(jī)物過(guò)程,其反應(yīng)可近似為二級(jí)動(dòng)力學(xué)反應(yīng).
1.1試劑和儀器
Fe(NO3)3·9H2O,Mg(NO3)2·6H2O,Co(NO3)2·6H2O,HNO3,聚乙二醇,氨水以及體積分?jǐn)?shù)為30%的H2O2等試劑均為國(guó)產(chǎn)分析純; 亞甲基藍(lán)溶液用去離子水配制.
利用掃描電鏡(SEM,S-3500N型,日本Hitachi公司)和X射線衍射儀(XRD,X’Pert Pro,荷蘭帕納科公司)觀察樣品的形貌; 利用U-7504C紫外可見(jiàn)分光光度計(jì)(日本Hitachi公司)檢測(cè)溶液的吸光度; 利用原子吸收光譜儀(AA-7000A型,北京東西電子公司)測(cè)定溶液中鐵離子的濃度,以Fe為中空陰極(感光線: 248.3 nm; 狹縫: 0.4 nm; 電流: 4 mA).
1.2CoFeMg氧化物納米晶的制備
取一定質(zhì)量的Fe(NO3)3·9H2O,Mg(NO3)2·6H2O和Co(NO3)2·6H2O溶解于20 mL去離子水中,加入一定量的聚乙二醇,混合均勻,加入適量的氨水沉淀后,將懸浮液進(jìn)行離心分離. 分離后取出沉淀物,在60 ℃的真空干燥箱中烘干,將所得固體置于管式加熱爐中900 ℃煅燒2 h,制得CoFeMg氧化物納米晶.
1.3降解實(shí)驗(yàn)
用去離子水配制質(zhì)量濃度為2 mg/L的亞甲基藍(lán)溶液,取15 mL亞甲基藍(lán)溶液置于20 mL小瓶中,加入0.012 g CoFeMg氧化物納米晶,調(diào)整溶液pH=7. 將懸浮液置于暗處,機(jī)械攪拌30 min,所得懸浮液中的亞甲基藍(lán)分子和催化劑達(dá)到吸附解析平衡. 向反應(yīng)體系中加入2 mmol/L體積分?jǐn)?shù)為30%的H2O2,每0.5 h取上清液,測(cè)試吸光度值,特征吸收峰在波長(zhǎng)667 nm處.
2.1CoFeMg氧化物納米晶的SEM和XRD表征
CoFeMg氧化物納米晶的SEM照片如圖1所示. 由圖1可見(jiàn): CoFeMg氧化物納米晶的直徑為70~100 nm,顆粒的單分散度較高,且表面平滑; 粒子間彼此靠近成團(tuán),這是由于粒子間存在范德華力和粒子具有一定的鐵磁性所致.
圖2為不同組分CoFeMg氧化物納米晶的XRD譜,采用XRD分析軟件Jade 5.0解譜,經(jīng)計(jì)算可得晶體尺寸約為70 nm,與SEM結(jié)果相符. 由圖2可見(jiàn): 在樣品的XRD譜中存在CoO,Fe3O4,MgO衍射峰; 在2θ=35.565°處存在Co0.83Mg0.17衍射峰,在2θ=43.215°處存在CoFe15.7衍射峰,在2θ=57.195°處存在CoFe衍射峰.
2.2CoFeMg氧化物納米晶組成對(duì)亞甲基藍(lán)降解率的影響
Co1Fe1Mg1,Co1Fe2Mg1,Co1Fe3Mg1和Co2Fe1Mg1與H2O2對(duì)亞甲基藍(lán)降解率的影響如圖3所示,其中分子式中的數(shù)字表示元素物質(zhì)的量比. 由圖3可見(jiàn): 亞甲基藍(lán)降解速率隨時(shí)間的增加逐漸增大,當(dāng)降解率大于85%時(shí),降解速率逐漸降低; 反應(yīng)4 h后,Co1Fe1Mg1,Co1Fe2Mg1,Co1Fe3Mg1催化劑和H2O2對(duì)亞甲基藍(lán)的降解率分別為89.0%,95.3%和95.5%; 當(dāng)催化劑中鐵物質(zhì)的量相對(duì)較小時(shí)(Co1Fe1Mg1),亞甲基藍(lán)的降解率最低,這是由于反應(yīng)體系中產(chǎn)生的·OH相對(duì)較少,使得催化劑對(duì)亞甲基藍(lán)的降解率降低所致; 在反應(yīng)體系反應(yīng)4 h后,Co1Fe1Mg1和Co2Fe1Mg1對(duì)亞甲基藍(lán)的降解率分別為89.0%和95.1%,這是由于催化劑中Co促進(jìn)了Fe的催化反應(yīng)所致,即鈷物質(zhì)的量相對(duì)較多時(shí),亞甲基藍(lán)的降解率較高.
圖2 不同組分CoFeMg氧化物納米晶的XRD譜Fig.2 XRD patterns of CoFeMg oxide nano particles
圖3 不同組分CoFeMg氧化物納米晶與H2O2對(duì)亞甲基藍(lán)降解率的影響Fig.3 Degradation of methylene blue in the presence of H2O2 and CoFeMg oxide nano particles
2.3催化劑投加量對(duì)亞甲基藍(lán)降解率的影響
催化劑投加量對(duì)亞甲基藍(lán)降解率的影響如圖4所示. 由圖4可見(jiàn),隨著催化劑投加量的增加,亞甲基藍(lán)的降解率先增加后減少,由于體系中的Fe(Ⅱ)可加快催化分解H2O2產(chǎn)生·OH,因此Fe(Ⅱ)較多時(shí)促進(jìn)反應(yīng)速率加快. 反應(yīng)3 h后,反應(yīng)體系中的亞甲基藍(lán)在投加較少催化劑時(shí)即可完全降解. 這是由于各個(gè)反應(yīng)體系中H2O2的濃度相同,使得分解產(chǎn)生·OH的濃度相同所致,當(dāng)催化劑的投加質(zhì)量濃度為0.67~1.33 g/L時(shí),亞甲基藍(lán)的降解率為85%~90%. Co可作為類Fenton反應(yīng)催化劑,Co在Fenton反應(yīng)中的反應(yīng)機(jī)理與Fe的反應(yīng)機(jī)理類似,且Co在催化劑中促進(jìn)Fe的催化反應(yīng)[27],因此本文將Co參與反應(yīng)的反應(yīng)機(jī)理與Fe的反應(yīng)機(jī)理等同,用下列反應(yīng)方程表示CoFeMg氧化物納米晶的Fenton反應(yīng)機(jī)理[28],反應(yīng)體系中產(chǎn)生自由基·OH的反應(yīng)式如下:
2.4H2O2用量對(duì)亞甲基藍(lán)降解率的影響
反應(yīng)體系中H2O2用量對(duì)亞甲基藍(lán)降解率的影響如圖5所示. 由圖5可見(jiàn): H2O2用量較低時(shí)(0.1~0.3 mL),Fe(Ⅱ)與H2O2反應(yīng)產(chǎn)生·OH的濃度較小,降低了亞甲基藍(lán)的降解率; 當(dāng)H2O2用量較高時(shí)(0.5~0.6 mL),過(guò)量的H2O2與·OH反應(yīng)產(chǎn)生HO2·,氧化能力較·OH弱,從而降低了亞甲基藍(lán)的降解率. 因此實(shí)驗(yàn)采用10 mL反應(yīng)體系取0.4 mL(即2 mmol/L)體積分?jǐn)?shù)為30%的H2O2.
圖4 Co2Fe1Mg1氧化物納米晶的投加量對(duì)亞甲基藍(lán)去除率的影響Fig.4 Degradation of methylene blue in the presenceof Co2Fe1Mg1 oxide nano particles
圖5 H2O2投加量對(duì)亞甲基藍(lán)去除率的影響Fig.5 Degradation of methylene blue in the presenceof H2O2
2.5pH值對(duì)亞甲基藍(lán)降解率的影響
圖6 pH值對(duì)亞甲基藍(lán)降解率的影響Fig.6 Eeffect of pH on the degradation of methylene blue
pH值對(duì)亞甲基藍(lán)降解率的影響如圖6所示. 由圖6可見(jiàn),pH值較低(pH=2.96)時(shí),H+濃度較高,使得·OH形成速率減慢,·OH在體系中的濃度減少,導(dǎo)致亞甲基藍(lán)的降解率降低. 實(shí)驗(yàn)中制備的Co2Fe1Mg1氧化物納米晶在pH值較高(pH=7.15)時(shí)明顯高于pH值較低(pH=2.96)時(shí)亞甲基藍(lán)的降解速率. 由于催化劑由金屬氧化物構(gòu)成,結(jié)構(gòu)穩(wěn)定,因此催化劑中的金屬氧化物不會(huì)在pH值較低時(shí)溶解在反應(yīng)體系中,在中性條件下,整個(gè)反應(yīng)體系的酸堿達(dá)到平衡,更有利于產(chǎn)生·OH,反應(yīng)速率加快.
2.6溫度對(duì)亞甲基藍(lán)降解率的影響
溫度對(duì)亞甲基藍(lán)降解率的影響如圖7所示. 由圖7可見(jiàn),反應(yīng)溫度越高反應(yīng)體系中亞甲基藍(lán)的初始反應(yīng)速率越快,降解率越高. 由于溫度升高,反應(yīng)體系中分子的運(yùn)動(dòng)加劇,增加了催化劑與亞甲基藍(lán)分子的碰撞反應(yīng),從而提高了反應(yīng)速率.
2.7Co2Fe1Mg1氧化物納米晶降解亞甲基藍(lán)與溶出鐵離子質(zhì)量濃度的關(guān)系
Co2Fe1Mg1氧化物納米晶降解亞甲基藍(lán)與溶出鐵離子質(zhì)量濃度的關(guān)系如圖8所示. 由圖8可見(jiàn): 隨著反應(yīng)的進(jìn)行,反應(yīng)體系中溶出鐵離子的質(zhì)量濃度不斷增加,即氧化反應(yīng)使鐵離子從催化劑表面溶出; 反應(yīng)3 h后,催化劑中的Fe離子不再溶出. 這是由于Co2Fe1Mg1氧化物納米晶中的Fe以Fe3O4和CoFe復(fù)合物的形式存在,使得催化劑中的Fe離子在中性的反應(yīng)條件下不易溶解于反應(yīng)體系中所致. 反應(yīng)結(jié)束時(shí),反應(yīng)體系中溶出鐵離子的質(zhì)量濃度為0.2 mg/L.
圖7 溫度對(duì)亞甲基藍(lán)降解率的影響Fig.7 Effect of the temperature on the degradation of methylene blue
圖8 Co2Fe1Mg1氧化物納米晶降解亞甲基藍(lán)與溶出鐵離子質(zhì)量濃度的關(guān)系Fig.8 Leaching of Fe in the reaction system of Co2Fe1Mg1oxide nano particles for degrading methylene blue
2.8反應(yīng)體系中的動(dòng)力學(xué)擬合
當(dāng)催化劑和H2O2的加入量分別為0.8 g/L和2 mmol/L,初始pH=7.15時(shí),考察反應(yīng)體系的動(dòng)力學(xué)行為,一般動(dòng)力學(xué)方程表達(dá)式為
式中:c為亞甲基藍(lán)的濃度; ?為反應(yīng)級(jí)數(shù);k為反應(yīng)速率常數(shù);t為反應(yīng)時(shí)間. Fenton反應(yīng)的反應(yīng)速率可用分解產(chǎn)物式(8)的生成速率表示,令式(1)~(8)的反應(yīng)速率常數(shù)分別為k1~k8,由于自由基等中間產(chǎn)物參與反應(yīng),且濃度低、 壽命短,因此可近似認(rèn)為在反應(yīng)達(dá)到穩(wěn)定狀態(tài)后,其濃度基本不隨時(shí)間變化,這種處理方法稱為穩(wěn)態(tài)近似法,其表達(dá)式為
因此用穩(wěn)態(tài)處理法可得
式中c0為亞甲基藍(lán)溶液的初始濃度. 由Fenton反應(yīng)方程式及穩(wěn)態(tài)處理法可知,反應(yīng)體系中溶出鐵離子的量與計(jì)算得到的穩(wěn)態(tài)近似動(dòng)力學(xué)方程相關(guān).
圖9 Co2Fe1Mg1氧化物納米晶Fenton氧化亞甲基藍(lán)的動(dòng)力學(xué)擬合Fig.9 Kinetics of Co2Fe1Mg1 oxide nano particles Fenton oxidizing methylene blue
利用式(9),(11),對(duì)Co2Fe1Mg1氧化物納米晶降解亞甲基藍(lán)的反應(yīng)進(jìn)行動(dòng)力學(xué)擬合,結(jié)果如圖9所示. 由圖9可見(jiàn),穩(wěn)態(tài)近似動(dòng)力學(xué)方程可最佳擬合反應(yīng)動(dòng)力學(xué)過(guò)程. 其對(duì)應(yīng)的相關(guān)系數(shù)最大為0.991 94,因此該Fenton反應(yīng)可近似為二級(jí)動(dòng)力學(xué)反應(yīng),用穩(wěn)態(tài)近似動(dòng)力學(xué)方程擬合其反應(yīng)過(guò)程:
y=0.104 83x2-0.653 85x+1.019 56,
(12)
式中:y為反應(yīng)速率(dc/dt);x為反應(yīng)時(shí)間. 由反應(yīng)式(12),Co2Fe1Mg1氧化物納米晶與H2O2直接反應(yīng),同時(shí)生成·OH和HO2·. 一方面,通過(guò)反應(yīng)式(1),生成強(qiáng)氧化劑·OH氧化分解亞甲基藍(lán); 另一方面,HO2·與H2O2反應(yīng)生成·OH,進(jìn)一步氧化降解亞甲基藍(lán); 此外,Co2Fe1Mg1氧化物納米晶性能穩(wěn)定,溶出鐵離子對(duì)反應(yīng)體系中亞甲基藍(lán)降解速率的干擾較小. 因此Fenton反應(yīng)可近似用穩(wěn)態(tài)近似動(dòng)力學(xué)方程擬合. 其一級(jí)動(dòng)力學(xué)擬合參數(shù)為:k=0.647 49 min-1,R2=0.005 72; 二級(jí)動(dòng)力學(xué)擬合參數(shù)為:k=0.104 83(L·mol-1)/min-1,R2=0.991 94.
1) 本文合成了不同組分比例、 不同性能的活性CoFeMg氧化物納米晶. 由催化劑的SEM照片和XRD譜可見(jiàn),CoFeMg氧化物納米晶的直徑為70~100 nm,由金屬氧化物和金屬?gòu)?fù)合物構(gòu)成晶體顆粒. 利用Co2Fe1Mg1氧化物納米晶降解質(zhì)量濃度為2 mg/L亞甲基藍(lán)溶液,當(dāng)溫度為5 ℃,H2O2投加量為2 mmol/L,催化劑投加量為0.8 g/L,初始pH=7.15時(shí),反應(yīng)4 h后亞甲基藍(lán)的降解率大于95%,溶液中溶出鐵的質(zhì)量濃度為0.2 mg/L.
2) 在上述反應(yīng)條件下,對(duì)Co2Fe1Mg1氧化物納米晶Fenton氧化降解亞甲基藍(lán)反應(yīng)動(dòng)力學(xué)過(guò)程進(jìn)行擬合. 結(jié)果表明,Co2Fe1Mg1氧化物納米晶性能穩(wěn)定,溶出鐵離子對(duì)反應(yīng)體系中亞甲基藍(lán)降解速率的影響較小,穩(wěn)態(tài)近似動(dòng)力學(xué)方程可最佳擬合相應(yīng)的動(dòng)力學(xué)過(guò)程.
[1]YANG Chunwei,WANG Dong,WANG Kun. Preparation and Activity of Heterogeneous Catalyst for Fenton Reaction [J]. Environmental Protection of Chemical Industry,2011,6(31): 557-560.
[2]Rastogi A,Al-Abed S R,Dionysiou D D. Effect of Inorganic,Synthetic and Naturally Occurring Chelating Agents on Fe(Ⅱ) Mediated Advanced Oxidation of Chlorophenols [J]. Water Research,2009,43(3): 684-694.
[3]Kwon B G,Kim E J,Lee J H. Pentachlorophenol Decom-Position by Electron Beam Process Enhanced in the Presence of Fe(Ⅲ)-EDTA [J]. Chemosphere,2009,74: 1335-1339.
[4]FENG Huimin,ZHENG Jiachuan,Lei N. Photoassisted Fenton Degradation of Polystyrene [J]. Environmental Science & Technology,2011,45: 744-750.
[5]Farias J,Albizzati E D,Alfano O M. New Pilot-Plant Photo-Fenton Solar Reactor for Water Decontamination [J]. Industrial & Engineering Chemistry Research,2010,49: 1265-1273.
[6]Muruganandham M,YANG Jingshen,Wu J J. Effect of Ultrasonic Irradiation on the Catalytic Activity and Stability of Goethite Catalyst in the Presence of H2O2at Acidic Medium [J]. Industrial & Engineering Chemistry Research,2007,46: 691-698.
[7]Marti’n R,Alvaro M,Herance J R. Fenton-Treated Functionalized Diamond Nanoparticles as Gene Delivery System [J]. ACS Nano,2010,4(1): 65-74.
[8]PANG Suyan,JIN Jiang,MA Jun. Oxidation of Sulfoxides and Arsenic(Ⅲ) in Corrosion of Nanoscale Zero Valent Iron by Oxygen: Evidence against Ferryl Ions (Fe(Ⅳ)) as Active Intermediates in Fenton Reaction [J]. Environmental Science & Technology,2011,45: 307-312.
[9]CHEN Liwei,MA Jun,LI Xuchun,et al. Strong Enhancement on Fenton Oxidation by Addition of Hydroxylamine to Accelerate the Ferric and Ferrous Iron Cycles [J]. Environmental Science & Technology,2011,45(9): 3925-3930.
[10]Duarte F,Maldonado-Hódar F J,Madeira L M. Influence of the Particle Size of Activated Carbons on Their Performance as Fe Supports for Developing Fenton-Like Catalysts [J]. Industrial & Engineering Chemistry Research,2012,51: 9218-9226.
[11]Rodríguez R,Ovejero G,Sotelo J L. Heterogeneous Fenton Catalyst Supports Screening for Mono Azo Dye Degradation in Contaminated Wastewaters [J]. Industrial & Engineering Chemistry Research,2010,49: 498-505.
[12]Masomboon N,Ratanamskul C,LU Mingchun. Chemical Oxidation of 2,6-Dimethylaniline in the Fenton Process [J]. Environmental Science & Technology,2009,43(22): 8629-8634.
[13]Munoz M,Pedro Z M,de,Pliego G. Chlorinated Byproducts from the Fenton-Like Oxidation of Polychlorinated Phenols [J]. Industrial & Engineering Chemistry Research,2012,51: 13092-13099.
[14]Santos A,Yustos P,Rodriguez S. Fenton Pretreatment in the Catalytic Wet Oxidation of Phenol [J]. Industrial & Engineering Chemistry Research,2010,49: 5583-5587.
[15]YUAN Songhu,FAN Ye,ZHANG Yucheng,et al. Pd-CatalyticinsituGeneration of H2O2from H2and O2Produced by Water Electrolysis for the Efficient Electro-Fenton Degradation of Rhodamine B [J]. Environmental Science & Technology,2011,45: 8514-8520.
[16]Bach R D,Dmitrenko O. Transient Inverted Metastable Iron Hydroperoxides in Fenton Chemistry. A Nonenzymatic Model for Cytochrome P450 Hydroxylation [J]. J Org Chem,2010,75: 3705-3714.
[17]XU Lejin,WANG Jianlong. Magnetic Nanoscaled Fe3O4/CeO2Composite as an Efficient Fenton-Like Heterogeneous Catalyst for Degradation of 4-Chlorophenol [J]. Environmental Science & Technology,2012,46: 10145-10153.
[18]LIU Liangjun,ZHANG Guoliang,WANG Ling. Highly Active S-Modified ZnFe2O4Heterogeneous Catalyst and Its Photo-Fenton Behavior under UV-Visible Irradiation [J]. Industrial & Engineering Chemistry Research,2011,50: 7219-7227.
[19]LUO Wei,ZHU Lihua,WANG Nan. Efficient Removal of Organic Pollutants with Magnetic Nanoscaled BiFeO3as a Reusable Heterogeneous Fenton-Like Catalyst [J]. Environmental Science & Technology,2010,44(5): 1786-1791.
[20]Cornu C,Bonardet J L,Casale S. Identification and Location of Iron Species in Fe/SBA-15 Catalysts: Interest for Catalytic Fenton Reactions [J]. The Journal of Physical Chemistry: C,2012,116: 3437-3448.
[21]Parida K M,Pradhan A C. Fe/Meso-Al2O3: An Efficient Photo-Fenton Catalyst for the Adsorptive Degradation of Phenol [J]. Industrial & Engineering Chemistry Research,2010,49(10): 8310-8318.
[22]MA Jiahai,SONG Wenjing,CHEN Chuncheng. Fenton Degradation of Organic Compounds Promoted by Dyes under Visible Irradiation [J]. Environmental Science & Technology,2005,39(15): 5810-5815.
[23]Bacardit J,Sans C,Seminago R. Characterization and Control Strategies of an Integrated Chemical-Biological System for the Remediation of Toxic Pollutants in Wastewater: A Case of Study [J]. Industrial & Engineering Chemistry Research,2010,49: 6972-6976.
[24]Klamerth N,Malato S,Agüera A. Treatment of Municipal Wastewater Treatment Plant Effluents with Modified Photo-Fenton as a Tertiary Treatment for the Degradation of Micro Pollutants and Disinfection [J]. Environmental Science & Technology,2012,46: 2885-2892.
[26]Rao J S,Cruz L. Effects of Confinement on the Structure and Dynamics of an Intrinsically Disordered Peptide: A Molecular-Dynamics Study [J]. The Journal of Physical Chemistry: B,2013,117(14): 3707-3719.
[27]鄭國(guó)民. CoFe/MgO-Fenton催化降解染料廢水的研究 [D]. 北京: 北京化工大學(xué),2011. (ZHENG Guomin. Study on the Catalytic Degradation of Dye Wastewater Using CoFe/MgO-Fenton Process [D]. Beijing: Beijing University of Chemical Technology,2011.)
[28]楊春維. Fenton與電Fenton技術(shù)處理有機(jī)廢水的應(yīng)用研究 [D]. 大連: 大連理工大學(xué),2012. (YANG Chunwei. The Application Research of Fenton and Electro-Fenton Technology of Organic Wastewater Treatment Research [D]. Dalian: Dalian University of Technology,2012.)
(責(zé)任編輯: 單 凝)
ReactionKineticsofCoFeMgOxideNanoParticlesFenton-DegradedMethyleneBlue
LIN Songzhu,LI Tingting,JIA Ruokun
(CollegeofChemicalEngineering,NortheastDianliUniversity,Jilin132012,JilinProvince,China)
CoFeMg oxide nanocrystals were prepared with sol-gel method and characterized as a catalyst. SEM and XRD were used to characterize the catalyst,methylene blue was used to study the synergistic degradation of the catalyst and H2O2,the dynamic process of oxidative degradation of methylene blue was studied by the steady-state approximation method. Results show that CoFeMg Fenton reaction system composed of CoFeMg oxide nanocrystals used as a heterogeneous Fenton-like catalyst and H2O2effectively degraded methylene blue. At pH≈7.15,a mass concentration of CoFeMg oxide nanocrystals of 0.8 g/L and concentration of H2O2of 2 mmol/L,the degradation rate of methylene blue was evaluated to be 95%. Compared with that of traditional Fenton reaction system,the amount of leaching of iron was decreased to 0.2 mg/L under similar conditions. The dynamics results show that Fenton reaction system shows a hydroxyl radicals (·OH) oxidation degradation process of methylene blue,and the reaction was considered as secondary dynamics.
CoFeMg oxide nanocrystal; Fenton reaction; leaching of iron; steady-state approximation
2013-11-14.
林松竹(1960—),男,漢族,博士,教授,從事材料物理化學(xué)的研究,E-mail: linsongsu@sohu.com. 通信作者: 賈若琨(1977—),男,漢族,博士,教授,從事材料物理化學(xué)的研究,E-mail: jiaruokun@mail.nedu.edu.cn.
國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào): 51003010)、 吉林省自然科學(xué)基金(批準(zhǔn)號(hào): 201115178)和吉林省科技發(fā)展計(jì)劃項(xiàng)目(批準(zhǔn)號(hào): 201105108).
O643
A
1671-5489(2014)05-1077-07