孫愛慧, 曹春玲
(1.吉林師范大學(xué) 數(shù)學(xué)學(xué)院, 吉林 四平 136000; 2.吉林大學(xué) 數(shù)學(xué)學(xué)院, 長春 130012)
研究簡報(bào)
具非線性阻尼項(xiàng)和源函數(shù)項(xiàng)雙曲方程解爆破時(shí)間的下界估計(jì)
孫愛慧1, 曹春玲2
(1.吉林師范大學(xué) 數(shù)學(xué)學(xué)院, 吉林 四平 136000; 2.吉林大學(xué) 數(shù)學(xué)學(xué)院, 長春 130012)
考慮雙曲方程初邊值問題解的性質(zhì).利用能量估計(jì)方法和Sobolev嵌入不等式, 給出一個(gè)具非線性阻尼項(xiàng)和源函數(shù)項(xiàng)雙曲方程解爆破時(shí)間的下界估計(jì).
阻尼項(xiàng); 非線性源; 雙曲方程; 爆破時(shí)間; 下界估計(jì)
考慮如下半線性雙曲方程的初邊值問題:
其中:Ω?N(N≥3)是有界區(qū)域, 且邊界?Ω滑;p>2;m>2;g≥0.許多實(shí)際問題都可以用模型(1)刻畫, 例如通過滲流介質(zhì)的流體過程、與溫度相關(guān)的黏彈性流問題等, 文獻(xiàn)[1-3]給出了這類問題的研究結(jié)果.當(dāng)黏彈性項(xiàng)g=0時(shí), 問題(1)為具有非線性阻尼項(xiàng)波的方程
先引進(jìn)如下能量泛函:
其中(g°u)(t)=g(t-τ)‖v(t)τ.根據(jù)參考文獻(xiàn)[10]中引理2.1, 有:
引理1如果下列條件成立, 則E′(t)≤0,t≥0且E(t)≤E1:
(H3)α=(C/k1/2)-p/(p-2),E1=(1/2-1/p)α2, 其中C為最優(yōu)嵌入常數(shù).
下面分兩種情形討論.
1) 當(dāng)2
由于p>N(p-2)=μ, 應(yīng)用H?lder’s不等式, 有
結(jié)合式(7),(8)有
由2(p-μ)/(Np)=2(p-Np+2N)/(Np)及不等式aαbβ≤(a+b)α+β(a>0,b>0,α>0,β>0), 有
其中:C為最優(yōu)嵌入常數(shù);q1=3-4/p>1.
2) 當(dāng)2N/(N-1)
對(duì)式(10)應(yīng)用不等式aαbβ≤(a+b)α+β(a>0,b>0,α>0,β>0), 有
其中:C為最優(yōu)嵌入常數(shù);q2=[2(N-2)-(N-4)p]/[2N-p(N-2)]>1.
k‖‖
(13)
[1]Gerbi S, Said-Houari B.Asymptotic Stability and Blow up for a Semilinear Damped Wave Equation with Dynamics Boundary Conditions [J].Nonlinear Anal, 2011, 74(18): 7137-7150.
[2]LI Ke, YANG Zhijian.Exponential Attractors for the Strongly Damped Wave Equation [J].Appl Math Comput, 2013, 220: 155-165.
[3]孟繁慧, 高文杰.一類具變指數(shù)源的p-Laplace方程解的爆破時(shí)間下界 [J].吉林大學(xué)學(xué)報(bào): 理學(xué)版, 2014, 52(3): 435-438.(MENG Fanhui, GAO Wenjie.Lower Bounds for the Blow-up Time of Solutions to a Class ofp-Laplace Equation with Variable Sources [J].Journal of Jilin University: Science Edition, 2014, 52(3): 435-438.)
[4]Ball J M.Remarks on Blow-up and Nonexistence Theorems for Nonlinear Evolution Equations [J].Quart J Math Oxford, 1977, 28(112): 473-486.
[5]Kalantarov V K, Ladyzhenskaya O A.The Occurrence of Collapse for Quasilinear Equations of Parabolic and Hyperbolic Type [J].J Soviet Math, 1978, 10(1): 53-70.
[6]Haraux A, Zuazua E.Decay Estimates for Some Semilinear Damped Hyperbolic Problems [J].Arch Ration Mech Anal, 1988, 100(2): 191-206.
[8]Levine H A.Instability and Nonexistence of Global Solutions to Nonlinear Wave Equations of the FormPutt=Au+F(u) [J].Trans Amer Math Soc, 1974, 192: 1-21.
[9]Levine H A.Some Additional Remarks on the Nonexistence of Global Solutions to Nonlinear Wave Equations [J].SIAM J Math Anal, 1974, 5: 138-146.
[10]Messaoudi S A.Blow-up of Positive-Initial-Energy Solutions of a Nonlinear Viscoelastic Hyperbolic Equation [J].J Math Anal Appl, 2006, 320(2): 902-915.
LowerBoundEstimationfortheBlow-upTimeofSolutionstoaClassofNonlinearDampedHyperbolicEquationswithSources
SUN Aihui1, CAO Chunling2
(1.CollegeofMathematics,JilinNormalUniversity,Siping136000,JilinProvince,China;
2.CollegeofMathematics,JilinUniversity,Changchun130012,China)
The authors studied the properties of solutions for the initial boundary value problem to a hyperbolic equation and obtained a lower bound estimation of blow-up time for a class of nonlinear damped hyperbolic equations with sources by using the method of energy estimate and Sobolev embedding inequalities.
damped term; nonlinear sources; hyerbolic equations; blow-up time; lower bound estimation
2014-07-14.
孫愛慧(1978—), 女, 漢族, 碩士, 講師, 從事偏微分方程的研究, E-mail: sunaihui2002@126.com.
吉林省自然科學(xué)基金(批準(zhǔn)號(hào): 20115222)、吉林省科技發(fā)展計(jì)劃項(xiàng)目(批準(zhǔn)號(hào): 201201082; 201201081)和吉林省教育廳“十二五”科學(xué)技術(shù)研究項(xiàng)目(批準(zhǔn)號(hào): 吉教科合字[2013]第445號(hào)).
O175.8
A
1671-5489(2014)06-1227-03
10.13413/j.cnki.jdxblxb.2014.06.24
趙立芹)