• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An approach to improving maneuver performanceof coning algorithm

    2014-09-06 10:49:51TangChuanyeChenXiyuanSongRui
    關(guān)鍵詞:子樣機(jī)動性東南大學(xué)

    Tang Chuanye Chen Xiyuan Song Rui

    (School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)(Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology of Ministry of Education,Southeast University, Nanjing 210096, China)

    ?

    An approach to improving maneuver performanceof coning algorithm

    Tang Chuanye Chen Xiyuan Song Rui

    (School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)(Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology of Ministry of Education,Southeast University, Nanjing 210096, China)

    Aiming to improve the maneuver performance of the strapdown inertial navigation attitude coning algorithm, a new coning correction structure is constructed by adding a sample to the traditional compressed coning correction structure. According to the given definition of classical coning motion, the residual coning correction error based on the new coning correction structure is derived. On the basis of the new structure, the frequency Taylor series method is used for designing a coning correction structure coefficient, and then a new coning algorithm is obtained. Two types of error models are defined for the coning algorithm performance evaluation under coning environments and maneuver environments, respectively. Simulation results indicate that the maneuver accuracy of the new 4-sample coning algorithm is almost double that of the traditional compressed 4-sample coning algorithm. The new coning algorithm has an improved maneuver performance while maintaining coning performance, compared to the traditional compressed coning algorithm.

    coning algorithm; coning correction structure; maneuver performance; coning performance; frequency Taylor series method

    In recent decades, it has always been an attractive task to design an efficient coning algorithm which includes designing an efficient coning correction structure and optimizing the structure coefficient. Miller[1]first presented a three-sample algorithm structure and an approach to designing the coning algorithm in a pure coning environment by truncating the frequency Taylor series of updating rotation vector error. Lee et al.[2]further applied Miller’s idea and arrived at the conclusion that the uncompressed coning correction structure exists in redundancy under coning conditions. According to this conclusion, Ignagni[3]verified that the cross product of both integral angular rate samples is independent of absolute time, and it is merely a function of the time interval between sampling points under coning conditions. Also, Ignagni[3]first designed the compressed coning correction structure and the compressed coning algorithm. Unlike the previous coning algorithms for gyro error-free output, Mark et al.[4]presented a method of tuning a high-order coning algorithm to match the frequency response characteristics of a gyro with filtered output. Based on the compressed coning correction structure, Savage[5]first raised the idea of using the least square method to design the coning correction algorithm for balanced coning performance over a coning frequency range. Subsequently, Savage[6]further applied the least square method to coning algorithm design in pseudo-coning environments. Tang et al.[7]introduced the least square method into the angular rate-based attitude algorithm design. Subsequently, Tang et al.[8-9]presented a new type of angular rate-based coning correction structure for coning error compensation. Chen et al.[10]proposed an improved coning algorithm based on the second optimization method. Song et al.[11]concentrated on the improvement of maneuver accuracy of coning algorithms, and developed an approach to recovering the maneuver accuracy of classical coning algorithms by combining the earliest time Taylor series method and the latest frequency methods. Tang et al.[12]later proposed a half-compressed coning correction structure to improve the maneuver accuracy of classical coning algorithms and to achieve a balance between algorithm accuracy and the throughput.

    This paper first presents a new coning correction structure, which is constructed by adding a sample to the traditional compressed coning correction structure. The frequency Taylor series method is used for the coning algorithm design based on the new structure. Simulation results indicate that the new coning algorithm shows an improved maneuver performance compared to the traditional compressed algorithm, owing to the rationality of the new structure.

    1 Coning Correction Structure

    Generally, the rotation vectorφlfor the attitude update is calculated by using a simple form to approximate the integral of the rotation vector differential equation. A commonly used approximation form[3,5-12]can be written as

    φl=αl+δφl

    αl=α(tl,tl-1)

    (1)

    wheretis the time;αlis the integral of the gyro-sensed angular rateωfrom timetl-1to timetl; δφldenotes the coning correction.

    (2)

    (3)

    Both traditional coning correction forms defined by Eqs.(2) and (3) are equivalent under coning motion conditions, but not equivalent under maneuver conditions. Song et al.[11]indicated that the algorithm based on Eq.(2) can achieve much higher maneuver accuracies, but requires more throughput than those based on Eq.(3). This paper proposes a new coning algorithm differing from the traditional coning algorithm:

    (4)

    whereJsis the coning correction coefficient;θNis the sum of the last two angular increments selected from all samples over timetl-1totl, and it can be directly obtained from the process of computingαlin Eq.(2).

    2 Coning Correction Algorithm

    2.1 Correction coefficient design

    Assume that the body is undergoing the pure coning motion defined by the angular rate vector[3,5,6,9,12],

    (5)

    whereω(t) is an angular rate vector in the body frame at timet;aandbare the amplitudes of the angular oscillations in two orthogonal axes of the body;Ωis the frequency associated with the angular oscillations.

    Based on the coning motion angular rate vector definition by Eq.(5), Ignagni[3]derived the analytical value of the coning correction δφlin Eq.(1) withtl=tl-1+Tl=tl-1+LTk:

    (6)

    whereβis a coning frequency parameter relevant toTk.

    Under the coning motion defined by Eq.(5), the angular increment Δαkis obtained by integrating the angular rate vectorω(t) fromtl-(N-k+1)Tktotl-(N-k)Tk.

    (7)

    Also, the angular incrementθNis obtained by integrating the angular rate vectorω(t) fromtl-2Tktotl.

    (8)

    Then the cross product Δαk×θNis derived from Eqs.(7) and (8) as

    Δαk×θN=

    (9)

    fs(β)≡ sin(sβ)+sin[(s-1)β]-

    sin[(s+1)β]-sin[(s-2)β]

    (10)

    (11)

    Substituting Eq.(6) and Eq.(10) into Eq.(11) gives

    (12)

    According to the Taylor series expansion of sinβaround zero point, we have

    (13)

    Then the errore(β) in Eq.(12) can be expanded as a Taylor series form around zero point,

    (14)

    Setting the coefficients of the firstN-1 terms of Taylor series Eq.(14) to zeros, we can obtain the system of linear equations, which can be simplified as

    (15)

    Defining terms

    J=(Js,1)(N-1)×1Js,1≡Js

    B=(bk,1)(N-1)×1bk,1≡-L2k+1

    (16)

    Then the systems of linear equations (16) can be rewritten in the following matrix form:

    AJ=B

    (17)

    whereAis anN-1 byN-1 square matrix whosek-th row ands-th column component isaks;Bis anN-1 by one column matrix formed from componentsbk,1s;Jis anN-1 by one column matrix formed from componentsJs,1s. Solving Eq.(17), we obtain the optimized coning correction coefficientsJss, which are applicable to the coning correction form defined by Eq.(4).

    J=A-1B

    (18)

    2.2 Algorithm performance evaluation

    Two types of error models are defined to evaluate the coning algorithm performance under coning and maneuver environments.

    (20)

    For evaluating the algorithm performance in maneuver environments, assume that the body is undergoing a maneuver angular motion characterized by the angular rate vector[3,5,9,11],

    (21)

    wheregiis a coefficient vector;Qis the number of coefficient vectors;t0is the beginning time measured. Integrating Eq.(21) fromtl-1tot, we obtain

    (22)

    Eqs.(21) and (22) are substituted into Eq.(1). After integrating and simplifying withtl-1=tl-Tl=tl-LTkandt0=0, we can give the analytical coning correction δφl,

    (23)

    (24)

    2.3 Algorithm example

    The coning correction forms expressed by Eqs.(3) and (4) can be also, respectively, rewritten as

    (25)

    (26)

    Using Eq.(18), we can design the coefficientsJss for anyN-sample algorithm. WhenL=N=4, the new 4-sample algorithm becomes

    (27)

    In addition, the coning coefficientsKss in Eq.(25) are designed by the same optimization method as given in the above. WhenL=N=4, the traditional 4-sample algorithm[3]becomes

    (28)

    3 Simulation

    To illustrate the properties of two 4-sample coning algorithms, algorithm errors are computed under coning environments and maneuver environments, and then algorithm performances are compared and analyzed. In each algorithm,Tk=1 ms,Tl=LTk, andL=N=4.

    In Fig.1, CFSn4 indicates the 4-sample coning algorithm based on Eq.(4) taking the coefficients determined by the coning frequency Taylor series method. CFSc4 represents the 4-sample coning algorithm based on Eq.(3) taking the coefficients determined by the coning frequency Taylor series method.

    Fig.1 Normalized average rotation error rate (β) and vs. coning frequency β/(2πTk)

    For algorithm performance evaluation, we set

    Q=5

    Then the extreme 2 s angular maneuver rate profile is given in Fig.2.

    Fig.2 Maneuver angular rate vs. time

    Fig.1 indicates that the new 4-sample coning algorithm CFSn4 and the traditional compressed 4-sample coning algorithm CFSc4, both with the coefficients optimized by using the coning frequency Taylor series method, have the same algorithm accuracy over the coning frequency range. It means that both algorithms are equivalent. This is because the new coning correction form defined by Eq.(4) and the traditional compressed coning correction form defined by Eq.(3) are both based on the coning motion properties and derived from the uncompressed form defined by Eq.(2).

    By comparing algorithm errors in the set maneuver environment, Fig.3 illustrates that the maneuver error of the new 4-sample coning algorithm CFSn4 approaches half that of the traditional compressed 4-sample coning algorithm CFSc4. For example, the maximum of thez-component of the maneuver error vector, as the maximum of three components of the error vector for the algorithm CFSn4, is approximately 2.2×10-6(°)/s (about 7.92×10-3(°)/h) and lies at 2 s, and that for the algorithm CFSc4 is approximately 4.2×10-6(°)/s (about 1.512×10-2(°)/h) and also lies at 2 s. It means that for a typical aircraft INS with a 0.01 (°)/h gyro error, the accuracy improvement of the algorithm CFSn4 is significant compared to the algorithm CFSc4 and can evidently improve the INS performance in maneuver environments.

    (a) (b) (c)

    4 Conclusion

    The proposed coning correction algorithm is efficient in coning environments and maneuver environments. The new coning algorithm and the traditional compressed coning algorithm have the same efficiency with the same computation load and coning accuracy. In maneuver environments, the performance of the proposed algorithm is clearly superior to that of the traditional compressed algorithm. The new 4-sample coning algorithm almost doubles in maneuver accuracy, compared to the traditional compressed 4-sample coning algorithm. The proposed algorithm has improved maneuver accuracy while maintaining coning accuracy and algorithm throughput.

    [1]Miller R B. A new strapdown attitude algorithm [J].JournalofGuidance,Control,andDynamics, 1983, 6(4): 287-291.

    [2]Lee J G, Mark J G, Tazartes D A, et al. Extension of strapdown attitude algorithm for high-frequency base motion [J].JournalofGuidance,Control,andDynamics, 1990, 13(4): 738-743.

    [3]Ignagni M B. Efficient class of optimized coning compensation algorithms [J].JournalofGuidance,Control,andDynamics, 1996, 19(2): 424-429.

    [4]Mark J G, Tazartes D A. Tuning of coning algorithms to gyro data frequency response characteristics [J].JournalofGuidance,Control,andDynamics, 2001, 24(4): 641-647.

    [5]Savage P G. Coning algorithm design by explicit frequency shaping [J].JournalofGuidance,Control,andDynamics, 2010, 33(4): 1123-1132.

    [6]Savage P G. Explicit frequency shaped coning algorithms for pseudoconing environments [J].JournalofGuidance,Control,andDynamics, 2011, 34(3): 774-782.

    [7]Tang C Y, Chen X Y, Li J L. Coning algorithm design for angular rate inputs [J].JournalofChineseInertialTechnology, 2013, 21(4): 456-461. (in Chinese)

    [8]Tang C Y, Chen X Y. An angular rate input attitude algorithm in SINS [J].JournalofSoutheastUniversity:NaturalScienceEdition, 2014, 44(3): 544-549. (in Chinese)

    [9]Tang C Y, Chen X Y. A generalized coning correction structure for attitude algorithms [J].MathematicalProblemsinEngineering, 2014, 2014: 1-15.

    [10]Chen J F, Chen X Y, Zhu X F. An improved coning algorithm based on second optimization [J].JournalofChineseInertialTechnology, 2012, 20(2): 131-135. (in Chinese)

    [11]Song M, Wu W Q, Pan X F. Approach to recovering maneuver accuracy in classical coning algorithms [J].JournalofGuidance,Control,andDynamics, 2013, 36(6): 1872-1881.

    [12]Tang C Y, Chen X Y. A class of coning algorithms based on a half-compressed structure [J].Sensors, 2014, 14(8): 14289-14301.

    一種提升圓錐算法機(jī)動性能的方法

    湯傳業(yè) 陳熙源 宋 銳

    (東南大學(xué)儀器科學(xué)與工程學(xué)院, 南京 210096)(東南大學(xué)微慣性儀表與先進(jìn)導(dǎo)航技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室, 南京 210096)

    為提高捷聯(lián)慣導(dǎo)姿態(tài)圓錐算法的機(jī)動性能,提出一種新的圓錐補(bǔ)償結(jié)構(gòu),該結(jié)構(gòu)通過在傳統(tǒng)結(jié)構(gòu)中增加一個子樣獲得.在給出經(jīng)典圓錐運(yùn)動定義的基礎(chǔ)上,推導(dǎo)了基于新的圓錐補(bǔ)償結(jié)構(gòu)的圓錐補(bǔ)償殘余誤差通式,并采用頻率泰勒方法設(shè)計了新的圓錐補(bǔ)償結(jié)構(gòu)系數(shù),從而獲得一類新的圓錐補(bǔ)償算法.定義了2種圓錐算法誤差模型,分別用于圓錐環(huán)境和機(jī)動環(huán)境下的圓錐算法性能評估.仿真結(jié)果表明:新的四子樣圓錐算法的機(jī)動精度比傳統(tǒng)四子樣圓錐算法的機(jī)動精度提高約1倍;與傳統(tǒng)的壓縮圓錐算法相比,新的圓錐算法在保持圓錐性能的同時具有更好的機(jī)動性能.

    圓錐算法;圓錐補(bǔ)償結(jié)構(gòu);機(jī)動性能;圓錐性能;頻率泰勒方法

    V241.6

    Received 2014-05-06.

    Biographies:Tang Chuanye (1982—), male, graduate; Chen Xiyuan (corresponding author), male, doctor, professor, chxiyuan@seu.edu.cn.

    s:The National Natural Science Foundation of China (No.51375087), the Specialized Research Fund for the Doctoral Program of Higher Education (No.20110092110039), the Public Science and Technology Research Funds Projects of Ocean (No.201205035), the Scientific Innovation Research of College Graduates in Jiangsu Province (No.CXZZ12_0097), the Scientific Research Foundation of Graduate School of Southeast University (No.YBJJ1349).

    :Tang Chuanye, Chen Xiyuan, Song Rui. An approach to improving maneuver performance of coning algorithm[J].Journal of Southeast University (English Edition),2014,30(4):439-444.

    10.3969/j.issn.1003-7985.2014.04.007

    10.3969/j.issn.1003-7985.2014.04.007

    猜你喜歡
    子樣機(jī)動性東南大學(xué)
    2024年2月24日,在北極邊緣演習(xí)中,美海軍陸戰(zhàn)隊的高機(jī)動性火炮火箭系統(tǒng)正在發(fā)射
    軍事文摘(2024年7期)2024-04-12 00:44:34
    旋轉(zhuǎn)式多比例分樣方法對作物籽粒分樣效果的研究
    《東南大學(xué)學(xué)報(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(醫(yī)學(xué)版)》稿約
    加標(biāo)回收率的辯證定論
    淺談減少煤樣采集誤差的方法
    快拍系統(tǒng) 5款相機(jī)攜帶系統(tǒng),在減輕身體負(fù)擔(dān)之余更保證機(jī)動性。
    基于BTT的反魚雷魚雷攔截彈道研究
    午夜av观看不卡| 最近最新中文字幕大全免费视频 | 美女午夜性视频免费| 啦啦啦在线观看免费高清www| 在线天堂中文资源库| 2021少妇久久久久久久久久久| av网站免费在线观看视频| 国产乱人偷精品视频| 水蜜桃什么品种好| 国产片内射在线| 天天躁日日躁夜夜躁夜夜| 观看av在线不卡| 侵犯人妻中文字幕一二三四区| 国产免费现黄频在线看| 亚洲精品第二区| 精品一区在线观看国产| av.在线天堂| 国产精品一区二区精品视频观看| 国产精品人妻久久久影院| 国产爽快片一区二区三区| 看免费av毛片| 视频区图区小说| 高清视频免费观看一区二区| 精品少妇久久久久久888优播| 女人精品久久久久毛片| 国产一区有黄有色的免费视频| 校园人妻丝袜中文字幕| 51午夜福利影视在线观看| 捣出白浆h1v1| 亚洲精华国产精华液的使用体验| 亚洲美女搞黄在线观看| 999精品在线视频| 国产xxxxx性猛交| 欧美日韩亚洲综合一区二区三区_| 在线观看免费日韩欧美大片| 桃花免费在线播放| 一区二区三区四区激情视频| 超碰97精品在线观看| 国产又爽黄色视频| 国产精品av久久久久免费| 国产麻豆69| 91精品伊人久久大香线蕉| 女的被弄到高潮叫床怎么办| 1024香蕉在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 中文字幕最新亚洲高清| 免费黄色在线免费观看| 精品国产一区二区三区四区第35| 在线看a的网站| 日韩制服骚丝袜av| 欧美 亚洲 国产 日韩一| 老司机靠b影院| 亚洲欧美成人精品一区二区| 交换朋友夫妻互换小说| 久久久久人妻精品一区果冻| 日本欧美国产在线视频| 波多野结衣av一区二区av| 欧美日韩综合久久久久久| 日韩大码丰满熟妇| 国产成人啪精品午夜网站| 水蜜桃什么品种好| 赤兔流量卡办理| 日韩人妻精品一区2区三区| 亚洲美女视频黄频| 超碰成人久久| 亚洲精品久久成人aⅴ小说| 永久免费av网站大全| 国产欧美日韩综合在线一区二区| 久久97久久精品| 97精品久久久久久久久久精品| 日韩 欧美 亚洲 中文字幕| 亚洲av日韩精品久久久久久密 | 激情视频va一区二区三区| 亚洲美女搞黄在线观看| 女人久久www免费人成看片| 亚洲激情五月婷婷啪啪| 亚洲精品av麻豆狂野| 国产免费一区二区三区四区乱码| 中文字幕制服av| 国产成人精品福利久久| av福利片在线| 精品第一国产精品| 免费黄网站久久成人精品| 男女床上黄色一级片免费看| 亚洲国产av影院在线观看| 亚洲av电影在线观看一区二区三区| 丰满少妇做爰视频| 男人添女人高潮全过程视频| 肉色欧美久久久久久久蜜桃| 欧美日韩福利视频一区二区| 美国免费a级毛片| 国产成人欧美| 99国产精品免费福利视频| 亚洲av日韩精品久久久久久密 | 亚洲精品自拍成人| 国产成人av激情在线播放| 老司机在亚洲福利影院| 老熟女久久久| 叶爱在线成人免费视频播放| 日韩不卡一区二区三区视频在线| 日韩成人av中文字幕在线观看| 亚洲精品国产av成人精品| 青春草国产在线视频| 亚洲第一av免费看| 欧美最新免费一区二区三区| 色婷婷av一区二区三区视频| 少妇猛男粗大的猛烈进出视频| 日本欧美国产在线视频| 久热这里只有精品99| 精品国产乱码久久久久久男人| 久久免费观看电影| 男女高潮啪啪啪动态图| 欧美日韩av久久| 精品人妻在线不人妻| 精品国产一区二区三区久久久樱花| 久久天躁狠狠躁夜夜2o2o | 一级毛片 在线播放| 校园人妻丝袜中文字幕| 日韩一区二区三区影片| 国产不卡av网站在线观看| 制服丝袜香蕉在线| 亚洲成国产人片在线观看| 日日爽夜夜爽网站| 悠悠久久av| 精品人妻在线不人妻| 免费观看av网站的网址| 精品午夜福利在线看| 日韩中文字幕视频在线看片| 黄色视频在线播放观看不卡| 精品一区二区三卡| 天堂中文最新版在线下载| 别揉我奶头~嗯~啊~动态视频 | 午夜福利影视在线免费观看| 亚洲国产欧美日韩在线播放| 欧美黄色片欧美黄色片| 欧美精品一区二区大全| 亚洲一级一片aⅴ在线观看| 久久97久久精品| 国产黄色视频一区二区在线观看| 黄片小视频在线播放| 人成视频在线观看免费观看| 国产亚洲欧美精品永久| 精品久久久精品久久久| 久久久久久人人人人人| 90打野战视频偷拍视频| 久久这里只有精品19| 久久久久久久精品精品| 韩国高清视频一区二区三区| 最近中文字幕2019免费版| 日本一区二区免费在线视频| 看免费av毛片| 婷婷成人精品国产| 91精品三级在线观看| 久久久久久久久久久久大奶| 国产亚洲最大av| 丝袜脚勾引网站| 午夜福利视频在线观看免费| 亚洲欧美一区二区三区黑人| 大片电影免费在线观看免费| 久久精品亚洲熟妇少妇任你| 18禁国产床啪视频网站| 91国产中文字幕| 国产片内射在线| 一级a爱视频在线免费观看| 日韩一区二区视频免费看| 天堂中文最新版在线下载| 精品久久蜜臀av无| 久久久久网色| 国产又色又爽无遮挡免| 亚洲人成电影观看| 国产成人免费无遮挡视频| 啦啦啦啦在线视频资源| 亚洲精华国产精华液的使用体验| 少妇的丰满在线观看| 最近手机中文字幕大全| 久久婷婷青草| 电影成人av| 国产精品欧美亚洲77777| av女优亚洲男人天堂| 久久婷婷青草| 天天操日日干夜夜撸| 可以免费在线观看a视频的电影网站 | 亚洲国产精品成人久久小说| 日韩 欧美 亚洲 中文字幕| 精品福利永久在线观看| 久久久久人妻精品一区果冻| 狂野欧美激情性bbbbbb| 久久天堂一区二区三区四区| 欧美日韩成人在线一区二区| 久久影院123| 国产亚洲一区二区精品| 欧美激情 高清一区二区三区| 高清视频免费观看一区二区| 国产一卡二卡三卡精品 | 国产免费视频播放在线视频| 七月丁香在线播放| 亚洲一区中文字幕在线| 宅男免费午夜| 国产精品无大码| 91精品伊人久久大香线蕉| 久久久久久久大尺度免费视频| 久久久久久人人人人人| 欧美人与性动交α欧美精品济南到| 哪个播放器可以免费观看大片| 亚洲国产中文字幕在线视频| 色视频在线一区二区三区| 一边摸一边抽搐一进一出视频| 免费黄色在线免费观看| 999久久久国产精品视频| 国产成人a∨麻豆精品| 亚洲成国产人片在线观看| 国产一区二区 视频在线| 亚洲欧美一区二区三区黑人| 女性生殖器流出的白浆| 国产精品香港三级国产av潘金莲 | 午夜激情av网站| 亚洲熟女毛片儿| 在线观看人妻少妇| 午夜日本视频在线| 校园人妻丝袜中文字幕| 精品亚洲成a人片在线观看| 精品国产一区二区三区久久久樱花| 男人操女人黄网站| 免费人妻精品一区二区三区视频| 中国三级夫妇交换| 狂野欧美激情性xxxx| 9色porny在线观看| 亚洲国产欧美网| 久久精品亚洲熟妇少妇任你| 国产精品一二三区在线看| 久久久久久人人人人人| 国产淫语在线视频| kizo精华| 90打野战视频偷拍视频| 亚洲欧美一区二区三区黑人| 亚洲精品久久久久久婷婷小说| 亚洲熟女精品中文字幕| www.精华液| av天堂久久9| 99九九在线精品视频| 丁香六月天网| 午夜日本视频在线| 青青草视频在线视频观看| 亚洲国产毛片av蜜桃av| 欧美精品一区二区大全| 久久久久久久精品精品| 美女中出高潮动态图| 日韩伦理黄色片| 最近手机中文字幕大全| 欧美97在线视频| av在线观看视频网站免费| 亚洲情色 制服丝袜| 婷婷色av中文字幕| 香蕉丝袜av| 亚洲国产中文字幕在线视频| 中文字幕亚洲精品专区| 欧美黄色片欧美黄色片| 国产麻豆69| 亚洲婷婷狠狠爱综合网| 久久精品aⅴ一区二区三区四区| 视频区图区小说| 老司机深夜福利视频在线观看 | 国产99久久九九免费精品| 国产亚洲一区二区精品| 免费观看人在逋| 男女边吃奶边做爰视频| 黄色 视频免费看| 久久免费观看电影| 亚洲情色 制服丝袜| 乱人伦中国视频| 大话2 男鬼变身卡| 国产精品女同一区二区软件| 秋霞伦理黄片| 亚洲欧洲国产日韩| 老司机在亚洲福利影院| 国产成人精品久久二区二区91 | 蜜桃国产av成人99| 不卡视频在线观看欧美| 午夜久久久在线观看| 亚洲精品在线美女| 欧美日韩一区二区视频在线观看视频在线| 男女国产视频网站| 国产一区有黄有色的免费视频| 免费人妻精品一区二区三区视频| 99久久99久久久精品蜜桃| 天天影视国产精品| 中国三级夫妇交换| 麻豆乱淫一区二区| 欧美激情高清一区二区三区 | a级片在线免费高清观看视频| 91aial.com中文字幕在线观看| av卡一久久| 成年av动漫网址| 久久人妻熟女aⅴ| 男女边吃奶边做爰视频| 国产在线一区二区三区精| 18在线观看网站| 丁香六月欧美| 欧美变态另类bdsm刘玥| 日本wwww免费看| 国产精品一二三区在线看| 肉色欧美久久久久久久蜜桃| 国产精品女同一区二区软件| videos熟女内射| 欧美人与性动交α欧美精品济南到| 高清欧美精品videossex| 国产精品久久久人人做人人爽| 最黄视频免费看| 久久精品久久久久久久性| 国产精品av久久久久免费| 激情五月婷婷亚洲| av在线老鸭窝| 成人国语在线视频| 蜜桃国产av成人99| 亚洲欧美精品自产自拍| 久久人人爽av亚洲精品天堂| 久久毛片免费看一区二区三区| 操出白浆在线播放| 97人妻天天添夜夜摸| 国产在线视频一区二区| 青青草视频在线视频观看| 天天躁狠狠躁夜夜躁狠狠躁| 香蕉国产在线看| 精品卡一卡二卡四卡免费| 考比视频在线观看| 国产一区亚洲一区在线观看| 日日啪夜夜爽| 大香蕉久久成人网| 亚洲四区av| 香蕉丝袜av| 青青草视频在线视频观看| 伊人久久国产一区二区| 又大又爽又粗| 一级a爱视频在线免费观看| 人人妻人人澡人人爽人人夜夜| 成人三级做爰电影| 国产色婷婷99| 日韩一卡2卡3卡4卡2021年| 亚洲欧美中文字幕日韩二区| 看免费成人av毛片| 黑人猛操日本美女一级片| 日韩制服丝袜自拍偷拍| 日韩一本色道免费dvd| 中文乱码字字幕精品一区二区三区| 在线天堂中文资源库| 777米奇影视久久| 日本91视频免费播放| 汤姆久久久久久久影院中文字幕| www日本在线高清视频| 亚洲成色77777| 亚洲av电影在线观看一区二区三区| 妹子高潮喷水视频| 在线天堂中文资源库| 亚洲av男天堂| 久久人人爽人人片av| 久久亚洲国产成人精品v| 国产97色在线日韩免费| 日韩一区二区三区影片| 汤姆久久久久久久影院中文字幕| 亚洲一区中文字幕在线| 看免费成人av毛片| 一二三四中文在线观看免费高清| 亚洲精华国产精华液的使用体验| 女人精品久久久久毛片| 国产精品久久久av美女十八| 国产国语露脸激情在线看| 欧美成人精品欧美一级黄| 成人毛片60女人毛片免费| 啦啦啦在线免费观看视频4| 99国产精品免费福利视频| 可以免费在线观看a视频的电影网站 | 免费看不卡的av| 国产精品 欧美亚洲| 丁香六月天网| 午夜av观看不卡| 国产无遮挡羞羞视频在线观看| 久久人妻熟女aⅴ| 国精品久久久久久国模美| 不卡视频在线观看欧美| 制服人妻中文乱码| 久久婷婷青草| 国产人伦9x9x在线观看| 丁香六月天网| 一区二区av电影网| 自线自在国产av| 国产黄频视频在线观看| 麻豆乱淫一区二区| 免费观看a级毛片全部| 曰老女人黄片| 叶爱在线成人免费视频播放| av国产精品久久久久影院| 精品国产一区二区三区四区第35| 成人国产av品久久久| 丰满少妇做爰视频| 美女高潮到喷水免费观看| svipshipincom国产片| av在线app专区| 一区二区三区精品91| 国产片特级美女逼逼视频| 国产男女超爽视频在线观看| netflix在线观看网站| 亚洲男人天堂网一区| 国产精品免费大片| 熟女av电影| 中文精品一卡2卡3卡4更新| 国产深夜福利视频在线观看| 女人精品久久久久毛片| 久久久久久久大尺度免费视频| bbb黄色大片| 欧美成人午夜精品| 国产 一区精品| 亚洲精品第二区| 中文字幕另类日韩欧美亚洲嫩草| 免费在线观看视频国产中文字幕亚洲 | 中国国产av一级| 精品国产一区二区三区四区第35| 久久久精品国产亚洲av高清涩受| 国产一卡二卡三卡精品 | 亚洲av男天堂| 久久狼人影院| 一本色道久久久久久精品综合| 麻豆乱淫一区二区| 十八禁人妻一区二区| 婷婷成人精品国产| 中文欧美无线码| 精品少妇一区二区三区视频日本电影 | 一级片免费观看大全| 国产黄色视频一区二区在线观看| 亚洲精品aⅴ在线观看| 咕卡用的链子| av有码第一页| 亚洲欧美清纯卡通| 国产成人精品在线电影| 人人妻人人添人人爽欧美一区卜| 国产一区二区激情短视频 | 国产精品av久久久久免费| 大片电影免费在线观看免费| 国产不卡av网站在线观看| www.精华液| 国产一区有黄有色的免费视频| 国产精品三级大全| 日韩一区二区视频免费看| 亚洲成国产人片在线观看| tube8黄色片| av片东京热男人的天堂| 天天躁夜夜躁狠狠躁躁| 99精品久久久久人妻精品| 超碰97精品在线观看| 免费人妻精品一区二区三区视频| 国产精品国产三级国产专区5o| 精品免费久久久久久久清纯 | 久久久精品94久久精品| 日韩视频在线欧美| 中文字幕色久视频| 日本91视频免费播放| 亚洲欧美成人综合另类久久久| 国产日韩欧美亚洲二区| 精品一区二区免费观看| 日韩一区二区视频免费看| 一本—道久久a久久精品蜜桃钙片| 亚洲精品久久成人aⅴ小说| av网站在线播放免费| 黄片小视频在线播放| 国产野战对白在线观看| 日韩精品有码人妻一区| 免费黄网站久久成人精品| 久久久久视频综合| 涩涩av久久男人的天堂| 精品久久久久久电影网| 久久精品aⅴ一区二区三区四区| 可以免费在线观看a视频的电影网站 | 国产精品av久久久久免费| 国产免费视频播放在线视频| 看十八女毛片水多多多| 老司机亚洲免费影院| 久久人妻熟女aⅴ| 午夜91福利影院| av有码第一页| 在线观看免费高清a一片| 天天添夜夜摸| 又黄又粗又硬又大视频| 成年美女黄网站色视频大全免费| 精品少妇一区二区三区视频日本电影 | 91国产中文字幕| 亚洲欧美激情在线| 一区二区三区精品91| 伊人久久大香线蕉亚洲五| 别揉我奶头~嗯~啊~动态视频 | 成人黄色视频免费在线看| 久久精品国产a三级三级三级| 久久精品久久久久久噜噜老黄| 亚洲精品中文字幕在线视频| 99久久精品国产亚洲精品| 亚洲国产精品国产精品| √禁漫天堂资源中文www| 精品人妻在线不人妻| 亚洲综合色网址| 深夜精品福利| 黄片播放在线免费| 亚洲欧美成人精品一区二区| 9191精品国产免费久久| 成年美女黄网站色视频大全免费| 青春草国产在线视频| 91国产中文字幕| 国产乱人偷精品视频| 十分钟在线观看高清视频www| 午夜免费男女啪啪视频观看| 男女边吃奶边做爰视频| 伦理电影大哥的女人| 午夜日韩欧美国产| 母亲3免费完整高清在线观看| 一边摸一边抽搐一进一出视频| 大话2 男鬼变身卡| 丝袜在线中文字幕| 亚洲欧洲国产日韩| 日韩欧美一区视频在线观看| 夫妻午夜视频| 日韩熟女老妇一区二区性免费视频| 国产av国产精品国产| 亚洲av日韩在线播放| 国产精品嫩草影院av在线观看| 黑丝袜美女国产一区| 老司机深夜福利视频在线观看 | 日日摸夜夜添夜夜爱| 男女之事视频高清在线观看 | √禁漫天堂资源中文www| 午夜免费观看性视频| 午夜激情久久久久久久| 亚洲在久久综合| 高清不卡的av网站| 伊人亚洲综合成人网| 一级黄片播放器| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美 日韩 精品 国产| 亚洲熟女精品中文字幕| 嫩草影视91久久| 亚洲天堂av无毛| 18禁动态无遮挡网站| 极品人妻少妇av视频| 久久精品国产a三级三级三级| 午夜老司机福利片| 久久精品aⅴ一区二区三区四区| 成人影院久久| 一级毛片黄色毛片免费观看视频| 美女国产高潮福利片在线看| 99精品久久久久人妻精品| 久久精品国产a三级三级三级| 国产片内射在线| 成年av动漫网址| svipshipincom国产片| 人人妻人人澡人人爽人人夜夜| 午夜日韩欧美国产| 日韩大码丰满熟妇| 老司机靠b影院| e午夜精品久久久久久久| 日本91视频免费播放| 精品一区二区三区av网在线观看 | 国产成人午夜福利电影在线观看| 久久精品国产综合久久久| av在线观看视频网站免费| 丝袜喷水一区| 色视频在线一区二区三区| 最近最新中文字幕大全免费视频 | 久久久久久久久久久免费av| 777久久人妻少妇嫩草av网站| 久久精品久久久久久噜噜老黄| av视频免费观看在线观看| 中文字幕高清在线视频| 亚洲精品视频女| 精品亚洲乱码少妇综合久久| 亚洲情色 制服丝袜| 在线看a的网站| 国产爽快片一区二区三区| 久久久精品国产亚洲av高清涩受| 免费看不卡的av| 亚洲,一卡二卡三卡| 亚洲成色77777| 日韩中文字幕欧美一区二区 | 成年女人毛片免费观看观看9 | 亚洲欧美清纯卡通| 国产女主播在线喷水免费视频网站| 啦啦啦啦在线视频资源| 日韩伦理黄色片| tube8黄色片| 中文字幕av电影在线播放| 香蕉丝袜av| 99久国产av精品国产电影| 久久精品久久久久久噜噜老黄| 午夜福利视频在线观看免费| 日韩中文字幕视频在线看片| 国产成人精品福利久久| 国产精品一区二区精品视频观看| 亚洲色图 男人天堂 中文字幕| 午夜精品国产一区二区电影| 一边亲一边摸免费视频| 国产成人午夜福利电影在线观看| 欧美 亚洲 国产 日韩一| 婷婷色麻豆天堂久久| 久久久久国产精品人妻一区二区| 日本vs欧美在线观看视频| 日本欧美视频一区| 黄色毛片三级朝国网站| 欧美xxⅹ黑人| 男人爽女人下面视频在线观看| 亚洲av成人精品一二三区| 国产成人系列免费观看| 国产99久久九九免费精品| 精品国产一区二区三区久久久樱花| 欧美 亚洲 国产 日韩一| 人人妻人人澡人人看| 日韩视频在线欧美| 99久久99久久久精品蜜桃| 免费女性裸体啪啪无遮挡网站| 成年av动漫网址| 成人三级做爰电影|