• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of heat pulse signals determination for sediment-water interface fluxes

    2014-09-06 10:49:43ZhuTengyiRajendraPrasadSinghFuDafang
    關鍵詞:溫升沉積物頂點

    Zhu Tengyi Rajendra Prasad Singh Fu Dafang

    (School of Civil Engineering, Southeast University, Nanjing 210096, China)

    ?

    Analysis of heat pulse signals determination for sediment-water interface fluxes

    Zhu Tengyi Rajendra Prasad Singh Fu Dafang

    (School of Civil Engineering, Southeast University, Nanjing 210096, China)

    The heat pulse signal is analyzed in a new way with the goals of clarifying the relationships between the variables in the heat transfer problem and simplifying the procedure for calculating sediment-water interface fluxesJ. Only three parametersx0,λand (pc)lare needed to calculateJby the heat pulse data for this analysis method. The results show that there is a curvilinear relationship between the peak temperature arrival time and sediment-water interface fluxes; and there exists a simple linear relationship between sediment-water interface fluxes and the natural log of the ratio of the temperature increase downstream from the line heat source to the temperature increase upstream from the heat source. The simplicity of this relationship makes the heat pulse sensors an attractive option for measuring soil water fluxes.

    sediment-water interface flux; seepage meter; heat pulse; peak arrival time

    Direct measurements of water flux across the sediment-water interface can be realized by seepage meters[1-4]. Many environmental scientists are interested in understanding the magnitude and direction of sediment-water interface fluxJat a particular location. This interest arises from the major role ofJin processes such as infiltration, runoff and subsurface chemical transport.Jcan be varied widely in time and space depending on the sediment and environmental conditions. This variability makes the modeling ofJdifficult. In some cases, measuringJdirectly would be a more attractive option than modelingJ. However, only a few practical techniques are available for the measuring ofJin in-situ conditions.

    Byrne et al.[5-6]introduced the idea of using heat as a tracer to measureJ. They measured distortion of the steady state thermal field around point and heat sources. Based on the work of Byrne et al.[5-6]and Melville et al.[7], an improved heat pulse technique was developed by Ren et al.[8]to measureJ. The probe used by Ren et al.[8]consisted of three stainless steel needles embedded in a waterproof epoxy body. The center needle contained a resistance heater, and the outer two needles contained thermocouples. This experimental setup is shown in Fig.1. Heat transfer away from the central needle occurred via conduction and convection. The resulting temperature increase at the thermocouples in the two outer needles was measured and recorded by an external datalogger. The convection of heat by the flowing water resulted in a larger temperature increase downstream from the heat source than upstream from the heat source.Tu,TdandHare the upstream sensor, the downstream sensor and the heater, respectively.

    Fig.1 Conceptual drawing of the flow sensor

    Ren et al.[8-9]developed an analytical solution for the appropriate heat transfer equation, and explained that this solution could be used to calculateJfrom the difference between the measured temperature increasing at the downstream and upstream needles if the thermal properties of the soil or sediment are known. The main disadvantage of this solution is that it contains an integral that requires the numerical integration. Kluitenberg and Warrick[10]improved the evaluation procedure by converting the equations into the well function for leaky aquifers and by using an infinite series to approximate the well function. Although the improved method eliminates the need for numerical integration, it is still inconvenient to analyze the relationships among variables and to estimateJbecause the infinite series is quite complicated.

    Hence, in this paper we analyzed the heat pulse signal in a new way with the goals of clarifying the relationships between the variables in this heat transfer problem and simplifying the procedure for calculatingJfrom heat pulse measurements.

    1 Theory

    1.1 General solution for heat transfer equation

    The theory of heat flow has been a subject of investigation for centuries. Numerous papers and books have been written on this subject. Probably the most comprehensive book on the subject within the last century was “Conduction of heat in solids” by Carslaw and Jaeger[11]. When the developed theories are applied to physical problem, it is often necessary to approximate either the initial or boundary conditions. For a simple solution that can describe the thermograph, one would either want an instantaneous pulse of heat, a step of heat, or a square wave pulse. None of the normally assumed initial conditions are reasonable explanation of the heat input produced by the heater. As a result, the shape of the thermograph observed in the physical system is inconsistent with the shape produced by the common mathematical developments. To overcome this problem, Taniguchi et al.[12]proposed using the time when the peak temperature is detected at the thermistors to determine the velocity of the heat. They took the derivative of an analytical solution with ideal boundary conditions. The peak temperature occurs when the derivative equals zero. Their development yields the following equation whentmax> 0 andU>0:

    (1)

    whereUis the velocity;tmaxis the peak temperature arrival time measured by the thermistor at distancexfrom the heat source; andκis the thermal conductivity of water divided by the specific heat and density.

    The water velocity is proportional but not equal to the thermal velocity. If one can assume that there is no thermal gradient in the radial direction (instantaneous heat transfer in the radial direction) and there is no heat loss from the pipe, then the thermal velocity will be slower and directionally proportional to the water velocity. The technique proposed by Taniguchi and Fukuo[12]is suitable for measuring the higher flow rates when the advective process dominates. It uses the difference in peak arrival times between thermistors to estimate flow rates.

    Ren et al.[8]proposed a solution using heat transfer equation analysis to determine the heat pulse:

    (2)

    whereTis the temperature increase, ℃;tis the time,s;αis the thermal diffusivity of water,m2/s-1; andxandyare the space coordinates (distance between the thermistor and the heat source); andVis the velocity, m/s.

    Ren et al.[8]presented a solution for Eq.(2) corresponding to a heat pulse produced by an infinite line source in an infinite, homogenous, porous media through which water is flowing uniformly,

    0

    (3)

    t>t0

    (4)

    whereqis the heating power,W/m;t0is the heat pulse duration, s;Vis the heat pulse velocity;λ=αρcis the thermal conductivity,W/(m·℃)-1;s=t-t′. This solution is based on the assumption that the conductive heat transfer dominates over the convective heat transfer.

    The temperature increase at a distanceχddirectly downstream from the line source is

    (5)

    (6)

    The temperature increase at a distanceχddirectly upstream from the line source is

    (7)

    (8)

    The flux meter typical temperature increase vs. time curves generated using Eqs.(5) to (8) is shown in Fig.2.

    Fig.2 Typical temperature increase vs. time curves (V=5×10-5m/s,α=1.4×10-7m2/s,λ=0.58 W/(m·K)-1,χ0=0.005 m, q=40 W/m for heating of 6 s, q=20 W/m for heating of 3 s)

    1.2 Difference of downstream and upstream temper-ature increases

    Ren’s method is not exactly suitable for determining seepage flux meter due to the large heat losses transferred to the air and water. It is also hard to determine how much energy will be lost in the system. But it is useful to analyze temperature distribution, so we focus on the analysis of dimensionless temperature difference (DTD). This solution is as follows:

    (9)

    Eq.(9) indicates that the dimensionless temperature difference is a function ofV,t0,qand the thermal properties of the water. Fig.3 shows the heat pulse signal converted to the DTD. The maximum value of the DTD (MDTD) is given by

    MDTD=

    (10)

    wheretmis the time at which DTD reaches a maximum. By evaluating Eq.(10) forVon the order of 10-5m/s, we found a close linear relationship betweenVand MDTD.

    Graphical evaluation of Eq.(10) reveals a close unique relationship between MDTD andV(see Fig.4). This result is in consistent with the results of Ren et al[8]. This relationship suggests that measurement of MDTD can provide a useful means of estimatingV.

    Fig.3 Heat pulse signal converted to DTD

    1.3 Ratio of downstream and upstream temperature increases

    By dividing Eq.(6) with Eq.(8) for a heating period, we can get the ratio of downstream and upstream temperature increases whenxd=xu=x0.

    (11)

    Fig.4 Relationship between MDTD and V

    Eq.(11) demonstrates that whenxd=xu=x0, the ratio of the downstream temperature increase to the upstream temperature increase (Td/Tu) is independent of time[13]. Whenxd=xu=x0,Td/Tuis only a function ofx0,Vandα, unlike MDTD, independent oft0,λandq. Fig.5 shows the heat pulse signal converted toTd/Tuand reveals that there is no significant difference between 3 and 6 s heating condition.

    Fig.5 Heat pulse signal converted to Td/Tu

    2 Discussion

    The main objective of this new analysis is to clarify the relationships between the key variable in the heat pulse technique for measuringJ. Three interesting relationships were revealed by this new analysis and some implications of the relationships were also studied. First, Eq.(11) reveals thatTd/Tuis a function of a single dimensionless number,Vχ0/α. Fig.4 shows MDTD and ln(Td/Tu) as functions ofVχ0/α. The slope of the MDTD vs.Vχ0/αrelationship depends on the values ofχ0,α,t0,qandλ, but the slope of ln(Td/Tu) vs.Vχ0/αshould always be equal to the one as long as conduction is the dominant mechanism of the heat transfer.

    The second interesting fact about the heat pulse technique revealed by this new mathematical analysis is that wheneverxd=xu, the maximum temperature increases at the upstream and downstream positions occur simultaneously regardless of the magnitude ofV. The heat pulse signal travels upstream just as rapidly as it does downstream. The magnitude of the signal is decreased in the upstream direction.

    The third noteworthy finding of this mathematical analysis is a new insight into the relationship between MDTD andJ. Ren et al.[8]found a close linear relationship between MDTD andV, but they were unable to explicitly state the form of the relationship due to the complexity of their solution equation (Eq.(10)). To consider the relationship betweenJandTd/Tu, if we combine Eq.(11) andV=J(pc)l/pc(whereρcis the volumetric heat capacity of the multiphase system,J/(m3·C)-1; (pc)lis the volumetric heat capacity of the liquid), we can obtain the following equation:

    (12)

    The explicit form of Eq.(12) can make it very useful for designing an implement calibration procedure. In this case, only three parametersx0,λand (pc)lare required when we use Eq.(12) to calculateJfrom heat pulse data compared with the procedures of Ren et al[8].

    Another objective of this study is to simplify the procedure for calculatingJfrom the heat pulse in cases where the soil thermal properties are known. In this case, to calculateJfrom heat pulse measurements using the Ren’s equations requires a numerical integration routine coupled with a nonlinear regression routine. With these two routines one can obtainJ. These are all simple, explicit equations that can be easily evaluated using a simple calculator or a data logger.λis the soil thermal property used to calculateJ(Eq.(12)). In the case, the soil thermal properties are not knownapriori, and it is not clear whether it is possible to calculateJusing Ren’s equations (Eq.(2)). However, the results of our analyses show that we can obtain some information from the heat pulse data even withoutaprioriknowledge of the soil thermal properties.Vcan be calculated from Eq.(11) and Eq.(12). OnceVis known, only an estimate ofρcis needed to calculateJ.

    3 Conclusion

    Using Eq.(12), only three parametersx0,λand (pc)lare needed to calculate the water flux densityJfrom heat pulse data. Ren’s method has some disadvantages. The first is that the calculation requires numerical integration, which is not trivial and may induce some error. The second disadvantage is that they used only a single data point, the MDTD. The measurement accuracy of that single point will directly affect the calculatedJ. The new analysis presented in this paper enables an average value ofTd/Tuover an appropriate time interval to be used with Eq.(11) to calculateV, which can be converted toJ. This averaging can reduce the influence of measurement error in a single data point. The previous methods do not provide any method to calculateVifαis unknown; however, this new analysis still needs to be improved upon.

    [1]Lien B K. Development and demonstration of a bidirectional advective flux meter for sediment-water interface[R]. Cincinnati, OH, USA: National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency,2006:12-40.

    [2]Smith A J, Herne D E, Turner J V. Wave effects on submarine groundwater seepage measurement[J].AdvancesinWaterResources, 2009, 32(6): 820-833.

    [3]Mwashote B, Burnett W, Chanton J, et al. Calibration and use of continuous heat-type automated seepage meters for submarine groundwater discharge measurements[J].Estuarine,CoastalandShelfScience, 2010, 87(1): 1-10.

    [4]Swarzenski P W, Izbicki J A. Coastal groundwater dynamics off Santa Barbara, California: combining geochemical tracers, electromagnetic seepmeters, and electrical resistivity[J].Estuarine,CoastalandShelfScience, 2009, 83(1): 77-89.

    [5]Byrne G, Drummond J, Rose C. A sensor for water flux in soil.“Point source” instrument[J].WaterResourcesResearch, 1967, 3(4): 1073-1078.

    [6]Byrne G, Drummond J, Rose C. A sensor for water flux in soil. 2. “Line source” instrument[J].WaterResourcesResearch, 1968, 4(3): 607-611.

    [7]Melville J G, Molz F J, Güven O. Laboratory investigation and analysis of a ground-water flowmeter[J].GroundWater, 1985, 23(4): 486-495.

    [8]Ren T, Kluitenberg G, Horton R. Determining soil water flux and pore water velocity by a heat pulse technique[J].SoilScienceSocietyofAmericaJournal, 2000, 64(2): 552-560.

    [9]Wang Q, Ochsner T E, Horton R. Mathematical analysis of heat pulse signals for soil water flux determination[J].WaterResourcesResearch, 2002, 38(6): 27-1-27-7.

    [10]Kluitenberg G, Warrick A. Improved evaluation procedure for heat-pulse soil water flux density method[J].SoilScienceSocietyofAmericaJournal, 2001, 65(2): 320-323.

    [11]Carslaw H S, Jaeger J C.Conductionofheatinsolids[M]. 2nd ed. Oxford: Clarendon Press, 1959.

    [12]Taniguchi M, Fukuo Y. Continuous measurements of groundwater seepage using an automatic seepage meter[J].GroundWater, 1993, 31(4): 675-679.

    [13]Kluitenberg G, Ochsner T, Horton R. Improved analysis of heat pulse signals for soil water flux determination[J].SoilScienceSocietyofAmericaJournal, 2007, 71(1): 53-55.

    沉積物-水界面通量測定中熱脈沖信號分析

    朱騰義 Rajendra Prasad Singh 傅大放

    (東南大學土木工程學院, 南京 210096)

    分析了熱脈沖傳感器脈沖信號與沉積物-水界面通量之間的傳熱問題,并通過優(yōu)化程序,提出了用熱脈沖測定計算界面通量J的新方法.此分析方法只需3個實驗參數,即x0,λ和(pc)l就可利用熱脈沖測定數據計算出沉積物-水界面通量J.數據分析結果表明:熱脈沖頂點溫度到達時間與水流速度呈曲線關系;沉積物-水界面通量和熱源上下游溫升比值的自然對數之間存在一種簡單的線性關系.這種簡單的線性關系,有利于熱脈沖型傳感器在土壤-水界面通量測定中的廣泛應用.

    沉積物-水界面通量; 滲流儀; 熱脈沖; 頂點溫度到達時間

    X830.3

    The Priority Academic Program Development of Jiangsu Higher Education Institutions.

    :Zhu Tengyi, Rajendra Prasad Singh, Fu Dafang.Analysis of heat pulse signals determination for sediment-water interface fluxes[J].Journal of Southeast University (English Edition),2014,30(2):192-196.

    10.3969/j.issn.1003-7985.2014.02.010

    10.3969/j.issn.1003-7985.2014.02.010

    Received 2013-10-18.

    Biographies:Zhu Tengyi (1984—), male, graduate; Fu Dafang (corresponding author), male, doctor, professor, fdf@seu.edu.cn.

    猜你喜歡
    溫升沉積物頂點
    電機溫升試驗分析及無人值守電機溫升試驗優(yōu)化
    防爆電機(2022年5期)2022-11-18 07:40:48
    電機溫升計算公式的推導和應用
    防爆電機(2022年4期)2022-08-17 05:59:50
    晚更新世以來南黃海陸架沉積物源分析
    海洋通報(2022年2期)2022-06-30 06:07:04
    過非等腰銳角三角形頂點和垂心的圓的性質及應用(下)
    中等數學(2021年9期)2021-11-22 08:06:58
    渤海油田某FPSO污水艙沉積物的分散處理
    海洋石油(2021年3期)2021-11-05 07:43:12
    水體表層沉積物對磷的吸收及釋放研究進展
    關于頂點染色的一個猜想
    山東科學(2018年6期)2018-12-20 11:08:58
    LED照明光源的溫升與散熱分析
    電子制作(2018年2期)2018-04-18 07:13:36
    討論用ICP-AES測定土壤和沉積物時鈦對鈷的干擾
    降低GIS局部溫升的研究
    河南科技(2014年14期)2014-02-27 14:11:56
    菩萨蛮人人尽说江南好唐韦庄 | 亚洲av不卡在线观看| 禁无遮挡网站| 亚洲五月天丁香| 日本免费a在线| 亚洲国产欧美人成| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 黄色欧美视频在线观看| 高清毛片免费看| 蜜桃久久精品国产亚洲av| 成人二区视频| 麻豆av噜噜一区二区三区| 精品人妻熟女av久视频| 国产亚洲av嫩草精品影院| 亚洲婷婷狠狠爱综合网| 搡老妇女老女人老熟妇| 91久久精品国产一区二区三区| 久久精品国产亚洲av香蕉五月| 亚洲国产精品sss在线观看| 色哟哟哟哟哟哟| 全区人妻精品视频| av天堂中文字幕网| 成人高潮视频无遮挡免费网站| 午夜免费男女啪啪视频观看| 国产成人精品一,二区 | 免费观看a级毛片全部| 日本五十路高清| 亚洲精品自拍成人| 国产成人精品久久久久久| 国产亚洲精品久久久久久毛片| 国产精品一区二区三区四区免费观看| 在线播放无遮挡| 国产在线男女| a级一级毛片免费在线观看| 丝袜喷水一区| 又黄又爽又刺激的免费视频.| 欧洲精品卡2卡3卡4卡5卡区| 一卡2卡三卡四卡精品乱码亚洲| 性欧美人与动物交配| 热99re8久久精品国产| 亚洲国产精品成人久久小说 | 黄色配什么色好看| 国产探花极品一区二区| 在线国产一区二区在线| 亚洲国产日韩欧美精品在线观看| 国产亚洲精品av在线| a级一级毛片免费在线观看| 啦啦啦韩国在线观看视频| 国产精品永久免费网站| 蜜桃久久精品国产亚洲av| 欧美极品一区二区三区四区| 国产亚洲欧美98| 久久草成人影院| 国产中年淑女户外野战色| 国产真实乱freesex| 精品欧美国产一区二区三| 亚洲欧美日韩高清专用| 日本欧美国产在线视频| 亚洲欧美日韩高清专用| 亚洲欧美中文字幕日韩二区| 可以在线观看的亚洲视频| 热99re8久久精品国产| 少妇熟女欧美另类| a级毛色黄片| 婷婷色av中文字幕| 嘟嘟电影网在线观看| 国产v大片淫在线免费观看| 免费看av在线观看网站| 成熟少妇高潮喷水视频| 九九爱精品视频在线观看| 尤物成人国产欧美一区二区三区| 精品人妻一区二区三区麻豆| 国产 一区 欧美 日韩| 国产又黄又爽又无遮挡在线| 国产日韩欧美在线精品| 啦啦啦韩国在线观看视频| 国产在线男女| 国产伦一二天堂av在线观看| 日韩国内少妇激情av| 色综合色国产| 亚洲成人av在线免费| 寂寞人妻少妇视频99o| 麻豆av噜噜一区二区三区| 亚洲最大成人手机在线| 久久久国产成人免费| 一进一出抽搐动态| 在线免费观看不下载黄p国产| 国产精品美女特级片免费视频播放器| 久久精品夜色国产| 久久精品久久久久久久性| 亚洲成a人片在线一区二区| 性欧美人与动物交配| 欧美极品一区二区三区四区| 久久久久久久久久久丰满| 国产日韩欧美在线精品| 看片在线看免费视频| 97超碰精品成人国产| 亚洲在久久综合| 国产精品一区二区在线观看99 | 色吧在线观看| 亚洲精品色激情综合| 欧美精品国产亚洲| 天堂√8在线中文| a级毛片免费高清观看在线播放| 中文字幕熟女人妻在线| 青青草视频在线视频观看| 日日干狠狠操夜夜爽| 最后的刺客免费高清国语| 毛片女人毛片| 狂野欧美白嫩少妇大欣赏| 青春草国产在线视频 | 午夜视频国产福利| 欧美+日韩+精品| 99久久九九国产精品国产免费| 特级一级黄色大片| 看十八女毛片水多多多| 色哟哟哟哟哟哟| 国产av在哪里看| 在线观看一区二区三区| 国产精品,欧美在线| 天堂√8在线中文| 舔av片在线| 99久久无色码亚洲精品果冻| 男人和女人高潮做爰伦理| 日本撒尿小便嘘嘘汇集6| 久久草成人影院| 中文在线观看免费www的网站| 丝袜喷水一区| 亚洲无线观看免费| 国语自产精品视频在线第100页| 日本-黄色视频高清免费观看| 欧美+亚洲+日韩+国产| 免费观看a级毛片全部| 91麻豆精品激情在线观看国产| 久久精品综合一区二区三区| 美女xxoo啪啪120秒动态图| 嫩草影院新地址| 国模一区二区三区四区视频| 可以在线观看的亚洲视频| 国产一级毛片在线| 精品久久久久久久久久久久久| 啦啦啦韩国在线观看视频| 亚洲最大成人中文| 亚洲国产高清在线一区二区三| 日本免费一区二区三区高清不卡| 亚洲欧美日韩无卡精品| 精品国产三级普通话版| 国产精品一区二区三区四区久久| 国产精品爽爽va在线观看网站| 丝袜美腿在线中文| 亚洲欧美日韩高清专用| 亚洲一区高清亚洲精品| 日本三级黄在线观看| 青春草视频在线免费观看| 亚洲在久久综合| 亚洲第一区二区三区不卡| 亚洲精品自拍成人| 国产成人91sexporn| 久久久久久久午夜电影| 两个人视频免费观看高清| 亚洲va在线va天堂va国产| 99热全是精品| 级片在线观看| 国产成人午夜福利电影在线观看| 三级经典国产精品| 精品一区二区三区人妻视频| 国产精品福利在线免费观看| 婷婷六月久久综合丁香| 日韩强制内射视频| 18禁裸乳无遮挡免费网站照片| 中文字幕精品亚洲无线码一区| 内地一区二区视频在线| 99热精品在线国产| 欧美激情国产日韩精品一区| 一级黄色大片毛片| 久久精品人妻少妇| 九九久久精品国产亚洲av麻豆| 国产视频首页在线观看| 亚洲欧美日韩卡通动漫| 免费观看的影片在线观看| 国产精品一区www在线观看| 成年av动漫网址| 国产午夜精品一二区理论片| 夜夜看夜夜爽夜夜摸| 日韩中字成人| 一级毛片电影观看 | 26uuu在线亚洲综合色| 九色成人免费人妻av| av在线老鸭窝| 91精品一卡2卡3卡4卡| 91精品一卡2卡3卡4卡| 美女被艹到高潮喷水动态| 欧美最黄视频在线播放免费| 欧美变态另类bdsm刘玥| 人妻制服诱惑在线中文字幕| 12—13女人毛片做爰片一| 最新中文字幕久久久久| 乱人视频在线观看| 高清毛片免费观看视频网站| 久久草成人影院| av专区在线播放| 黄色配什么色好看| 国产三级中文精品| 久久久久久久久大av| 久久久久久大精品| 日韩av在线大香蕉| 三级毛片av免费| 日本在线视频免费播放| 亚洲欧美成人精品一区二区| 永久网站在线| eeuss影院久久| 噜噜噜噜噜久久久久久91| 好男人视频免费观看在线| 性欧美人与动物交配| 免费人成在线观看视频色| av福利片在线观看| 精品人妻视频免费看| 床上黄色一级片| 嫩草影院入口| 国产精品一二三区在线看| 久久这里有精品视频免费| 色综合色国产| 久久99蜜桃精品久久| 日韩三级伦理在线观看| 丝袜美腿在线中文| 久久99热6这里只有精品| 一本精品99久久精品77| 亚洲国产精品合色在线| 最好的美女福利视频网| 国产精品,欧美在线| 99国产精品一区二区蜜桃av| 国产黄色视频一区二区在线观看 | 欧美3d第一页| 一级毛片aaaaaa免费看小| 黄色日韩在线| 久久国产乱子免费精品| 嫩草影院精品99| 亚洲欧美日韩高清专用| 丝袜喷水一区| 少妇高潮的动态图| 亚洲乱码一区二区免费版| 国产精品免费一区二区三区在线| 亚洲高清免费不卡视频| 中文字幕制服av| 人人妻人人看人人澡| 国内少妇人妻偷人精品xxx网站| 男女下面进入的视频免费午夜| 欧美一区二区亚洲| 午夜爱爱视频在线播放| 老师上课跳d突然被开到最大视频| 尾随美女入室| 久久欧美精品欧美久久欧美| 亚洲国产欧美在线一区| 毛片一级片免费看久久久久| 成人鲁丝片一二三区免费| 中文字幕av在线有码专区| 两个人的视频大全免费| av免费在线看不卡| 国产成人a∨麻豆精品| 久久精品久久久久久久性| 亚洲成av人片在线播放无| 欧美三级亚洲精品| 日韩制服骚丝袜av| 色播亚洲综合网| 啦啦啦啦在线视频资源| 中文字幕av在线有码专区| 久久热精品热| 久久人人爽人人爽人人片va| 97热精品久久久久久| 精品久久久久久成人av| 欧美激情国产日韩精品一区| 亚洲精品日韩在线中文字幕 | 直男gayav资源| 伦理电影大哥的女人| 国产亚洲5aaaaa淫片| 国产一区二区亚洲精品在线观看| 春色校园在线视频观看| 欧美高清性xxxxhd video| 亚洲在久久综合| av天堂在线播放| 最近视频中文字幕2019在线8| 久久久国产成人免费| 久久人妻av系列| 变态另类成人亚洲欧美熟女| 久久精品国产自在天天线| av在线播放精品| 免费看日本二区| 欧美日韩国产亚洲二区| av天堂在线播放| 青春草亚洲视频在线观看| a级毛色黄片| 97超碰精品成人国产| 久久99蜜桃精品久久| 激情 狠狠 欧美| 干丝袜人妻中文字幕| 中国美白少妇内射xxxbb| 此物有八面人人有两片| 国产精品爽爽va在线观看网站| 最近2019中文字幕mv第一页| 看片在线看免费视频| 国产爱豆传媒在线观看| 长腿黑丝高跟| 好男人在线观看高清免费视频| 啦啦啦观看免费观看视频高清| 国产精品一区二区性色av| 波多野结衣高清作品| 午夜福利视频1000在线观看| 亚洲国产精品国产精品| 人人妻人人澡人人爽人人夜夜 | 搡老妇女老女人老熟妇| 国产69精品久久久久777片| 啦啦啦韩国在线观看视频| 中国美白少妇内射xxxbb| 在线观看av片永久免费下载| 亚洲精品日韩在线中文字幕 | 国产色爽女视频免费观看| 亚洲色图av天堂| 久久婷婷人人爽人人干人人爱| 夜夜爽天天搞| 久久精品国产鲁丝片午夜精品| 熟女电影av网| 亚州av有码| 麻豆国产av国片精品| 美女被艹到高潮喷水动态| 中文字幕av成人在线电影| 欧美性猛交黑人性爽| 99热6这里只有精品| 18+在线观看网站| 国产精品福利在线免费观看| 青青草视频在线视频观看| 国产精品久久久久久久久免| 成人永久免费在线观看视频| 久久人人精品亚洲av| 久久综合国产亚洲精品| 干丝袜人妻中文字幕| 伊人久久精品亚洲午夜| 18禁黄网站禁片免费观看直播| 亚洲aⅴ乱码一区二区在线播放| 高清毛片免费看| 在线观看免费视频日本深夜| 久久久久久久久久黄片| 在线免费十八禁| 免费av观看视频| 深夜a级毛片| 免费人成视频x8x8入口观看| 级片在线观看| 三级国产精品欧美在线观看| 九色成人免费人妻av| 免费在线观看成人毛片| 色5月婷婷丁香| www日本黄色视频网| 午夜福利在线观看吧| 免费观看精品视频网站| 欧美+亚洲+日韩+国产| 免费大片18禁| 99热这里只有精品一区| 国产熟女欧美一区二区| 国产成人精品婷婷| 国产成人aa在线观看| 国产伦理片在线播放av一区 | 我要看日韩黄色一级片| 蜜桃亚洲精品一区二区三区| 婷婷精品国产亚洲av| 免费不卡的大黄色大毛片视频在线观看 | 久99久视频精品免费| 中国美白少妇内射xxxbb| 黄片wwwwww| 午夜福利在线观看吧| 久久久精品大字幕| av在线观看视频网站免费| 狠狠狠狠99中文字幕| 午夜久久久久精精品| 亚洲一区二区三区色噜噜| 淫秽高清视频在线观看| 老司机福利观看| .国产精品久久| 深夜精品福利| 国产精品一二三区在线看| 亚洲色图av天堂| 国产男人的电影天堂91| 久99久视频精品免费| 欧美+日韩+精品| 色综合亚洲欧美另类图片| 国产淫片久久久久久久久| 日韩在线高清观看一区二区三区| 97人妻精品一区二区三区麻豆| av在线播放精品| 十八禁国产超污无遮挡网站| 精品一区二区三区人妻视频| 国产精品精品国产色婷婷| 午夜福利成人在线免费观看| 日本成人三级电影网站| 少妇的逼好多水| 成人鲁丝片一二三区免费| 一级黄色大片毛片| 精品久久国产蜜桃| 女人被狂操c到高潮| 亚洲成人av在线免费| 有码 亚洲区| 人妻久久中文字幕网| 欧美三级亚洲精品| 最近视频中文字幕2019在线8| 国产精品久久电影中文字幕| 99久久久亚洲精品蜜臀av| 一级二级三级毛片免费看| 久久精品国产鲁丝片午夜精品| 久久久久久九九精品二区国产| 观看美女的网站| 国产高清三级在线| 神马国产精品三级电影在线观看| 国产精品久久久久久av不卡| 日韩视频在线欧美| 91av网一区二区| 一本久久中文字幕| 国产精品不卡视频一区二区| 久久这里只有精品中国| 人妻少妇偷人精品九色| 久久精品国产亚洲av涩爱 | 成熟少妇高潮喷水视频| 永久网站在线| 欧美性感艳星| 一本精品99久久精品77| 亚洲欧美精品专区久久| 国产精品久久视频播放| 国产精品野战在线观看| 热99在线观看视频| 三级毛片av免费| 三级经典国产精品| 一级毛片电影观看 | 99国产精品一区二区蜜桃av| 国内精品久久久久精免费| 自拍偷自拍亚洲精品老妇| 欧美在线一区亚洲| 久久久久久久亚洲中文字幕| 亚洲精品日韩av片在线观看| 一本久久精品| 人人妻人人看人人澡| 国产精品av视频在线免费观看| 国产老妇伦熟女老妇高清| 少妇熟女aⅴ在线视频| 亚洲自偷自拍三级| 女的被弄到高潮叫床怎么办| 边亲边吃奶的免费视频| 两个人视频免费观看高清| 欧美潮喷喷水| 亚洲自拍偷在线| 午夜福利视频1000在线观看| 特级一级黄色大片| 国产精品伦人一区二区| 欧美三级亚洲精品| av在线播放精品| 可以在线观看毛片的网站| 久久这里只有精品中国| 精品人妻熟女av久视频| av天堂中文字幕网| 欧美性猛交╳xxx乱大交人| 国产大屁股一区二区在线视频| 2022亚洲国产成人精品| 国产精品久久视频播放| 国产伦一二天堂av在线观看| 亚洲激情五月婷婷啪啪| av在线播放精品| 99热精品在线国产| 久久精品国产亚洲av香蕉五月| 精品无人区乱码1区二区| 国产熟女欧美一区二区| 乱人视频在线观看| 国产成人精品一,二区 | 日本撒尿小便嘘嘘汇集6| 日本成人三级电影网站| 日本av手机在线免费观看| 中文字幕久久专区| 久久亚洲精品不卡| 国产中年淑女户外野战色| 日本成人三级电影网站| 日韩成人av中文字幕在线观看| 国产在线精品亚洲第一网站| 五月伊人婷婷丁香| 国产精品美女特级片免费视频播放器| 一个人看的www免费观看视频| 欧美性猛交╳xxx乱大交人| 老师上课跳d突然被开到最大视频| 国产 一区精品| 最近的中文字幕免费完整| 日本黄色视频三级网站网址| 搡老妇女老女人老熟妇| 赤兔流量卡办理| 国产精品国产三级国产av玫瑰| 亚洲精品456在线播放app| 三级国产精品欧美在线观看| 女人十人毛片免费观看3o分钟| 国产探花在线观看一区二区| 国产高清激情床上av| 美女高潮的动态| 日韩欧美 国产精品| 亚洲欧美清纯卡通| 精品少妇黑人巨大在线播放 | 久久久久久久久久黄片| 成熟少妇高潮喷水视频| 只有这里有精品99| 亚洲国产精品成人久久小说 | 午夜亚洲福利在线播放| 成人一区二区视频在线观看| 久久中文看片网| 欧洲精品卡2卡3卡4卡5卡区| 国产 一区精品| 国产麻豆成人av免费视频| 身体一侧抽搐| 春色校园在线视频观看| 看十八女毛片水多多多| 美女xxoo啪啪120秒动态图| 国产午夜精品一二区理论片| 国产男人的电影天堂91| 日韩欧美国产在线观看| 久久精品国产自在天天线| 欧美3d第一页| 国产三级中文精品| 好男人在线观看高清免费视频| 国产精品1区2区在线观看.| 99国产精品一区二区蜜桃av| 在线播放无遮挡| 国产一区二区亚洲精品在线观看| 亚洲天堂国产精品一区在线| av国产免费在线观看| 干丝袜人妻中文字幕| 国产三级中文精品| 麻豆国产av国片精品| 亚洲国产高清在线一区二区三| 99久久无色码亚洲精品果冻| 成人永久免费在线观看视频| 国产一区二区三区在线臀色熟女| 国产精品电影一区二区三区| 日日撸夜夜添| 高清在线视频一区二区三区 | 搞女人的毛片| 99九九线精品视频在线观看视频| 小蜜桃在线观看免费完整版高清| 亚洲av免费在线观看| 精品人妻一区二区三区麻豆| 午夜a级毛片| 久久精品国产99精品国产亚洲性色| 最好的美女福利视频网| 欧美xxxx性猛交bbbb| 国内少妇人妻偷人精品xxx网站| 禁无遮挡网站| 日本黄色视频三级网站网址| 高清毛片免费观看视频网站| av天堂中文字幕网| 99久久无色码亚洲精品果冻| 两性午夜刺激爽爽歪歪视频在线观看| 免费大片18禁| 尾随美女入室| 一级二级三级毛片免费看| 国产在线男女| 一级毛片电影观看 | 亚洲最大成人手机在线| 全区人妻精品视频| 午夜免费激情av| 波野结衣二区三区在线| 国产精品久久久久久av不卡| 九草在线视频观看| 最近中文字幕高清免费大全6| 日本熟妇午夜| 国产黄片视频在线免费观看| 一个人看视频在线观看www免费| 中文字幕熟女人妻在线| 亚洲欧美成人精品一区二区| 最近视频中文字幕2019在线8| 18+在线观看网站| 噜噜噜噜噜久久久久久91| 人人妻人人看人人澡| 成年女人永久免费观看视频| 国产激情偷乱视频一区二区| 久久久精品94久久精品| 欧美高清成人免费视频www| 淫秽高清视频在线观看| 看黄色毛片网站| 国产成人福利小说| 免费一级毛片在线播放高清视频| 天堂√8在线中文| 免费一级毛片在线播放高清视频| 国产一区二区激情短视频| 美女被艹到高潮喷水动态| 99在线人妻在线中文字幕| 免费观看精品视频网站| 有码 亚洲区| 午夜免费男女啪啪视频观看| 黄色视频,在线免费观看| 中国美白少妇内射xxxbb| 亚洲av一区综合| 亚洲最大成人中文| 免费人成视频x8x8入口观看| 夫妻性生交免费视频一级片| 高清毛片免费观看视频网站| 永久网站在线| 午夜爱爱视频在线播放| 亚洲欧美精品自产自拍| 一本一本综合久久| 12—13女人毛片做爰片一| 国产人妻一区二区三区在| 一进一出抽搐gif免费好疼| 国产美女午夜福利| 国产极品天堂在线| 免费看av在线观看网站| 日韩精品有码人妻一区| 高清在线视频一区二区三区 | av在线天堂中文字幕| 国产亚洲精品av在线| 日本爱情动作片www.在线观看| 国产精品国产高清国产av| 欧美在线一区亚洲| 人妻制服诱惑在线中文字幕| 亚洲av一区综合| 中国美白少妇内射xxxbb| 国产一区二区三区在线臀色熟女|