李美菊
摘 要:小學(xué)數(shù)學(xué)教學(xué)的根本任務(wù)是全面提高學(xué)生素質(zhì),其中最重要的因素是思維素質(zhì),而小學(xué)數(shù)學(xué)思想方法就是增強(qiáng)小學(xué)生數(shù)學(xué)觀念,形成良好思維素質(zhì)的關(guān)鍵。如果將小學(xué)生的數(shù)學(xué)素質(zhì)看做一個(gè)坐標(biāo)系,那么數(shù)學(xué)知識(shí)、技能就好比橫軸上的因素,而數(shù)學(xué)思想方法就是縱軸的內(nèi)容。淡化或忽視數(shù)學(xué)思想方法的教學(xué),不僅不利于小學(xué)生從縱橫兩個(gè)維度上把握數(shù)學(xué)學(xué)科的基本結(jié)構(gòu),也必將影響其能力的發(fā)展和數(shù)學(xué)素質(zhì)的提高。
關(guān)鍵詞:小學(xué)數(shù)學(xué);發(fā)散性思維;提高
中圖分類號(hào):G622 文獻(xiàn)標(biāo)識(shí)碼:B 文章編號(hào):1002-7661(2014)15-240-01
一、激發(fā)小學(xué)生求知欲,訓(xùn)練思維的積極性
思維的惰性是影響發(fā)散性思維的障礙,而思維的積極性是思維惰性的克星。所以,提高思維的積極性是培養(yǎng)發(fā)散性思維的極其重要的基礎(chǔ)。在教學(xué)中,教師要十分注意激起學(xué)生強(qiáng)烈的學(xué)習(xí)興趣和對(duì)知識(shí)的渴求,使他們能帶著一種高昂的情緒從事學(xué)習(xí)和思考。如《乘法初步認(rèn)識(shí)》一課中,教師可先出示幾道連加算式讓學(xué)生改寫為乘法算式。由于有乘法意義的依托,雖然是二年級(jí)小學(xué)生,仍能較順暢地完成了上述練習(xí)。而后,教師又出示2+2+2+2+1,讓學(xué)生思考、討論能否改寫成一道含有乘法的算式呢?經(jīng)過學(xué)生的討論與教師及時(shí)予以點(diǎn)撥,學(xué)生列出了 2+2+2+2+1=2×5-1=2×4+1,雖然課堂費(fèi)時(shí)多,但這樣的訓(xùn)練卻有效地激發(fā)了學(xué)生尋求新方法的積極情緒。以激發(fā)小學(xué)生對(duì)新知識(shí)、新方法的探知思維活動(dòng),這將有利于激發(fā)小學(xué)生的學(xué)習(xí)動(dòng)機(jī)和求知欲。
二、轉(zhuǎn)換角度思考,訓(xùn)練思維的求異性
發(fā)散性思維活動(dòng)的展開,其重要的一點(diǎn)是要能改變已習(xí)慣了的思維定向,從而從多方位多角度——即從新的思維角度去思考問題,以求得問題的解決,這也就是思維的求異性。從認(rèn)知心理學(xué)的角度來看,小學(xué)生在進(jìn)行抽象的思維活動(dòng)過程中由于年齡的特征,往往表現(xiàn)出難以擺脫已有的思維方向,也就是說學(xué)生個(gè)體的思維定勢(shì)往往影響了對(duì)新問題的解決,以至于產(chǎn)生錯(cuò)覺。所以要提高與發(fā)展小學(xué)生的抽象思維能力,必須十分注意提高思維求異性,使學(xué)生在訓(xùn)練中逐漸形成具有多角度、多方位的思維方法與能力。例如,四則運(yùn)算之間是有其內(nèi)在聯(lián)系的。減法是加法的逆運(yùn)算,除法是乘法的逆運(yùn)算,加與乘之間則是轉(zhuǎn)換的關(guān)系。當(dāng)加數(shù)相同時(shí),加法轉(zhuǎn)換成乘法,所有的乘法都可以轉(zhuǎn)換成加法。加減、乘除、加乘之間都有內(nèi)在的聯(lián)系。如189-7 可以連續(xù)減多少個(gè) 7?應(yīng)要求學(xué)生變換角度思考,從減與除的關(guān)系去考慮。這道題可以看作 189 里包含幾個(gè) 7,問題就迎刃而解了。這樣的訓(xùn)練,既防止了片面、孤立、靜止看問題,使所學(xué)知識(shí)有所升華,從中進(jìn)一步理解與掌握了數(shù)學(xué)知識(shí)之間的內(nèi)在聯(lián)系,又進(jìn)行了求異性思維訓(xùn)練。在教學(xué)中,我們還經(jīng)常發(fā)現(xiàn)一部分學(xué)生只習(xí)慣于順向思維,而不習(xí)慣于逆向思維。在應(yīng)用題教學(xué)中,在引導(dǎo)學(xué)生分析題意時(shí),一方面可以從問題入手,推導(dǎo)出解題的思路;另一方面也可以從條件入手,一步一步歸納出解題的方法。更重要的是,教師要十分注意在題目的設(shè)置上正逆向的變式訓(xùn)練。如:進(jìn)行語言敘述的變式訓(xùn)練,即讓學(xué)生依據(jù)一句話改變敘述形式為幾句話。逆向思維的變式訓(xùn)練則更為重要。教學(xué)的實(shí)踐告訴我們,從低年級(jí)開始就重視正逆向思維的對(duì)比訓(xùn)練,將有利于學(xué)生不于已有的思維定勢(shì)。
三、一題多解、變式引申,訓(xùn)練思維的廣闊性
思維的廣闊性是發(fā)散性思維的又一特征。思維的狹窄性表現(xiàn)在只知其一不知其二,稍有變化,就不知所云。反復(fù)進(jìn)行一題多解、一題多變的訓(xùn)練,是幫助學(xué)生克服思維狹窄性的有效辦法??赏ㄟ^討論,啟迪小學(xué)生的思維,開拓解題思路,在此基礎(chǔ)上讓學(xué)生通過多次訓(xùn)練,及增長(zhǎng)了知識(shí),又提高了思維能力。教師在教學(xué)過程中,不能只重視計(jì)算結(jié)果,要針對(duì)教學(xué)接過的重難點(diǎn),精心設(shè)計(jì)有層次、有坡度,要求明確、題型多變的練習(xí)題。要讓學(xué)生通過訓(xùn)練不斷探索解題的捷徑,使思維的廣闊性得到不斷發(fā)展。要通過多次的漸進(jìn)式的拓展訓(xùn)練,使小學(xué)生進(jìn)入廣闊思維的佳境。
四、轉(zhuǎn)化思想,訓(xùn)練思維的聯(lián)想性
聯(lián)想思維是一種表現(xiàn)想象力的思維,是發(fā)散性思維的顯著標(biāo)志。聯(lián)想思維的過程是由此及彼,由表及里。通過廣闊思維的訓(xùn)練,學(xué)生的思維可達(dá)到一定深度。例如有些題目,從敘述的事情上看,不是工程問題,但題目特點(diǎn)卻與工程問題相同,因此可用工程問題的解題思路去分析、解答。讓學(xué)生進(jìn)行多種解題思路的討論時(shí),有的解法需要學(xué)生用數(shù)學(xué)轉(zhuǎn)化思想,才能使解題思路簡(jiǎn)捷,即達(dá)到一題多解的效果,又訓(xùn)練了思路轉(zhuǎn)化的思想?!稗D(zhuǎn)化思想”作為一種重要的數(shù)學(xué)思想,在小學(xué)數(shù)學(xué)中有著廣泛的應(yīng)用。在應(yīng)用題解題中,用轉(zhuǎn)化方法,遷移深化,由此及彼,有利于小學(xué)生聯(lián)想思維的訓(xùn)練。
總之,在小學(xué)數(shù)學(xué)教學(xué)中,教師要以學(xué)生為本,加強(qiáng)學(xué)生發(fā)散性思維能力的提高,不僅可以優(yōu)化課堂教學(xué),提高教學(xué)效率,而且能夠激發(fā)學(xué)生強(qiáng)烈的求知欲,培養(yǎng)學(xué)生積極向上的探索進(jìn)取精神,使學(xué)生在參與學(xué)習(xí)的過程中,既提高教學(xué)質(zhì)量,又達(dá)到提高能力、發(fā)展智力的目的。
參考文獻(xiàn):
[1] 許幼蘭.小學(xué)數(shù)學(xué)教學(xué)中發(fā)散性思維的提高.天津教育.