周 良,羅高駿
(湖北師范學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 湖北 黃石 435002)
兩個(gè)相乘可交換的廣義投影算子和超廣義投影算子線性組合的 M-P逆
周 良,羅高駿
(湖北師范學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 湖北 黃石 435002)
研究了兩個(gè)相乘可交換的廣義投影算子和超廣義投影算子線性組合的M-P逆,給出了兩個(gè)相乘可交換廣義投影算子和超廣義投影算子A,B的線性組合aA+bB的M-P逆的計(jì)算公式.
廣義投影算子;超廣義投影算子;M-P逆
矩陣的廣義逆是矩陣?yán)碚撝幸豁?xiàng)極為重要的理論,近年來(lái),關(guān)于廣義投影算子和超廣義投影算子的性質(zhì)的研究迅速發(fā)展.在[1]中Groβ J ,Trenkler G首先提出了廣義投影算子和超廣義投影算子的概念,并研究了它們的基本性質(zhì).近年,廣義投影算子和超廣義投影算子的研究成為廣義算子論的熱點(diǎn);廣義投影算子的線性組合的一些特征在[3]、[6]中被研究;在[4]、[7]中Stewart G W,Baksalary O M,Benitez J找到廣義投影算子和超廣義投影算子的一些有趣的性質(zhì);在[2]、[8]中Baksalary J K,Baksalary O M得到廣義投影算子和超廣義投影算子的進(jìn)一步結(jié)果;而在最近的研究中([9]),Tosic M,Cvetkovic-Ilic D S給出了兩個(gè)相乘可換的廣義投影算子和超廣義投影算子線性組合aAk+bBl逆的計(jì)算公式.本文在這些結(jié)論的基礎(chǔ)上,根據(jù)矩陣和廣義投影算子的性質(zhì)([10]、[11])給出了兩個(gè)相乘可交換的廣義投影算子和超廣義投影算子A,B的線性組合aA+bB的M-P逆的計(jì)算公式.
設(shè)A∈Cm×n,若X∈Cn×m使得以下四個(gè)矩陣方程成立
AXA=A,XAX=X,(AX)*=AX,(XA)*=XA
則稱X是A的M-P逆.用A+來(lái)表示A的M-P逆.容易證明,A的M-P逆存在且唯一.(參見(jiàn)[10])
為了證明的需要,首先給出以下引理.
引理3[10]n階正規(guī)矩陣A是可酉對(duì)角化矩陣,且對(duì)角元是A的特征值.兩個(gè)正規(guī)矩陣可同時(shí)酉對(duì)角化當(dāng)且僅當(dāng)它們相乘可交換.
(1)
那么
A2=U(Ir1?ε2Ir2?εIr3?0)U*,A3=U(Ir1?Ir2?Ir3?0)U*
(2)
由(1)式和引理3可得
(aI+bA)+=(U(aIr1?aIr2?aIr3?aIn-r)U*+U(bIr1?bεIr2?bε2Ir3?0)U*)+=
(3)
由a3+b3=(a+b)×(a2-ab+b2),ε3=1 可得
(4)
由(1),(2),(3),(4)式,通過(guò)簡(jiǎn)單的計(jì)算可得出
證明 當(dāng)a3+b3=0時(shí),可分為三種情況.
再通過(guò)簡(jiǎn)單的計(jì)算可得
將定理1中的aI+bA變成aI+bA2和aI+bA3時(shí),只需將結(jié)果中A換成A2和A3,再由A4=A可得以下兩個(gè)推論.
由AB=BA可得
B=U(B11?B22?B33?B44)U*
(5)
由(2)式和(5)可得
(6)
因?yàn)?aA+bB)+=U((aI+bB11)+?(aεI+bB22)+?(aε2I+bB33)+?(bB44)+)U*,所以由引理4和定理1以及(6)式通過(guò)簡(jiǎn)單的計(jì)算可得出
證明 與注1的證明類(lèi)似,分成三種情況討論,通過(guò)計(jì)算即可得到結(jié)果.
(aA+bB)T(aA+bB)=(A3+B3-A3B3)(aA+bB)=(aA+bB)
T(aA+bB)T+(A3+B3-A3B3)T=T
((aA+bB)T)*=(A3+B3-A3B3)*=(A3+B3-A3B3)=(aA+bB)T
(T(aA+bB))*=(A3+B3-A3B3)*=(A3+B3-A3B3)=T(aA+bB)
[1]Groβ J ,Trenkler G.Generalized and Hypergenralized Projectors[J]. Linear Algebra and its Applications. 1997,264:463~474.
[2]Baksalary J K,Baksalary O M.Further properties on generalized and hypergeneralized projecter[J]. Linear Algebra and its Applications. 2004,389:295~303.
[3]benitez J,Thome N.Characterizations and liner combinations of k-generalized projectors[J]. Linear Algebra and its Applications. 2005,410:150~159.
[4]Stewart G W.A note on generalized and hypergeneralized projectors[J]. Linear Algebra and its Applications. 2006,412:408~411.
[5]Baksalary J K,Baksalary O M, Groβ J .On some linear combinations of hypergeneralized projector[J].Linear Algebra and its Applications. 2006,413:264~273.
[6]Lebtahi L,Thome N.A note on k- generalized projectors[J]. Linear Algebra and its Applications. 2007,420:572~575.
[7]Baksalary O M,Benitez J.On linear combinations of two commuting hypergeneralized projectors[J].Computers and Mathematics with Applications ,2008,56:2481~2489.
[8]Baksalary J K,Baksalary O M,G trenkler.Further results on generalized and hypergeneralized projecter[J]. Linear Algebra and its Applications. 2008,429:1038~1050.
[9]Tosic M,Cvetkovic-Ilic D S.The invertibility of the difference and the sum of commuting generalized and hypergeneralized projector[J].Liner and Multiliner Algebra.2013,61(4):482~493.
[10]Horn R A,Johnson C R.矩陣分析[M].北京:人民郵電出版社,2005.
[11]王松桂,楊振海.廣義逆及其應(yīng)用[M].北京:北京工業(yè)大學(xué)出版社,1996.
TheM-Pinverseoflinearcombinationoftwomutuallycommutinggeneralizedandhypergeneralizedprojector
ZHOU Liang, LUO Gao-jun
(College of Mathematics Science,Hubei Normal University, Huangshi 435002,China)
In this paper, theM-Pinverse of linear combination of two mutually commuting generalized and hypergeneralized projector has been searched. Give the formulae ofM-Pinverse of linear combinationaA+bBof two mutually commuting generalized projector and hypergeneralizedA,B.
generalized projector; hypergeneralized projector;M-Pinverse
2013—12—26
周良(1989— ),男,湖北大冶人,碩士研究生,主要研究方向?yàn)榫仃嚪治?
O151.21
A
1009-2714(2014)03- 0074- 05
10.3969/j.issn.1009-2714.2014.03.017