• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于PDMS的經(jīng)濟(jì)型微流體加工技術(shù)研究*

    2014-08-22 11:23:22張雅雅崔建國(guó)重慶理工大學(xué)藥學(xué)與生物工程學(xué)院重慶400054
    機(jī)床與液壓 2014年24期
    關(guān)鍵詞:雅雅經(jīng)濟(jì)型建國(guó)

    張雅雅,崔建國(guó)重慶理工大學(xué)藥學(xué)與生物工程學(xué)院,重慶 400054

    1.Introduction

    Microfluidic technology can be controlled,operated and tested in microscopic dimensions,which is an emerging interdisciplinary based on microelectronics, micromechanical, bioengineering and micronano technology[1].Last decade,the development of microfluidic technology was very rapidly,brought a dramatic change in the field of medicine,chemistry and life sciences,and some of the company was committed to industrialize microfluidic technology[2].The equipment related to microsystem including micropump,microvalve,micromixer,microfilter,and micro splitter,etc[3].Microfluidic chip is an implementation platform for microfluidic technology,and its essence is processed 10~100μm width channel systems by using micro-processing technology on the substrates,mainly based on analysis chemistry,biochemistry,and micro electromechanical processing technology.It’s the key point of micro total analysis systems in current development,since microfluidic chips play great application value in these areas[4-5].In order to fabricate micro pipeline network structure in microfluidic chips,the processing technology plays a very important role.

    For microfluidic chip processing technology based on PDMS,the more classical method is maskbased lithography,but the processing of mask requires higher cost,longer time-consuming,and more expensive lithography machines and special machinery,which are difficult to meet the needs of rapid processing.Therefore,this method cannot be carried out in an ordinary laboratory [6].In this paper,current novel and relatively fast processing PDMSmicrochannel structure method is reviewed,such as the economical laser erosion and projector lithography technology[7-8].For the treatment of PDMSsurface wettability,the classical method is to use the more expensive plasma etching machine,after activating functional groups on PDMS surface,ideal modified result can be obtained.But the expensive cost of this method is not suitable for ordinary laboratory,the alternative method is to use microwave and vacuum ultraviolet surface modification technology[9].Microfluidic chip multilayer structure alignment and the unreversible packaging has always been a difficulty.This paper discusses the self-aligned bonding and reversible plug bonding technology.Combination of both can better solve the above difficulty,which can realize self-aligned bonding of multilayer PDMSstructures and reversible packaging[10-11].By comparing the existing microfluidic processing technology based on PDMS,this paper integrates a set of economic microfluidic processing technology.As a useful complement to traditional classical processing methods,these methods do not need expensive special equipment,and can be carried out in an ordinary laboratory.

    2.The structure,performance and preparation of PDMS

    Polydimethylsiloxane(PDMS)is a common high molecular polymer material,and it has advantages of low cost,simple processing,and also has low surface energy,excellent optical transparency,durability,insulating,as well as biocompatibility characteristics.Thus,this material is commonly used to process the microfluidic chip by soft lithography[12-13].It’s a silicone(silicone rubber)material,and containing the structural units—(CH3)2SiO—.The polymer molecular structure is shown in Figure 1.

    Figure 1.Structure of PDMS

    In conventional microfluidic chips,the general method of making PDMSmaterials is:A weight ratio of 10:1 is fully mixed with polymer base and curing agent of PDMS(Sylgard 184,Dow Corning),fully stirred 5 min,placed in a vacuum desiccator degassing 0.5 h,and PDMSprepolymer is then obtained;the prepolymer is poured into the exposed photoresist molding or other models for degassing 0.5 h,and then placed on a hot plate and heated at a temperature of 80℃ for 2 h,after cooling the cured PDMS chips are obtained[9].If the prepolymer is pouring on a glass slide,setting the speed of the coating machine,spinning coating a certain time,PDMS substrates with different thickness are obtained.Table 1 is the results of our laboratory tests.

    Table 1.Relationship of PDMS thickness and the spin speed of dumped plastic machine

    3.Fabricating micro-structure of PDMS

    3.1.Laser erosion templateless processing technology

    The microchannel structure based on PDMSproduction process needs mask,but the mask process,such as lithography photoresist or silicon deep reactive ion etching,etc.,all need to spend longer time and higher cost.Accordingly,in microfluidic and MEMS(microelectromechanical systems),fast and straightforward PDMSmicrostructure machining technology is very important,therefore the laser erosion technique can rapidly process the microfluidic chip.

    By summing up the traditional laser engraving shortcomings when fabricating PDMSmicrostructures,Hao-Bing Liu and others put forward the use of CO2laser,through cutting and pattern transfer(TC&T)process to fabricate PDMSmicrostructures,and finally obtain better results[7,14].TC&T process for templateless fabrication of PDMS microstructures is shown in Figure 2.

    Figure 2.Process for templateless fabrication of PDMS[7]

    In this way,a smooth channel bottom is obtained,due to removing the mask and precision machining process equipment consumables,thus can greatly reduce the time and cost of the molding.Through TC& T process,the feature structures with depth range of 2 μm ~3.6 mm and the aspect ratio of 10:1 can be obtained,wherein the minimum lateral feature size can reach 30μm(limited by the scanning accuracy and laser spot size).The lateral resolution of this technology is not higher than the photolithography mask,but compared to the complex process of production of the mask,it is more suitable for microfluidic applications.If the application field of the lateral feature size is not very critical,this fast and low cost method can be widely used to process PDMS microstructures.Such as CO2laser can be used to quickly processed microfluidic devices on PDMS[15].

    3.2.Projector lithography(DP2)method

    In recent years,in field of microfluidic precision processing technology,in order to overcome the flaws and shortcomings of inflexibility,complexity and high cost of operating,many scholars have carried out alternative researches,wherein the consumer electronics products with high precision to simplify precision machining have achieved good results,this inexpensive tool can rapid replicate microscopic model[16-18].First,the laser printer is used to make transparent mask(replaced the traditional chromiumbased mask),then the micropattern can be directly obtained via the projector projection and exposure on the light-sensitive membrane[17].Such technology can achieve accuracy about 100μm,it can reduce the time and cost of the rapid prototyping process.

    In order to overcome the shortcomings of precision processing technology,especially high costs,and can be carried out the templateless process out of clean-room,Si-wei Zhao,et al.,proposed a method that referred to the directed projection on dry-film photoresist(DP2),by means of processing a printed-circuit-board on photosensitive film.Such direct method using non-contact mask design,exposing the photosensitive polymer to form a structure,and the dry-film resist process is simplified,and can be used for precision machining of the photosensitive polymers and microfluidic structures[8].In an ordinary laboratory,this method can produce a complex three-dimensional microfluidic structure within one hour.More importantly,compared to all the maskless lithography technology,DP2 is relatively simple to set,only needing a digital projector and an adjustable optical lens,can achieve high accuracy(10 μm)and high alignment accuracy(<10μm).In addition,it is an environmentally friendly and non-toxic process.The working principle is shown in Figure 3.

    Figure 3.Illustration of the DP2 process[19]

    Due to the projector device and the chip itself limited,the exposure area obtained by this method is relatively limited.But generally speaking,compared with DP2 and other precision machining technology out of cleanroom,DP2 is simple,does not require a photomask or UV light source,and has high resolution(10 μm),which is suitable for rapid micro model processing in general laboratory[16,19].

    4.Wettability on the modified PDMS surface

    In the field of biomedical,as implant materials and medicines carrier,PDMS can enter the body.But the hydrophobic surface may cause adverse reactions of the human body,and the modification treatment need to be done[20].Meanwhile,in the field of microfluidic,PDMSmaterials are often used as micro-reactor substrates,they are also required to be modified on their flexible surface,and oxygen plasma is the more commonly used method of modifying the surface of materials[21].PDMS is a hydrophobic polymer,after exposure oxygen plasma,along with oxidation,chain scission and cross joint,silicon surface is formed,so it becomes hydrophilic structure[22].Furthermore,the oxygen plasma treatment may also be used to permanently bonding between the polymer and the silicon-based material[23].

    Although this technology has many advantages,the oxygen plasma surface treatment requires special equipment(such as plasma machine),and its expensive price and other factors do not applicable to most ordinary laboratory.

    4.1.PDMSsurface modification using vacuum ultraviolet

    Yao Shuyin,et al.,proposed that using vacuum UV light can significantly delay the recovery time of PDMS hydrophobicity,and improve the biocompatibility[24].Specific operations are as follows,using a vacuum ultraviolet light irradiation device UER20-172 V,the sample is sealed in a chamber with a vacuum pressure of about 500 Pa,and then it is irradiated for several minutes.After irradiation,the hydroxyl groups is formed on material surface,which greatly increased the hydrophilicity on the surface of the PDMS.By measuring the contact angle,irradiating 10 min can almost reach 0°,place a short time later,the contact angle is gradually increased to 73°.Compared with other modification methods,this method can obtain better experimental results.If the modified PDMS samples immediately put into the water,two months later the measurement of contact angle is still close to 0°,which proves that water environment can prevent PDMS chain flip,help keep the surface hydrophilic,thereby facilitating to maintain the surface hydrophilic.

    4.2.Microwave modification on the surface of PDMS

    Brent T.Ginn and Oliver Steinbock designed and tested an economical method to replace conventional commercial oxygen plasma treatment equipment,i.e.,relying on an unmodified kitchen microwave oven(microwave discharge function)and standard laboratory glass desiccator[9].Specific way of plasma treatment is:using ethanol rinse to clean prepared PDMS samples in advance,and to prevent accumulation of surface residues;after washing,sample is dried with compressed air,and placed on a glass slide;then the slide and some steel(function is generated spark and start oxygen decomposition while the microwave discharging)is placed in the vacuum desiccator;Oxygen is filled into the desiccator for two minutes,and then the pressure is degassed to 10-3Torr;Finally,the desiccator is placed in a microwave oven,microwave power is adjusted to the maximum,and performed 25 s plasma treatment.By testing the experiment of hydrophilicity on the surface of the PDMS(contact angle measurements)and plasma-induced adhesion force(bonding properties between PDMS and glass),its reliability is confirmed.Using the microwave and conventional oxygen plasma cleaning machine to process PDMS surface,the changes of the contact angle are shown in Figure 4.

    Figure 4.Contact angles between water and PDMSprocessed by microwave and oxygen plasma machine[9]

    5.Bonding and packaging among PDMS chips

    Packaging is one of the most challenging steps of micro-nanometer manufacturing,since most of the micro-devices contain more than one substrate.According to the assembly process,there are two most important factors:adhesion and alignment[25].Traditional bonding techniques are usually used for silicon semiconductor manufacturing industry,and general processing environment requires high temperature(a few hundred to one thousand degrees),heavy mechanical load, strong electric field, hermetically sealed device[26],etc.In most of the microsystem applications,formed micropattern structure on polymeric material such as the wafer or PDMS,the above processes are harmful(especially for bioactive ingredients).Therefore,it’s necessary for seeking constant reliable bonding packaging technology at low temperature.

    5.1.Capillary adsorption self-assembly technique

    Yu-zhe Ding,et al.put forward a kind of simple operation,package strategy—aapillary-driven Automatic Packaging(CAP)technology,successfully realize the self-assembly process[10].Using this technology,the chip’s pattern can spontaneous adjustment and glue,and the two surfaces of the chip need to be treated by oxygen plasma and get hydrophilic.Specifically,the self-alignment and self-engagement of CAP process is using liquid capillary bridge,and three interfaces between the top and bottom substrates to achieve capillary interactions.Cap-illary interaction contains two physical forces:capillary force FCon the wetting borders and suction force FSfrom the negative Laplace pressure(ΔP)inside the liquid menisci[27].As shown in Figure 5,the function of lateral component FC⊥of capillary force spontaneous aligns the both same comb-like surface structures by the surface energy of the liquid;the vertical component FC||of the suction capillary force can constantly evaporate followed with the capillary bridge,and gradually form intimate contact surface;gravity G of substrates may lead to some misalignments,and the substrates may not well perpendicular to the gravity plane.In order to maintain a negative adhesion to overcome the influence of gravity when moving,just the suspended bottom surface of the substrate is made underneath the fixed top surface,with the liquid evaporating,the bottom surface gradually closes to the fixed roof surface,and eventually packages together.Notably,F(xiàn)C⊥ is proportional to the number and the length of the comb-like structures,so when the bottom surface is not perfectly perpendicular to the gravity plane,the capillary force will be increased and drag the bottom surface to the alignment position;at the same time,the Laplace force of capillary bridge will move from the bottom surface to the top surface of the fixed,this force is larger than the gravity force.

    Figure 5.Illustration of the principle of CAP[10]

    CAP technology has high precision alignment(less than 10 μm),better self-engagement and adhesion performance(larger than 300 kPa).It can also realize multi-layer microstructures package,etc.In addition,this technique does not need any special equipment,does not involve heat treatment or mechanical treatment,so it’s very convenient to carry in general laboratory.Meanwhile,the self-alignment technique has been applied to the field of packaging microfluidics[28].

    5.2.Reversible pluggable package technology

    Connection between macro and micro structure has always been the most complex and the worst reliability steps in microfluidic system development progress.Scholars have carried out a large irreversible(such as adhesive bonding)and reversible(pressfit)packaging technology research,trying to provide dedicated fluid channel between standard tubes and small piece of equipments,but none of these packaging technology is suitable for precision machining or difficult to miniaturization and integration[29-30].Arnold Chen et al.,proposed a completely reversible,standard,and non-adhesive technology—Fit-to-Flow(F2F).F2F adapter interconnect can make macro peripheral devices connect to the microfluidic chip[11].It is similar to plug-and-play USB system in modern electronics,PDMS module with parallel tubes formed the socket.Therefore,a shape complementary component can simply insert,and constitute a mechanical seal of microchannel.

    Specifically,Arnold Chen has carried out two distinct physical sealing mechanisms researches.One of which is to take advantage of the elastomeric sleeve tensile force to form a reversible seal,the other one is to use the negative pressure of vacuum pump to form the reversible interface seal(both are suitable for ordinary laboratory).As shown in Figure 6,F(xiàn)igure 6(a)is reversible sealed with tension,simple structure,easy to plug,but less affordable leak pressure(about 60 kPa);Figure 6(b)is using vacuum negative pressure to form reversible seal,slightly complex structure,and external negative pressure source.The leakage pressure that can afford is related to the ratio between negative pressure and flow area.When the ratio is 4.7,it can reach to 336 kPa.F2F connection technology configures system for scalable multi-channel provides a common connection,at the same time F2F makes the microfluidic chip to be used repeatedly and pluggable,simple processing,especially suitable for ordinary laboratory.

    6.Applications

    Micropump is a very important part in microfluidic system,it can be effective for micro-liquid mixing,pumping,etc[5,31].Using the above economical processing technology,it can be convenient to carry out processing microfluidic devices and systems in ordinary laboratory.Jian-guo Cui et al.,using the above methods,developed a simple structure of peristaltic micropump based on the principle of negative pressure driving[31],as shown in Figure 7.Micropump consists of three layers PDMS materi-als,includes pneumatic layer,driving membrane layer and flow channel layer.The entire structures adopt the above methods to process,product and package.In particular,the pneumatic layer is connected with the negative pressure source,which can effectively remove the air bubbles in flow channel through PDMS driving membrane.This advantage is desired when dealing with complex fluid samples.The pump can be used in variety of biological and medical applications,such as point-diagnosis,cell culture,bodyfluid inspection,and drug development.

    Figure 6.The general principles of F2F[11]

    Figure 7.A vacuum-driven peristaltic micropump[31]

    7.Conclusion

    In this paper,the processing of microfluidic chips is analyzed,and different processing technologies are compared.Such as using volume control and spin coating to get the PDMSprepolymer,using CO2 laser cutting technology and DP2 technology to produce PDMSmicrochannel,using a vacuum UV irradiation and microwave oxygen plasma activation to modified PDMSsurface,and using CAP and F2F interface technologies which can form multilayer irreversible and reversible bonding between PDMS chips.These economic technologies do not need clean room and other specific environment,and are very suitable for ordinary laboratory.So they can completely become a useful supplement of traditional classical microfluidic processing technology.The reliability of these technologies have been confirmed,and have been applied to many microfluidic chip production and in application fields,such as in chemical,medicine and life sciences and other areas.

    [1] Whitesides G M.The Origins and Future of Microfluidics[J].Nature,2006,442:368-373.

    [2] Yole Developpement company 4 years microfluidics technology to predict the future development trend[J].Micronano-electronic Technology,2008,2:123-123.

    [3] Li yonggang.Studies on Key Processes and Techniques of PDMSMicrofludic Chips[D].Graduate school of Chinese academy of sciences,2006.

    [4] Wang Ming.Study of Microfluidic Chip in Poly(dimethylsiloxane)[D].Institute of Electronics Chinese Academy of Sciences,2003.

    [5] Farid Amirouche,Yu Zhou and Tom Johnson.Current micropμmp technology and their biomedical applications[J].Microsystem Technology,2009,15(5):647-666.

    [6] JR Anderson,DT Chiu,RJ Jackman,et al.Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping[J].Anal.Chem.,2000,72(14):3158-3164.

    [7] Liu H B, Gong H Q.Templateless prototyping of ploydimethylsiloxane microfludic structures using a pulsed CO2laser[J].J.Micromech.Microeng,2009,19:1-8.

    [8] Zhao S,Cong H,Pan T.Direct projection on dry-film photoresist(DP2):do-it-yourself three-dimensional polymer microfluidics[J].Lab Chip,2009,9:1128-1132.

    [9] Brent T.Ginn and Oliver Steinbock.Polymer Surface Modification Using Microwave-Oven-Generated Plasma[J].Langmuir,2003,19(19):8117-8118.

    [10] Yuzhe Ding,Lingfei Hong,et al.Capillary-driven automatic packaging[J].Lab Chip,2011(11):1464-1469.

    [11] Arnold Chen and Tingrui Pan.Fit-to-Flow(F2F)Interconnects:Universal Reversible Adhesive-Free Microfludic Adaptors Lab-on-a-Chip Systems[J].Lab Chip,2011(11):727-732.

    [12] Jiang jiahuan.Biomedical microsystem technology and application[M].Beijing:Chemical industry press,2006.

    [13] Jinwen Zhou,Amanda Vera Ellis,Nicolas Hans Voelcker.Recent developments in PDMSsurface modification for microfluidic devices[J].ELECTROPHORESIS,2010(1):2-16.

    [14]Snakenborg D,Klank H,Kutter JP.Microstructure fabrication with a CO2laser system[J].J.Micromech.Microeng.,2004,14:182.

    [15] Huawei Li,Yiqiang Fan,et al.Fabrication of polystyrene microfluidic devices using a pulsed CO2laser system[J].Microsystem Technology,2012,18:373-379.

    [16] Younan Xia and George.M.Whitesides.Microfabrication,Microstructures and Microsystems[J].Angew.Chem.,1998,194:1-20.

    [17] Wei Wang,Siwei Zhao and Tingrui.Pan.Lab-on-a-print:from a single polymer film to three-dimensional integrated microfluidics[J].Lab Chip,2009,9:1133-1137.

    [18] Limu Wang,Rimantas Kodzius,et al.Prototyping chips in minutes:Direct Laser Plotting(DLP)of functional microfluidic structures[J].Sensors and Actuators B:Chemical,2012,168:214-222.

    [19] Focke M,Kosse D,Müller C,et al.Lab-on-a-Foil:microfluidics on thin and flexible films [J].Lab Chip,2010,10,1365-1386.

    [20] Efimenkoa K,Crowea J-A,Maniosh E,et al.Rapid formation of soft hydrophilic silicone elastomer surfaces[J].Polymer,2005,46(22):9329-9341.

    [21] McDonald J C,Whitesides G M.Poly(dimethylsiloxane)as a Material for Fabricating Microfluidic DevicesAcc[J].Acc.Chem.Res.,2002,35(7):491-499.

    [22] Hillborg H,Ankner JF.Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques[J].Polymer,2000,41:6851-6863.

    [23] Cheng JY,Ross C A.Templated Self-Assembly of Block Copolymers:Top-Down Helps Bottom-Up[J].Advanced Materials,2006,18(19):2505-2521.

    [24] YAO Shuyin,WU Zhongkui,YANG Jun.Research on hydrophilizition of polydimethysiloxane(PDMS)surface by vacuum ultraviolet radiation[J].Journal of Hubei University,2010,32(2):188-199.

    [25] Kim JY,Baek JY.Photopolymerized check valve and its integration into a pneμmatic pμmping system for biocompatible sample delivery[J].Lab Chip,2006(6):1091-1094.

    [26] Wei W,Pan T.From Cleanroom to Desktop:Emerging Micro-Nanofabrication Technology for Biomedical Applications[J].Ann Biomed Eng,2011,39:600-620.

    [27] Gerlach A,Lambach H,Seidel D.Propagation of adhesives in joints during capillary adhesive bonding of microcomponents[J].Microsyst Technol,1999(6):19-22.

    [28] Xing S,Zhao S,Pan T.Print-to-print:a facile multi-object micro-patterning technique[J].Biomedical microdevices,2013:1-8.

    [29] Thorsen T,Maerkl S J,Quake S R.Microfluidic Large-Scale Integration[J].Science,2002,298:580-584.

    [30] Arora A,Simone G.Latest Developments in Micro Total Analysis Systems[J].Anal Chem,2010,82(12):4830-484.

    [31] Cui J G,Pan T.A vacuμm-driven peristaltic micropμmp with valed actuation chambers[J].J.Micromech.Microeng,2011,21:1-7.

    猜你喜歡
    雅雅經(jīng)濟(jì)型建國(guó)
    Flow separation control over an airfoil using continuous alternating current plasma actuator
    愛(ài)吃醋的雅雅
    你是我最牽掛的人
    經(jīng)濟(jì)型連鎖酒店的“小算盤(pán)”
    金橋(2018年9期)2018-09-25 02:53:26
    我的同學(xué)是樹(shù)人
    經(jīng)濟(jì)型數(shù)控車(chē)床自動(dòng)化加工系統(tǒng)的改造
    黃建國(guó)小小說(shuō)欣賞
    Yarn Quality Prediction and Diagnosis Based on Rough Set and Knowledge-Based Artificial Neural Network
    模具用經(jīng)濟(jì)型P20板材生產(chǎn)實(shí)踐
    天津冶金(2014年4期)2014-02-28 16:52:37
    經(jīng)濟(jì)型車(chē)床數(shù)控系統(tǒng)精插器的設(shè)計(jì)
    河南科技(2014年12期)2014-02-27 14:10:37
    久久人妻福利社区极品人妻图片| 久久久精品国产亚洲av高清涩受| 亚洲精品久久国产高清桃花| 麻豆av在线久日| 日韩高清综合在线| 久久久久国内视频| 欧美日韩一级在线毛片| 亚洲九九香蕉| 亚洲av电影在线进入| 免费高清视频大片| 国产一区二区在线av高清观看| 在线天堂中文资源库| 精品久久久久久久毛片微露脸| 满18在线观看网站| 精品久久久久久久末码| 99在线视频只有这里精品首页| 欧美丝袜亚洲另类 | 国产精品野战在线观看| 少妇粗大呻吟视频| 亚洲精品色激情综合| 日韩大码丰满熟妇| 91老司机精品| 变态另类成人亚洲欧美熟女| 动漫黄色视频在线观看| 欧美日韩黄片免| 国产爱豆传媒在线观看 | av在线播放免费不卡| 天堂√8在线中文| 欧美性猛交黑人性爽| 精品久久久久久久毛片微露脸| 在线视频色国产色| 一区二区三区激情视频| 国语自产精品视频在线第100页| 成人永久免费在线观看视频| 窝窝影院91人妻| 我的亚洲天堂| 久久午夜综合久久蜜桃| 欧美日韩亚洲国产一区二区在线观看| 99久久精品国产亚洲精品| 午夜精品久久久久久毛片777| 欧美成人一区二区免费高清观看 | 真人做人爱边吃奶动态| 最新美女视频免费是黄的| 久久伊人香网站| 亚洲人成网站高清观看| 国产精品 欧美亚洲| 国产v大片淫在线免费观看| 无人区码免费观看不卡| 久久九九热精品免费| 亚洲五月天丁香| 亚洲黑人精品在线| 成人午夜高清在线视频 | 亚洲天堂国产精品一区在线| 国产久久久一区二区三区| 人妻久久中文字幕网| 亚洲欧美激情综合另类| 亚洲成人久久爱视频| 欧美人与性动交α欧美精品济南到| a级毛片在线看网站| 亚洲五月天丁香| 亚洲精华国产精华精| 日日干狠狠操夜夜爽| 免费看美女性在线毛片视频| 国产精品爽爽va在线观看网站 | 69av精品久久久久久| 制服丝袜大香蕉在线| 亚洲九九香蕉| 叶爱在线成人免费视频播放| 亚洲av日韩精品久久久久久密| 久久精品影院6| 欧美黑人欧美精品刺激| 亚洲,欧美精品.| 少妇被粗大的猛进出69影院| 国产精品香港三级国产av潘金莲| 美女大奶头视频| 亚洲成人精品中文字幕电影| 国产亚洲精品第一综合不卡| 好男人电影高清在线观看| 成人特级黄色片久久久久久久| 999久久久精品免费观看国产| 亚洲电影在线观看av| 麻豆久久精品国产亚洲av| 妹子高潮喷水视频| 黄色 视频免费看| 波多野结衣av一区二区av| 国产精品,欧美在线| 欧美日韩乱码在线| 麻豆国产av国片精品| 91麻豆av在线| 脱女人内裤的视频| 老熟妇乱子伦视频在线观看| 18禁观看日本| 少妇被粗大的猛进出69影院| 国产一区二区三区在线臀色熟女| a在线观看视频网站| 国内久久婷婷六月综合欲色啪| 亚洲欧美精品综合一区二区三区| АⅤ资源中文在线天堂| 国产极品粉嫩免费观看在线| 久久伊人香网站| 中文资源天堂在线| 麻豆成人av在线观看| 午夜免费成人在线视频| 在线永久观看黄色视频| 无遮挡黄片免费观看| 黄色女人牲交| 长腿黑丝高跟| 久久久久久国产a免费观看| 成在线人永久免费视频| a在线观看视频网站| 国产单亲对白刺激| 中文字幕高清在线视频| 日本黄色视频三级网站网址| 国产一区在线观看成人免费| 90打野战视频偷拍视频| 午夜免费激情av| 成人亚洲精品av一区二区| 亚洲av片天天在线观看| 欧美三级亚洲精品| 一区二区日韩欧美中文字幕| 日韩高清综合在线| 免费一级毛片在线播放高清视频| 国产又爽黄色视频| 真人一进一出gif抽搐免费| 欧美一级a爱片免费观看看 | 国产欧美日韩精品亚洲av| 99热6这里只有精品| 国产熟女xx| 久久国产精品男人的天堂亚洲| 久久精品91无色码中文字幕| 久久 成人 亚洲| 国产av在哪里看| 两个人视频免费观看高清| 久久久久国产一级毛片高清牌| 午夜激情av网站| 欧美黄色片欧美黄色片| 欧美中文日本在线观看视频| 夜夜看夜夜爽夜夜摸| 国产精品日韩av在线免费观看| 国产97色在线日韩免费| 黄网站色视频无遮挡免费观看| 国产黄a三级三级三级人| xxxwww97欧美| 夜夜看夜夜爽夜夜摸| 亚洲av日韩精品久久久久久密| 久久精品国产99精品国产亚洲性色| 国产乱人伦免费视频| 国产精品,欧美在线| 亚洲人成电影免费在线| 亚洲专区字幕在线| 男女床上黄色一级片免费看| 特大巨黑吊av在线直播 | 无人区码免费观看不卡| av免费在线观看网站| 十八禁网站免费在线| 久久这里只有精品19| 亚洲国产精品合色在线| 黄色视频不卡| www.精华液| 欧美亚洲日本最大视频资源| 黄色视频,在线免费观看| 久久久久国产一级毛片高清牌| 亚洲人成网站在线播放欧美日韩| 午夜福利免费观看在线| 美女扒开内裤让男人捅视频| 亚洲全国av大片| 大型av网站在线播放| 男女那种视频在线观看| 国产成人系列免费观看| 欧美日韩一级在线毛片| 国产精品1区2区在线观看.| 啦啦啦 在线观看视频| 久久草成人影院| 亚洲 欧美 日韩 在线 免费| 搡老妇女老女人老熟妇| 成人18禁高潮啪啪吃奶动态图| 97碰自拍视频| 大香蕉久久成人网| 欧美国产精品va在线观看不卡| 亚洲激情在线av| 国产国语露脸激情在线看| 欧美激情久久久久久爽电影| 亚洲精品久久成人aⅴ小说| 母亲3免费完整高清在线观看| 夜夜夜夜夜久久久久| 淫妇啪啪啪对白视频| 在线观看舔阴道视频| 亚洲专区国产一区二区| 男人舔女人的私密视频| 国产又色又爽无遮挡免费看| 日韩欧美三级三区| 久久久久久大精品| 国产精品久久视频播放| 18禁黄网站禁片午夜丰满| 国产成人啪精品午夜网站| 国产激情欧美一区二区| 亚洲一区中文字幕在线| 亚洲成人久久性| 国产又色又爽无遮挡免费看| 一二三四社区在线视频社区8| 香蕉丝袜av| 青草久久国产| 在线观看免费日韩欧美大片| 色精品久久人妻99蜜桃| 啪啪无遮挡十八禁网站| 中亚洲国语对白在线视频| 操出白浆在线播放| 亚洲av电影不卡..在线观看| 亚洲精品av麻豆狂野| 欧美日韩瑟瑟在线播放| 国产高清视频在线播放一区| 免费电影在线观看免费观看| 十八禁人妻一区二区| 性欧美人与动物交配| 波多野结衣巨乳人妻| 欧美亚洲日本最大视频资源| 亚洲久久久国产精品| 一本一本综合久久| 一级毛片女人18水好多| 老熟妇仑乱视频hdxx| 国产三级黄色录像| 在线观看免费午夜福利视频| 精品久久久久久久人妻蜜臀av| 午夜福利高清视频| 久久久国产精品麻豆| 99热6这里只有精品| 中文资源天堂在线| 欧美av亚洲av综合av国产av| 中文字幕另类日韩欧美亚洲嫩草| 久久精品国产99精品国产亚洲性色| 亚洲精品在线美女| 久久中文字幕人妻熟女| 久久精品成人免费网站| 国产成人精品无人区| 高清在线国产一区| 日本免费一区二区三区高清不卡| 18禁裸乳无遮挡免费网站照片 | 国产熟女xx| 国产主播在线观看一区二区| 在线观看午夜福利视频| 欧美一级a爱片免费观看看 | 亚洲成人精品中文字幕电影| 免费看十八禁软件| 日日夜夜操网爽| 午夜免费成人在线视频| 人成视频在线观看免费观看| 色尼玛亚洲综合影院| 亚洲电影在线观看av| 变态另类丝袜制服| 俺也久久电影网| 精品久久久久久久久久免费视频| 在线观看www视频免费| 免费在线观看完整版高清| 午夜免费激情av| 亚洲欧美日韩高清在线视频| 少妇粗大呻吟视频| 国产精品自产拍在线观看55亚洲| aaaaa片日本免费| 亚洲专区字幕在线| av欧美777| a在线观看视频网站| 精品一区二区三区av网在线观看| 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产精品成人综合色| 成人欧美大片| 长腿黑丝高跟| 黄色a级毛片大全视频| 午夜a级毛片| 桃色一区二区三区在线观看| 午夜福利高清视频| 麻豆国产av国片精品| 久久国产精品影院| 天天添夜夜摸| 免费一级毛片在线播放高清视频| 国产av不卡久久| 黄色丝袜av网址大全| 一级a爱片免费观看的视频| 国产成人av教育| 久久久久久免费高清国产稀缺| 夜夜爽天天搞| 757午夜福利合集在线观看| or卡值多少钱| 一级毛片高清免费大全| 亚洲精品色激情综合| 亚洲国产精品久久男人天堂| 日韩精品免费视频一区二区三区| 国产v大片淫在线免费观看| 神马国产精品三级电影在线观看 | 啦啦啦观看免费观看视频高清| 久久精品国产亚洲av香蕉五月| 久久久国产成人精品二区| 自线自在国产av| tocl精华| 麻豆久久精品国产亚洲av| 这个男人来自地球电影免费观看| 少妇 在线观看| 亚洲av第一区精品v没综合| 精品卡一卡二卡四卡免费| 老汉色av国产亚洲站长工具| 国产成人av激情在线播放| 久久精品aⅴ一区二区三区四区| 国产单亲对白刺激| 成人三级黄色视频| 老司机午夜福利在线观看视频| 神马国产精品三级电影在线观看 | 真人做人爱边吃奶动态| 琪琪午夜伦伦电影理论片6080| xxx96com| 免费av毛片视频| 熟女少妇亚洲综合色aaa.| 亚洲真实伦在线观看| 女警被强在线播放| 999久久久国产精品视频| 成年人黄色毛片网站| 日本成人三级电影网站| 最近最新免费中文字幕在线| 国产精品1区2区在线观看.| 欧美zozozo另类| 欧美绝顶高潮抽搐喷水| 俄罗斯特黄特色一大片| 香蕉久久夜色| 日韩欧美免费精品| 久久精品亚洲精品国产色婷小说| 欧美日韩乱码在线| 天天一区二区日本电影三级| 国产成人精品无人区| 亚洲自偷自拍图片 自拍| 淫秽高清视频在线观看| 亚洲 欧美一区二区三区| 99精品欧美一区二区三区四区| 国产人伦9x9x在线观看| 亚洲第一青青草原| 人人澡人人妻人| 久久精品国产清高在天天线| 精品第一国产精品| 亚洲av美国av| 看免费av毛片| 亚洲中文av在线| 成人一区二区视频在线观看| 国产亚洲欧美在线一区二区| 色综合婷婷激情| 亚洲av日韩精品久久久久久密| 久久青草综合色| 免费在线观看完整版高清| 亚洲欧洲精品一区二区精品久久久| 午夜a级毛片| 亚洲avbb在线观看| 久久99热这里只有精品18| 亚洲avbb在线观看| 日韩欧美一区二区三区在线观看| 欧美大码av| 黄色女人牲交| 精品第一国产精品| 免费高清视频大片| 精品久久久久久久人妻蜜臀av| 女生性感内裤真人,穿戴方法视频| 50天的宝宝边吃奶边哭怎么回事| 长腿黑丝高跟| 成人精品一区二区免费| 嫩草影院精品99| 91在线观看av| 性色av乱码一区二区三区2| 好看av亚洲va欧美ⅴa在| a级毛片a级免费在线| 在线国产一区二区在线| 国内毛片毛片毛片毛片毛片| 国产免费男女视频| 满18在线观看网站| av免费在线观看网站| 久久天躁狠狠躁夜夜2o2o| 久热爱精品视频在线9| 1024视频免费在线观看| 亚洲中文字幕日韩| 男人操女人黄网站| 成人国产一区最新在线观看| 久久久久久亚洲精品国产蜜桃av| 国产一区在线观看成人免费| 国产精品永久免费网站| 国产精品,欧美在线| 黄片播放在线免费| 久久香蕉国产精品| 久久久久免费精品人妻一区二区 | 真人做人爱边吃奶动态| 久久中文字幕人妻熟女| 757午夜福利合集在线观看| cao死你这个sao货| 亚洲人成网站在线播放欧美日韩| 后天国语完整版免费观看| 亚洲中文字幕一区二区三区有码在线看 | 久久中文看片网| 久久热在线av| 国产一区二区在线av高清观看| 国产1区2区3区精品| 国产三级黄色录像| 国产伦在线观看视频一区| 日本免费a在线| www日本在线高清视频| 亚洲国产精品成人综合色| 亚洲欧美精品综合一区二区三区| 青草久久国产| 大型黄色视频在线免费观看| 国产精品亚洲av一区麻豆| 国产在线观看jvid| 高清在线国产一区| 老汉色av国产亚洲站长工具| 精品卡一卡二卡四卡免费| 精品国产乱码久久久久久男人| 亚洲最大成人中文| 中文字幕另类日韩欧美亚洲嫩草| 色婷婷久久久亚洲欧美| 日韩高清综合在线| 国产精品综合久久久久久久免费| 国产视频内射| 男女下面进入的视频免费午夜 | 亚洲国产精品sss在线观看| 两人在一起打扑克的视频| 亚洲欧美日韩无卡精品| 久久伊人香网站| 欧美激情 高清一区二区三区| 高潮久久久久久久久久久不卡| 国产一区二区激情短视频| 午夜日韩欧美国产| 狠狠狠狠99中文字幕| 国产精品免费视频内射| 欧美色视频一区免费| 大型黄色视频在线免费观看| 久久精品国产99精品国产亚洲性色| 国产不卡一卡二| svipshipincom国产片| 亚洲,欧美精品.| 国产精品电影一区二区三区| av在线天堂中文字幕| 免费在线观看视频国产中文字幕亚洲| 免费搜索国产男女视频| 国产99白浆流出| 人人妻人人澡人人看| 午夜福利18| 亚洲男人的天堂狠狠| 18禁国产床啪视频网站| 99国产精品99久久久久| 18禁美女被吸乳视频| av免费在线观看网站| 欧美成狂野欧美在线观看| 男人舔女人的私密视频| 精品欧美一区二区三区在线| 黄色女人牲交| 窝窝影院91人妻| 叶爱在线成人免费视频播放| av免费在线观看网站| 成年人黄色毛片网站| 成人国产一区最新在线观看| 老司机福利观看| 久久99热这里只有精品18| 黄色a级毛片大全视频| videosex国产| 成人国产综合亚洲| 午夜精品在线福利| 男女午夜视频在线观看| 日本在线视频免费播放| 哪里可以看免费的av片| 搞女人的毛片| 在线观看午夜福利视频| 伊人久久大香线蕉亚洲五| 成年女人毛片免费观看观看9| 国产三级黄色录像| 欧美日本视频| 久久精品91无色码中文字幕| 久久久久久九九精品二区国产 | 不卡av一区二区三区| 中国美女看黄片| 午夜视频精品福利| 狂野欧美激情性xxxx| 色综合亚洲欧美另类图片| 成人一区二区视频在线观看| 一夜夜www| 国产亚洲av高清不卡| 中文字幕人妻熟女乱码| 亚洲国产精品999在线| 色尼玛亚洲综合影院| 日韩三级视频一区二区三区| 天天一区二区日本电影三级| 青草久久国产| 久久人人精品亚洲av| www.熟女人妻精品国产| 欧美日韩中文字幕国产精品一区二区三区| 岛国在线观看网站| 两性夫妻黄色片| 免费看a级黄色片| 欧美国产日韩亚洲一区| 成人免费观看视频高清| 亚洲色图av天堂| 真人一进一出gif抽搐免费| 2021天堂中文幕一二区在线观 | 日韩三级视频一区二区三区| 欧美国产精品va在线观看不卡| 一区二区三区精品91| 国产精品影院久久| 国产精品永久免费网站| 视频区欧美日本亚洲| 少妇熟女aⅴ在线视频| www.www免费av| 此物有八面人人有两片| 国产精品永久免费网站| videosex国产| 亚洲欧美精品综合一区二区三区| 日本一区二区免费在线视频| 久久精品夜夜夜夜夜久久蜜豆 | 757午夜福利合集在线观看| 国产亚洲av嫩草精品影院| 亚洲精品一区av在线观看| 色尼玛亚洲综合影院| 女生性感内裤真人,穿戴方法视频| 亚洲最大成人中文| 欧美人与性动交α欧美精品济南到| 波多野结衣av一区二区av| 精品第一国产精品| 制服丝袜大香蕉在线| 亚洲国产高清在线一区二区三 | 日本免费一区二区三区高清不卡| 成人亚洲精品av一区二区| 国产欧美日韩精品亚洲av| 超碰成人久久| 真人一进一出gif抽搐免费| 国产成人系列免费观看| 高潮久久久久久久久久久不卡| 午夜亚洲福利在线播放| 亚洲精品国产区一区二| 99久久综合精品五月天人人| 天堂√8在线中文| 少妇熟女aⅴ在线视频| 欧美色视频一区免费| 国产又爽黄色视频| 成人一区二区视频在线观看| 亚洲国产精品成人综合色| 久久久久久九九精品二区国产 | 亚洲欧美精品综合一区二区三区| 美女 人体艺术 gogo| 国内揄拍国产精品人妻在线 | 美女高潮喷水抽搐中文字幕| 又黄又粗又硬又大视频| 国产精华一区二区三区| 国产野战对白在线观看| 黄片播放在线免费| 日日干狠狠操夜夜爽| 免费在线观看影片大全网站| 亚洲avbb在线观看| 视频区欧美日本亚洲| 变态另类成人亚洲欧美熟女| 欧美色欧美亚洲另类二区| 欧美激情 高清一区二区三区| 国产伦一二天堂av在线观看| 午夜精品在线福利| 久久狼人影院| 黄色毛片三级朝国网站| 老鸭窝网址在线观看| 日韩欧美国产一区二区入口| 91大片在线观看| 日本免费a在线| 黄色 视频免费看| 亚洲精品国产一区二区精华液| 国产一区二区激情短视频| 亚洲精品一卡2卡三卡4卡5卡| x7x7x7水蜜桃| 黄片小视频在线播放| 搞女人的毛片| 在线观看日韩欧美| 婷婷六月久久综合丁香| 国产成人精品久久二区二区免费| 日韩大码丰满熟妇| 亚洲国产精品999在线| 国产99久久九九免费精品| 一个人观看的视频www高清免费观看 | 亚洲欧美精品综合久久99| 免费高清视频大片| 欧美日韩精品网址| 日本撒尿小便嘘嘘汇集6| 88av欧美| 欧美不卡视频在线免费观看 | 美国免费a级毛片| 亚洲色图 男人天堂 中文字幕| 欧美在线黄色| 亚洲av中文字字幕乱码综合 | 亚洲av成人不卡在线观看播放网| 制服人妻中文乱码| 亚洲精品中文字幕一二三四区| 国内少妇人妻偷人精品xxx网站 | 欧美一级毛片孕妇| 国产午夜精品久久久久久| 变态另类成人亚洲欧美熟女| 亚洲一区高清亚洲精品| 日韩三级视频一区二区三区| 国产成+人综合+亚洲专区| av超薄肉色丝袜交足视频| 久久婷婷成人综合色麻豆| 午夜成年电影在线免费观看| 国产精品精品国产色婷婷| 777久久人妻少妇嫩草av网站| 青草久久国产| 国产男靠女视频免费网站| 免费观看精品视频网站| 夜夜爽天天搞| 久久人人精品亚洲av| 窝窝影院91人妻| 日韩高清综合在线| 国产一区在线观看成人免费| 色播在线永久视频| 欧美成狂野欧美在线观看| 日韩欧美一区视频在线观看| 国产伦一二天堂av在线观看| 在线观看日韩欧美| 1024香蕉在线观看| 在线十欧美十亚洲十日本专区| 非洲黑人性xxxx精品又粗又长| 久久中文看片网| 亚洲av五月六月丁香网|