• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    重型卡車機(jī)艙內(nèi)流特性研究*

    2014-08-22 11:24:02葛吉偉王澤偉胡興軍王靖宇李崢崢
    機(jī)床與液壓 2014年24期
    關(guān)鍵詞:靖宇吉林大學(xué)機(jī)艙

    葛吉偉,王澤偉,胡興軍,2,王靖宇,楊 博,李崢崢

    1.吉林大學(xué)汽車仿真與控制國家重點(diǎn)實(shí)驗(yàn)室,長春 1300222.Department of Mechanical Engineering,Osaka University,Osaka 565-0871,Japan

    1.Introduction

    With the development of the modern automobile technology,the engine load is increasing and the problem of overheating of the engine compartment is growing.Internal flow of automobile engine compartment has great influence on the internal flow resistance and cooling[1].At the same time,cooling air flow is introduced into the engine compartment,consuming air kinetic energy and increasing the aerodynamic drag.Studies have shown that the car’s internal flow resistance accounted for 12%of the whole vehicle aerodynamic drag[2].Aerodynamic drag of auto cooling system is a main part of automobile internal flow resistance[3].Therefore,we put forward a higher request for the engine cooling system,and pay more and more attention on the engine compartment cooling performance[4].

    At this stage,auto makers assembles the parts of the engine cooling modules by experience which is provided by parts manufacturers but the matching of various modules is not considered.The cooling performance of a module in a location has achieved the optimal.But after assembled,the cooling performance will have a very great change,the original position will no longer be the best.The article will focus on a internal flow characteristics of under-hood for heavy-duty truck based on layout of cooling modules[5].

    2.Numerical simulation

    2.1.Geometric model of heavy-duty truck

    The original truck geometric model researched is a three dimensional numerical model provided by an auto company.The paper mainly studies the effect of layout of cooling modules on under-hood air flow and cooling[6].Cooling modules include a condenser,a intercooler,a water tank,a radiator and a fan.

    Tires of the truck,outside wheelhouse and modules on frame were simplified which has a little influence on flow field.The engine compartment keeps a condenser,an intercooler,a water tank radiator,a fan and an engine,etc.The engine will appropriately be simplified.The theory of porous media is used to establish model for the condenser,intercooler and radiator.Fuel pipes,water pipes,screws,nuts and other modules in the compartment were simplified.Simplified geometric model for the truck and engine compartment parts are shown in Figure 1 and Figure 2.

    Figure 1.Simplified heavy-duty trucks model

    Figure 2.Engine cooling modules

    The engine of the original heavy truck model is longitudinally placed.Fan is installed on the pump shaft,which drives the belt.And the belt drives the pump and the fan rotating.Figure 3 illustrates that in order to match to the water pump shaft the fan shaft has an angle with the radiator.As a result of the existence of this angle,the orthographic projection area of fan on the radiator is less than the parallel,and the position of the fan is lower than the center of the radiator,so it weakens the suction of fan for cooling air.

    Figure 3.Prototype Y=0 section

    Three kinds of improved cases were designed and the mathematical models were established:

    1)Case 1:Install the fan to the location paralleling to the radiator and make the fan shaft perpendicular to the radiator,which is in the center of the radiator core,as shown in Figure 4.

    Figure 4.Case 1 Y=0 section

    2)Case 2:For the layout form of cooling modules,traditional form of arrangement is intercoolerradiator-fan.The layout form of case 2 adopts intercooler-fan-radiator.So the fan is placed in the middle of the intercooler and radiator,and this reduces the air temperature which flow into the radiator and increases density and flow rate[7],as shown in Figure 5.

    Figure 5.Case 2 Y=0 section

    3)Case 3:There are three inlets in the front of the heavy truck,which are respectively the upper grille,the rubber decoration,and the lower grille.Figure 6 shows the area of the grille and the area of the radiator in the YZ plane is only a small overlapping part,so only a small part of the air overflowed from the upper grille flow into the intercooler and the radiator.Other parts outflow from cooling parts above.Due to not making full use of the cooling air,it goes against the engine cooling modules’cooling performance.Case 3 based of Case 1 is the radiator modules shift upward.In the process of upward shift,there are five small solutions to be analyzed.

    Figure 6.The front grille of the truck and cooling modules’relative locations

    By measured,there are 200 mm space cooling modules can be moved along the Z axis.There are 40 mm,80 mm and 120 mm,160 mm and 200 mm,as shown in Figure 7(a)~(e).

    Figure 7.Case 3 Y=0 section

    2.2.Grid generation

    The three-dimensional model of the truck is imported to the pre-process CFD software Hyper-mesh for topology,repairing surface and meshing surface grids.Different parts use different sizes.Grids in certain regions where the details are required should be dense and divided into triangular surface mesh[8].

    When generating volume mesh,first we should establish a computational domain to simulate numerical wind tunnel tests.The distance from the front boundary of the computational domain to the front of the truck is twice as long as the truck’s length.The distance from the rear boundary of computational domain to the rear of the truck is five times as long as the truck’s length.The width of computational domain is 7 times as long as the truck’s width.The height of computational domain is 4 times as long as the truck’s height.So this computational domain can insure that the flow of near the engine compartment can’t be affected,as shown in Figure 8.

    Figure 8.Computational domain size

    After building the computational domain and dividing the surface mesh,we should divide the volume mesh with STAR-CCM+.The main area is divided as the trimmer grid.The condenser,intercooler,radiator core and fan zoning is divided as the polyhedral mesh.For the space around the body,the part of the front grille,the space around the engine compartment cooling system and the space between grounds,we should refine the volume mesh to well capture the flow conditions of the position we concerned.Because of the presence of the wall surface boundary layer around the automobile generating a large flow velocity gradient,the outer surface of the truck and the inner surface of the engine compartment are extruded with the boundary layer along surface normal when we divide the volume mesh.The grid number of vehicle computational domain is about 11 846 000.Figure 9 is volume mesh on Y=0 coordinate crosssection.Other cases use the same meshing schemes.

    Figure 9.Heavy-duty trucks Y=0 section volume mesh

    2.3.Choosing numerical methods

    The air flow in the automobile engine compartment is determined by the flow of airflow field around the truck,so the simulation calculation process is coupling with the automotive external flow field and the automotive internal flow field.Automotive external flow field and internal flow field of engine compartment are separated.Simulation condition is that the engine is at the maximum torque point when vehicle speed is 30 km/h,much lower than 100 m/s,so this low speed flow is belong to the incompressible flow.We select a three-dimensional,unsteady,incompressible and viscous flow model[9].The control equation is Reynolds Averaged Navier-Stokes equations(RANS).The turbulence model is Realizable model.There are many curved walls in engine compartments,so Realizable k-e model has a good effect for simulating the boundary layer flow,the separated flow and the vortex flow[10].

    2.4.Boundary conditions

    The simulation process in the article is coupling with the automotive external flow field and the automotive internal flow field.Boundary conditions can be classified as the external boundary conditions and the internal boundary conditions.The external boundary conditions include inlet boundary conditions,outlet boundary conditions and wall boundary conditions of computational domain[11].Internal boundary conditions include engine compartment cooling systems and engines.The condenser,the intercooler and the radiator of cooling systems are porous media model to simulate,the fan use MRF methods to simulate,the wall of engine is setting to the corresponding thermal boundary[12].In order to simulate working conditions of heavy-duty trucks climbing at the maximum torque point under the highest summer temperature,fan speed is 1 400 r/min,the ambient temperature is 40℃,and the flow rate of the radiator circulating water is 22 m3/h.The inlet boundary condition is velocity inlet,the vehicle speed is 30 km/h,and the temperature is the highest possible temperature in summer 40℃.The outlet boundary condition is pressure outlet,and the pressure is the standard atmospheric pressure,the relative pressure is 0 Pa.The condenser,the intercooler and the radiator are the porous boundaries[13].There are heating parts of the engine compartments engine block,cylinder head,exhaust,turbo,etc.Thermal boundaries need to be according to the true situations to set.In star-ccm+ ,the condenser,the intercooler and the radiator are heat sources.

    3.Results analysis and discussion

    Figure 10(a)and(b)respectively show a velocity vector and a velocity scalar contour of the internal flow field of the prototype heavy-duty truck engine compartment at Y=0.Figure 11(a)and(b)respectively show a velocity vector and velocity scalar contour of the internal flow field of the prototype heavy-duty truck engine compartment at Y=0 when Case 1 change the location of the cooling fan.It can be seen that how the Case 1 impact on the velocity field of the entire engine compartment.

    Figure 10.Prototype Y=0 section

    Figure 11.Case 1 Y=0 section

    Contrasting with the velocity vector and velocity scalar contour of prototype heavy-duty trucks and Case 1,the flow velocity around the intercooler and the radiator in engine compartment of Case 1 is higher than the flow velocity of prototype heavy-duty trucks’.Low velocity Vortex regions in the cab’s floor of the prototype become small,and the wind speed becomes faster in these regions.The engine compartment cooling air flow speed becomes larger so that the engine compartment cooling air flow rate increases,helping take away more heat and improving the heavy-duty truck engine compartment thermal environment.

    As shown in the Table 1,we see flow-rate flowing through the condenser,the intercooler,the radiator and the fan.

    Table 1 shows that the cooling flow-rate flowing through the condenser,the intercooler,the radiator and the fan of Case 1 which improved the installation location of fan has increased,and the flow-rate flowing through the fan increases more,Δq=0.292 9 kg/s.So it proves that the layout scheme for cooling modules of Case 1 can improve the thermal environment of the engine compartment,especially the flowrate increasing in the radiator has improved the thermal performance of the engine cooling system.

    Table 1.Air flow-rate of cooling modules

    We can obtain the coolant temperature of the radiator inlet pipe and the radiator outlet pipe in Case 1,as shown in Table 2.

    Table 2.The cooling fluid temperature of the radiator inlet and outlet pipe

    Comprehensively analyzing the flow results of radiator modules and the coolant temperature of inlet and outlet of radiator,we can see that compared with the prototype,cooling performance of the Case 1 radiator has improved,but the radiator pipe water temperature is still higher than the maximum allowable temperature of the coolant with 100℃.

    Figure 12(a)and(b),respectively,are temperature contours of the prototype engine compartment and Case1’s at Y=0.

    Figure 12(a)shows that the prototype temperature at the top of the radiator is lower than Case 1’s due to reflow,but is still higher in other regions.The air temperature at the top of engine cylinder head is still relatively high,compared with the prototype.Due to the position change of the fan,the air flowrate flowing through the cooling module increases.The range of the high-temperature gas zone has been reduced.Through changing the location of the fan,high temperature gas reflow phenomenon has decreased.This can prevent the cooling air being secondary heated.This will help improve the effectiveness of the radiator.Compared with the prototype,the temperature of the engine compartment has decreased,but still failed to meet the cooling needs of the engine cooling modules,so we need further discussions.

    Figure 12.Y=0 section temperature contour

    Figure 13(a),(b),F(xiàn)igure 14(a),(b)and Figure 15(a),(b),respectively,show the velocity scalar and the temperature contour of the prototype,Case 1 and Case 2.Case 2 is based on Case 1 but the fan will be placed in the middle of the intercooler and the radiator.Comparing Figure 14 with Figure 15,the flow rate becomes faster at the condenser and the center position of intercooler because of the fan being put into the middle of the intercooler and the radiator and the pumping action of the fan.However,the flow rate of the air flowing through the radiator is much lower than that in Case 1.The airflow flowing through the radiator of Case 1 is divided into two parts,one is heated in the intercooler after the outflow,the other part does not flow through the intercooler.However,the flow passing through the radiator almost comes from the intercooler and is heated,reducing the flow-rate in the radiator,so the cooling performance of the radiator is deteriorated.Comparing temperature contour of Case 1 and Case 2,the temperature in the radiator and the engine of Case 2 is higher than that in Case1.The engine compartment cooling modules thermal performance of Case 2 has not improved,compared with Case 1.Comparing velocity scalar and temperature contour of Case 2 and Prototype’s,we can see that the flow rate of Case 2 above the radiator modules and in the zones between the top and bottom of the cab is smaller than the prototype’s,but the temperature at fan,radiator and engine is higher than the prototype’s.

    Figure 13.Prototype Y=0 section

    Figure 14.Case 1 Y=0 section

    Figure 15.Case 2 Y=0 section

    Table 3 shows the results of the flow-rate of the cooling modules in prototype,Case 1 and Case 2.

    Table 3 shows that the flow-rate of Case 2 in the condenser is greater,compared with Case 1 and prototype.The flow-rate of the intercooler,the radiator and the fan must be less than that of the prototype and Case 1.Flow-rate test results match with the analysis of the velocity scalar and temperature contour of cooling modules.

    Table 3.Air flow-rate of cooling modules

    By simulating Case 3 which contains five small solutions,velocity vector and velocity scalar at Y=0 cross-sectional were obtained,as shown in Figures16(a),(b)~ 20(a),(b).The flow rate passing through intercooler core in model in whichΔz=40 mm has increased compared with Case 1.Meanwhile the air at the bottom of front of heavy-duty trucks flows into intercooler,and the low-speed reflow regions above the radiator disappear.But near the front wall of heavy trucks above intercooler appears a lowspeed area,and air velocity beneath the engine increases.

    Compared with Case 1,the flow-rate from engine compartment of model in whichΔz=80 mm into the intercooler increased,and the flow rate above the cooling modules accelerates.But the flow-rate from the bottom into intercooler decreases.Due to translation of the fan,the flow rate above the engine accelerates.Compared with the Case 1,the most significant changes of model in whichΔz=120 mm is that the air hardly flows from front floor of engine compartment into the intercooler.A small part of flowrate from the up-grid into the engine compartment impinges on the rack in the intercooler,and the flow rate becomes small and the air can be separated.The air of the model in whichΔz=160 mm from the upgrid into the engine compartment is no longer hampered by the shelf and is more smooth through the intercooler to a radiator.The overlapping areas of the areas projected the up-grille;and the intermediate rubber trim and lower grid on the YZ Plane and the areas projected radiator on the YZ Plane are much more than the three small solutions’ above.As shown in velocity scalar,the intercooler and the radiator air flow rate is slightly higher than the three small solutions’above in the whole.

    Figure 16.Case 3 Δz=40 mm

    Figure 17.Case 3 Δz=80 mm

    Figure 18.Case 3 Δz=120 mm

    Figure 19.Case 3 Δz=160 mm

    Figure 20.Case3 Δz=200 mm

    In Table 4 given there are the results of the flow of the monitored cooling modules in prototype,Case 1 and Case 3 with five small solutions.This study focuses an attention on the flow of radiator.In the model in whichΔz=40 mm,there is still air flowing into the radiator below the front and this increases the flow passing through the radiator due to the flow from the up-grille into the radiator increasing and the radiator moving along Z-axis by 40 mm.The flow from the bottom into intercooler decreases in the model Δz=80 mm.Although the flow from up-grille into the radiator increases,the mass of cooling gas passing through the radiator in the modelΔz=80 mm is smaller than it in the modelΔz=40 mm.The flow from front floor of engine compartment into the intercooler is few in the modelΔz=120 mm and the flow is the least comparing with other four solutions.Although the air from front floor of engine compartment no longer passes by the radiator in the modelΔz=160 mm.The air from the up-grille into the radiator has increased and the flow reaches a maximum value in the modelΔz=200 mm.So the cooling performance of the radiator is the best.

    Table 4.The flow-rate of cooling modules

    By simulation results,the temperature of the radiator outlet pipe is107.32 ℃ in Case 3(Δz=200 mm)where the flow-rate of the radiator is the highest but is still higher than the maximum allowable temperature of the coolant with 100℃.It proves that when the fan speed is fixed at 1400rpm,changing the layout of the cooling modules to improve the thermal performance of the engine compartment can’t reach the cooling requirements at the harshest conditions of the heavy-duty truck engine compartment thermal environment.Changing the layout of the cooling modules to improve the thermal performance of the engine compartment is limited.To make the temperature of the radiator outlet pipe less than the maximum allowable temperature,the cooling fan speed needs to be increased to meet the requirements.So this research simply selects a few points of the fan speed to try to increase the fan speed of the optimal solution to improve the thermal environment of the engine compartment.By the numerical simulation,we get that when the fan speed is 1.22 times higher than the original model,the temperature of the radiator outlet pipe is 79.00 ℃.Within the normal temperature range,the cooling needs of the engine compartment can be met.

    4.Conclusion

    For the cooling arrangement of the heavy-duty truck prototype engine compartment,three improve-ment programs were proposed using the same grid scheme and boundary conditions.The results of each case were analyzed and compared.The effect of the fifth solution in the Case 3 is the best.It can effectively optimize the flow structure of the engine compartment and improve the cooling performance of the radiator.The temperature of the radiator outlet pipe reduces from the 109.02 ℃ of the original model to 107.32℃.The effect of only changing the layout of the cooling modules to improve the thermal performance of the engine compartment is limited.Although changing the layout of the cooling modules can’t meet the needs of the thermal performance of the engine compartment,changing the layout of the cooling modules and then increasing the fan speed can minimize the energy consumption and improve the economical efficiency of the heavy-duty trucks.

    [1] Dumas L.CFD-based Optimization for Automotive Aerodynamics[M].Berlin:Springer,2008:191-215.

    [2] YU Zhi-sheng.Automotive theories(The third edition)[M].Beijing:Mechanical Industry Press,2000:10-11.

    [3] FU Li-min.Automotive aerodynamics[M].Beijing:Mechanical Industry Press,2006.

    [4] Fortunate F,Damiano F,Di Matteo L L,et al.Underhood Cooling Simulation for Development of New Vehicles[C]//SAE Paper,2005-01-2046.

    [5] WANG Fu-jun.Computational fluid dynamics analysis-CFDSoftware Principles and Applications[M].Beijing:Tsinghua University Press,2004.

    [6] LIU Chuan-chao.The flow calculation and cooling of the truck outflow and engine compartment[D].Xi’an:Northwestern Polytechnical University,2005.

    [7] Zhigang Yang,Bozeman J,F(xiàn)red Z,et al.CFRM Concept for Vehicle Thermal System[C]//SAE Paper,2002-01-1207.

    [8] WANG Sheng-xi.Analyze two-dimensional unstructured grid generation method and its application[J].Computer engineering and application,2010.

    [9] FU Li-min,WU Yun-zhu,HE Bao-qin.Simulation Research on Automotive Aerodynamic Characteristics during the Overtaking Process[J].Chinese Journal of Mechanical Engineering,2000.

    [10]FU De-xun.Computational Fluid Dynamics[M].Beijing:Higher Education Press,2002.

    [11] LIU Xi-xia,The heat transfer numerical simulation research for Main battle tank engine compartment[D].Beijing:Armored Force Engineering Institute,2004.

    [12] HE Wei,MA Jing.The comparison for multiple reference frame method and the sliding mesh method in numerical simulation of the auto front intake[J].Computer aided engineering,2007,16(3):96-100.

    [13] Francois N.Using CFD for heat exchanger development and thermal management,Valeo Engine Cooling[C]//European Automotive CFDConference EACC,F(xiàn)rankfurt,Germany,June 29-302005.

    猜你喜歡
    靖宇吉林大學(xué)機(jī)艙
    吉林大學(xué)學(xué)報(地球科學(xué)版)
    Mottness,phase string,and high-Tc superconductivity
    船舶機(jī)艙火災(zāi)的原因分析及預(yù)防
    水上消防(2022年2期)2022-07-22 08:43:56
    Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
    《吉林大學(xué)學(xué)報(理學(xué)版)》征稿簡則
    船舶機(jī)艙通風(fēng)相關(guān)要求及常見關(guān)閉裝置分析
    水上消防(2021年3期)2021-08-21 03:12:20
    《吉林大學(xué)學(xué)報(理學(xué)版)》征稿簡則
    船舶機(jī)艙常見消防隱患及防控
    水上消防(2020年5期)2020-12-14 07:16:20
    《吉林大學(xué)學(xué)報( 理學(xué)版) 》征稿簡則
    謝謝你
    99热全是精品| 日本-黄色视频高清免费观看| 一本一本综合久久| 日本爱情动作片www.在线观看| 精品久久久久久电影网| 亚洲av不卡在线观看| 亚洲精品乱码久久久久久按摩| 特大巨黑吊av在线直播| 在现免费观看毛片| 伊人亚洲综合成人网| 伊人久久国产一区二区| 街头女战士在线观看网站| 久热这里只有精品99| 一区二区三区免费毛片| 亚洲人成网站在线播| 亚洲av.av天堂| 91午夜精品亚洲一区二区三区| 在线看a的网站| 国产成人a∨麻豆精品| 又大又黄又爽视频免费| 美女中出高潮动态图| 亚洲精品第二区| 成年人午夜在线观看视频| 亚洲伊人久久精品综合| 亚洲美女搞黄在线观看| 69精品国产乱码久久久| 丁香六月天网| 色哟哟·www| 少妇的逼好多水| 精品久久久噜噜| 亚洲av国产av综合av卡| 亚洲国产精品一区二区三区在线| 高清午夜精品一区二区三区| 国产精品久久久久久久久免| 欧美精品国产亚洲| 美女大奶头黄色视频| 国产成人精品在线电影| 国产白丝娇喘喷水9色精品| 老熟女久久久| 精品一区在线观看国产| 日产精品乱码卡一卡2卡三| 国产精品国产av在线观看| 亚洲欧美色中文字幕在线| 中文字幕久久专区| 老熟女久久久| av电影中文网址| 美女大奶头黄色视频| 亚洲无线观看免费| 久久狼人影院| 亚洲成人一二三区av| 精品人妻熟女av久视频| 高清不卡的av网站| 日日撸夜夜添| 寂寞人妻少妇视频99o| videosex国产| 另类亚洲欧美激情| 中国美白少妇内射xxxbb| 久久久久国产精品人妻一区二区| 久久99蜜桃精品久久| 国产在线免费精品| 中文字幕久久专区| 久热这里只有精品99| 成年人午夜在线观看视频| 少妇丰满av| 看免费成人av毛片| 熟女av电影| 国产精品不卡视频一区二区| 一区二区三区乱码不卡18| 人人妻人人澡人人看| 国产高清有码在线观看视频| 天堂中文最新版在线下载| 国产欧美日韩一区二区三区在线 | 插阴视频在线观看视频| 校园人妻丝袜中文字幕| 91久久精品国产一区二区成人| a级毛片在线看网站| 国产日韩欧美亚洲二区| av女优亚洲男人天堂| 一二三四中文在线观看免费高清| 国产免费视频播放在线视频| 亚洲性久久影院| 妹子高潮喷水视频| 亚洲成人手机| 精品国产国语对白av| 国产精品久久久久久精品电影小说| 日产精品乱码卡一卡2卡三| 久久鲁丝午夜福利片| 日日啪夜夜爽| 18禁观看日本| 久久精品国产鲁丝片午夜精品| 久久久国产精品麻豆| 午夜av观看不卡| 七月丁香在线播放| 看免费成人av毛片| av在线播放精品| 久久久久精品久久久久真实原创| 伦理电影大哥的女人| 国产白丝娇喘喷水9色精品| 精品少妇黑人巨大在线播放| 色婷婷av一区二区三区视频| 91精品一卡2卡3卡4卡| 曰老女人黄片| 好男人视频免费观看在线| 亚洲精品日本国产第一区| 日韩不卡一区二区三区视频在线| 国产女主播在线喷水免费视频网站| 久久久久久久久久久丰满| 纯流量卡能插随身wifi吗| 老女人水多毛片| 亚洲图色成人| 久久精品久久精品一区二区三区| 欧美日韩成人在线一区二区| 一级毛片黄色毛片免费观看视频| 国产白丝娇喘喷水9色精品| 九九在线视频观看精品| 成人国产av品久久久| 国产欧美日韩一区二区三区在线 | 国产亚洲一区二区精品| 一区在线观看完整版| 视频在线观看一区二区三区| 视频在线观看一区二区三区| 视频区图区小说| 菩萨蛮人人尽说江南好唐韦庄| 青青草视频在线视频观看| 大香蕉97超碰在线| 国产成人aa在线观看| 91精品国产国语对白视频| 亚洲精品日韩av片在线观看| 精品人妻熟女毛片av久久网站| 日韩精品免费视频一区二区三区 | 韩国高清视频一区二区三区| 天天影视国产精品| 亚洲精品国产av蜜桃| 久久 成人 亚洲| 国产精品三级大全| 国产日韩一区二区三区精品不卡 | av又黄又爽大尺度在线免费看| 欧美日韩精品成人综合77777| 国产高清不卡午夜福利| 亚洲,欧美,日韩| 黄色欧美视频在线观看| tube8黄色片| 十八禁网站网址无遮挡| 99久久中文字幕三级久久日本| 久久久久网色| 精品少妇黑人巨大在线播放| 久久久久视频综合| 三级国产精品片| 国产探花极品一区二区| 一区二区av电影网| 最近2019中文字幕mv第一页| 免费大片黄手机在线观看| 久久久久久伊人网av| 久久97久久精品| 男人爽女人下面视频在线观看| 欧美精品国产亚洲| 亚洲色图 男人天堂 中文字幕 | 久久午夜综合久久蜜桃| 色视频在线一区二区三区| 内地一区二区视频在线| 天天躁夜夜躁狠狠久久av| 成人18禁高潮啪啪吃奶动态图 | 中文天堂在线官网| 中文字幕最新亚洲高清| 免费黄网站久久成人精品| 国产精品久久久久久久电影| 精品久久蜜臀av无| 精品卡一卡二卡四卡免费| 满18在线观看网站| 蜜桃国产av成人99| 国产乱来视频区| a 毛片基地| 丝瓜视频免费看黄片| 最近中文字幕2019免费版| 在线观看三级黄色| 嘟嘟电影网在线观看| 人妻制服诱惑在线中文字幕| 亚洲激情五月婷婷啪啪| 欧美xxⅹ黑人| 日日摸夜夜添夜夜添av毛片| 乱人伦中国视频| 久久毛片免费看一区二区三区| 伦精品一区二区三区| 99视频精品全部免费 在线| 日韩三级伦理在线观看| 人妻系列 视频| 性高湖久久久久久久久免费观看| 欧美少妇被猛烈插入视频| 晚上一个人看的免费电影| 肉色欧美久久久久久久蜜桃| 黑人欧美特级aaaaaa片| 欧美一级a爱片免费观看看| 欧美日韩一区二区视频在线观看视频在线| 国产免费一级a男人的天堂| 国产爽快片一区二区三区| 国产黄色视频一区二区在线观看| 日本欧美国产在线视频| 亚洲欧美日韩卡通动漫| 国产69精品久久久久777片| 免费看光身美女| 国产精品秋霞免费鲁丝片| 人人妻人人添人人爽欧美一区卜| 大码成人一级视频| 日韩制服骚丝袜av| 欧美bdsm另类| 欧美人与性动交α欧美精品济南到 | 热re99久久国产66热| 各种免费的搞黄视频| 中文欧美无线码| 日本午夜av视频| 日日撸夜夜添| 美女主播在线视频| 久久午夜综合久久蜜桃| 丝瓜视频免费看黄片| 两个人的视频大全免费| 在线观看免费高清a一片| 日韩视频在线欧美| 国产一区二区在线观看av| 国产精品久久久久久精品电影小说| 亚洲久久久国产精品| 女人精品久久久久毛片| 丝袜在线中文字幕| 午夜福利,免费看| 2022亚洲国产成人精品| 成人黄色视频免费在线看| 99九九线精品视频在线观看视频| 一边摸一边做爽爽视频免费| 日日摸夜夜添夜夜添av毛片| 视频区图区小说| 国产 精品1| 伦理电影大哥的女人| 日本猛色少妇xxxxx猛交久久| 国产一级毛片在线| 久久久亚洲精品成人影院| 亚洲精品av麻豆狂野| 中文字幕久久专区| 日日撸夜夜添| 中文字幕免费在线视频6| 亚洲av日韩在线播放| 久久精品久久精品一区二区三区| 一个人免费看片子| 国产精品99久久久久久久久| 黑人巨大精品欧美一区二区蜜桃 | 亚洲色图综合在线观看| 美女内射精品一级片tv| 99热国产这里只有精品6| 欧美日韩视频高清一区二区三区二| av黄色大香蕉| av免费观看日本| 精品一区二区三区视频在线| 国产成人精品福利久久| 最黄视频免费看| 男女国产视频网站| 国产精品人妻久久久影院| 日韩精品有码人妻一区| 亚洲伊人久久精品综合| 久久精品久久精品一区二区三区| 王馨瑶露胸无遮挡在线观看| 成年人午夜在线观看视频| 午夜福利视频在线观看免费| 日韩一本色道免费dvd| 国产免费一区二区三区四区乱码| 亚洲精品一二三| 美女国产视频在线观看| 国产精品蜜桃在线观看| 一区二区三区精品91| 免费日韩欧美在线观看| 亚洲无线观看免费| 视频区图区小说| 26uuu在线亚洲综合色| 亚洲精品久久久久久婷婷小说| 如日韩欧美国产精品一区二区三区 | 天天影视国产精品| 九九在线视频观看精品| 亚洲欧美日韩卡通动漫| 亚洲久久久国产精品| 亚洲内射少妇av| 成人二区视频| 尾随美女入室| 尾随美女入室| 国产精品蜜桃在线观看| 晚上一个人看的免费电影| 国产精品国产av在线观看| 免费观看av网站的网址| 免费人妻精品一区二区三区视频| 亚洲,一卡二卡三卡| h视频一区二区三区| 91国产中文字幕| 午夜免费鲁丝| 久久国内精品自在自线图片| 一本久久精品| 国产成人a∨麻豆精品| 欧美日韩av久久| 日日爽夜夜爽网站| 国产视频内射| 国产精品.久久久| 久久久精品94久久精品| 美女视频免费永久观看网站| 国产精品一区二区三区四区免费观看| 国产av一区二区精品久久| 精品99又大又爽又粗少妇毛片| 亚洲精品成人av观看孕妇| 欧美3d第一页| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品日韩在线中文字幕| av一本久久久久| 97在线视频观看| 男女国产视频网站| 男女国产视频网站| 国产日韩一区二区三区精品不卡 | 久久久精品区二区三区| 亚洲精品美女久久av网站| 亚州av有码| 日韩一区二区三区影片| 久久久久久久国产电影| 久热久热在线精品观看| 18禁动态无遮挡网站| 成人国产麻豆网| 18禁在线无遮挡免费观看视频| 多毛熟女@视频| 插阴视频在线观看视频| 建设人人有责人人尽责人人享有的| 赤兔流量卡办理| 国产成人精品无人区| 99久久中文字幕三级久久日本| 韩国高清视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 日韩免费高清中文字幕av| 久久久久久久久久久免费av| 黄片播放在线免费| 午夜影院在线不卡| 婷婷色麻豆天堂久久| 国产精品一区二区三区四区免费观看| 91精品一卡2卡3卡4卡| 大香蕉久久网| 亚洲美女黄色视频免费看| 国产成人免费无遮挡视频| 99热这里只有精品一区| 日韩熟女老妇一区二区性免费视频| 国产熟女午夜一区二区三区 | 卡戴珊不雅视频在线播放| 哪个播放器可以免费观看大片| 国产极品粉嫩免费观看在线 | 国产精品三级大全| 欧美日韩视频高清一区二区三区二| 九色亚洲精品在线播放| 男女免费视频国产| 精品一区二区三区视频在线| 欧美精品一区二区大全| av女优亚洲男人天堂| 欧美xxⅹ黑人| 精品一区二区三区视频在线| 黑丝袜美女国产一区| 青春草亚洲视频在线观看| 亚洲精品久久午夜乱码| 亚洲,一卡二卡三卡| 一区二区三区乱码不卡18| 日韩免费高清中文字幕av| 久久久久久久国产电影| 午夜福利在线观看免费完整高清在| 日韩制服骚丝袜av| 国产精品99久久99久久久不卡 | 少妇人妻久久综合中文| 我的女老师完整版在线观看| 国产精品女同一区二区软件| 飞空精品影院首页| 亚洲天堂av无毛| 欧美亚洲日本最大视频资源| 久久国产精品大桥未久av| 精品久久蜜臀av无| 美女xxoo啪啪120秒动态图| av卡一久久| 老司机亚洲免费影院| 中文字幕免费在线视频6| 九草在线视频观看| av又黄又爽大尺度在线免费看| 国产深夜福利视频在线观看| 久久99精品国语久久久| 中文字幕av电影在线播放| 少妇人妻精品综合一区二区| 青春草视频在线免费观看| 国产成人精品无人区| 2018国产大陆天天弄谢| 下体分泌物呈黄色| 国产成人精品一,二区| 午夜福利在线观看免费完整高清在| 中文字幕av电影在线播放| 久久久欧美国产精品| 观看av在线不卡| 精品久久蜜臀av无| 男男h啪啪无遮挡| 麻豆乱淫一区二区| 亚洲精品美女久久av网站| 国产精品国产三级专区第一集| 丰满乱子伦码专区| 国产精品蜜桃在线观看| 18在线观看网站| 亚洲av免费高清在线观看| 一个人免费看片子| 韩国高清视频一区二区三区| 大香蕉久久网| 中国国产av一级| 中文字幕亚洲精品专区| 国产精品国产三级国产专区5o| 亚洲成色77777| 啦啦啦在线观看免费高清www| 在线免费观看不下载黄p国产| 国产免费现黄频在线看| 99九九在线精品视频| 国产av码专区亚洲av| 久久国内精品自在自线图片| 欧美激情极品国产一区二区三区 | 久久99一区二区三区| 国产免费视频播放在线视频| 欧美变态另类bdsm刘玥| 免费观看在线日韩| 黑人猛操日本美女一级片| 日韩电影二区| 日韩制服骚丝袜av| 高清毛片免费看| 美女主播在线视频| 成人二区视频| 欧美精品一区二区免费开放| 国产免费一区二区三区四区乱码| 五月开心婷婷网| 亚洲国产av影院在线观看| 99热这里只有是精品在线观看| 少妇高潮的动态图| 国产精品欧美亚洲77777| 日日啪夜夜爽| 亚洲欧洲国产日韩| 春色校园在线视频观看| 成人免费观看视频高清| 日本爱情动作片www.在线观看| 精品亚洲成a人片在线观看| 18在线观看网站| 美女cb高潮喷水在线观看| 国产精品不卡视频一区二区| 我的女老师完整版在线观看| 嘟嘟电影网在线观看| 国产 一区精品| 亚洲国产色片| 国产毛片在线视频| 丰满乱子伦码专区| 亚洲精品久久成人aⅴ小说 | 一区二区三区乱码不卡18| 国产成人精品在线电影| 高清av免费在线| 性色av一级| 久久久久久久久久久久大奶| 黄片播放在线免费| 国产乱来视频区| 免费观看在线日韩| 久久精品久久精品一区二区三区| 日韩欧美一区视频在线观看| 啦啦啦在线观看免费高清www| 中文字幕人妻熟人妻熟丝袜美| 草草在线视频免费看| 麻豆精品久久久久久蜜桃| 日韩一本色道免费dvd| 男人爽女人下面视频在线观看| 久久鲁丝午夜福利片| 久久免费观看电影| 色婷婷久久久亚洲欧美| 大话2 男鬼变身卡| 国产视频内射| 亚洲国产av新网站| 久久精品熟女亚洲av麻豆精品| 国产高清国产精品国产三级| 精品酒店卫生间| 久久韩国三级中文字幕| 免费观看在线日韩| 国产精品国产三级国产专区5o| 精品久久久久久久久亚洲| 日日啪夜夜爽| 免费av中文字幕在线| 亚洲久久久国产精品| 国产免费一区二区三区四区乱码| 亚洲av欧美aⅴ国产| 欧美3d第一页| 女人精品久久久久毛片| 另类亚洲欧美激情| 国产免费视频播放在线视频| 人妻夜夜爽99麻豆av| 少妇熟女欧美另类| 搡女人真爽免费视频火全软件| 日本91视频免费播放| 日韩中文字幕视频在线看片| 亚洲国产精品999| 99久久综合免费| 国产女主播在线喷水免费视频网站| 天堂俺去俺来也www色官网| 精品国产一区二区久久| 亚洲精品久久成人aⅴ小说 | 亚洲精品乱码久久久v下载方式| 亚洲av福利一区| 热99久久久久精品小说推荐| 日日爽夜夜爽网站| 国产成人精品无人区| 国产无遮挡羞羞视频在线观看| 亚洲怡红院男人天堂| 欧美一级a爱片免费观看看| 成人漫画全彩无遮挡| 欧美最新免费一区二区三区| 亚洲欧美一区二区三区国产| 少妇丰满av| 美女中出高潮动态图| 天美传媒精品一区二区| 亚洲第一区二区三区不卡| 99热这里只有是精品在线观看| 九九久久精品国产亚洲av麻豆| 久久婷婷青草| 久久 成人 亚洲| 成人毛片60女人毛片免费| 蜜桃国产av成人99| 日韩中文字幕视频在线看片| 欧美人与善性xxx| 婷婷色综合www| 欧美亚洲 丝袜 人妻 在线| 久久久久久久久久久丰满| 夫妻午夜视频| 久久精品人人爽人人爽视色| 日韩 亚洲 欧美在线| 婷婷色综合大香蕉| 青春草视频在线免费观看| 久久久久久久精品精品| 三级国产精品欧美在线观看| 热re99久久精品国产66热6| 国产成人91sexporn| 两个人免费观看高清视频| av在线播放精品| 高清黄色对白视频在线免费看| 国产无遮挡羞羞视频在线观看| 十分钟在线观看高清视频www| 在线播放无遮挡| 最后的刺客免费高清国语| 亚洲av中文av极速乱| 高清毛片免费看| 黑人猛操日本美女一级片| 久久久国产精品麻豆| 国产黄色视频一区二区在线观看| 搡女人真爽免费视频火全软件| 精品人妻在线不人妻| 国产成人a∨麻豆精品| 男女啪啪激烈高潮av片| 久久久久久久久久久丰满| 狂野欧美激情性xxxx在线观看| 久久国产精品大桥未久av| 韩国av在线不卡| 国产一区二区在线观看av| 免费看不卡的av| 人妻人人澡人人爽人人| 亚洲精品乱码久久久久久按摩| 蜜桃久久精品国产亚洲av| 久久久精品94久久精品| 免费高清在线观看日韩| 一级黄片播放器| 女人精品久久久久毛片| 人人妻人人爽人人添夜夜欢视频| 最近手机中文字幕大全| 男人操女人黄网站| 日韩视频在线欧美| 91久久精品国产一区二区成人| 日韩人妻高清精品专区| 亚洲图色成人| 国产日韩一区二区三区精品不卡 | 国产成人免费无遮挡视频| 国产永久视频网站| 久久精品国产鲁丝片午夜精品| av天堂久久9| 插逼视频在线观看| 蜜桃国产av成人99| 免费久久久久久久精品成人欧美视频 | 国产成人精品一,二区| 久久青草综合色| 精品人妻偷拍中文字幕| 高清在线视频一区二区三区| 久久人人爽av亚洲精品天堂| 欧美三级亚洲精品| 韩国av在线不卡| 最黄视频免费看| 丁香六月天网| 少妇的逼好多水| 午夜精品国产一区二区电影| 五月开心婷婷网| 99九九在线精品视频| 寂寞人妻少妇视频99o| 下体分泌物呈黄色| 国产精品偷伦视频观看了| 99热这里只有是精品在线观看| 国产精品无大码| 国产乱来视频区| 亚洲精品日韩av片在线观看| 亚洲国产成人一精品久久久| 亚洲欧美成人综合另类久久久| 91精品国产九色| 69精品国产乱码久久久| 国产欧美日韩一区二区三区在线 | 久久 成人 亚洲| 国产成人精品在线电影| 2021少妇久久久久久久久久久| 欧美三级亚洲精品| 午夜激情av网站| 成人手机av| av线在线观看网站| 精品久久蜜臀av无| 午夜免费男女啪啪视频观看| 99久久综合免费| 永久网站在线| 韩国高清视频一区二区三区| 26uuu在线亚洲综合色| 乱人伦中国视频| 爱豆传媒免费全集在线观看| 中文字幕久久专区| 国产成人精品婷婷|