• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tool wear monitoring based on wavelet packet coefficient and hidden Markov model*

    2014-07-31 20:21:52YingQIUFengyunXIE
    機(jī)床與液壓 2014年2期
    關(guān)鍵詞:馬爾科夫波包識(shí)別率

    Ying QIU, Feng-yun XIE

    School of Mechanical and Electronical Engineering, East China Jiaotong University, Nanchang 330013, China

    Tool wear monitoring based on wavelet packet coefficient and hidden Markov model*

    Ying QIU, Feng-yun XIE?

    SchoolofMechanicalandElectronicalEngineering,EastChinaJiaotongUniversity,Nanchang330013,China

    In order to prevent tool failures during the automation machining process, the tool wear monitoring becomes very important. However, the state recognition of the tool wear is not an easy task. In this paper, an approach based on wavelet packet coefficient and hidden Markov model (HMM) for tool wear monitoring is proposed. The root mean square (RMS) of the wavelet packet coefficients at different scales are taken as the feature observations vector. The approach of HMM pattern recognition is used to recognize the states of tool wear. The experimental results have shown that the proposed method has a good recognition performance.

    Tool wear, Wavelet packet coefficient, Hidden Markov model, Root mean square

    Tool wear monitoring is crucial in order to prevent tool failures during the automation machining process. However, the on-line tool wear monitoring is not an easy task due to the complexity of the process. For many years, lots of scholars have studied tool wear monitoring by various methods. There are important contributions presented for condition monitoring, for instance, on-line tool monitoring by using Artificial intelligence was presented by Vallejo[1], a method of state recognitions based on wavelet and hidden Markov model (HMM) was presented by Xie[2]. On-line condition monitoring based on empirical mode decomposition and neural network was proposed by Xie[3]. A prediction tool wear in machining processes based on ANN was proposed by Haber et al[4]. A new hybrid technique for cutting tool wear monitoring, which fuses a physical process model with an artificial neural networks (ANN) model, is proposed for turning by Sick[5]. However, ANN in tool wear monitoring requires a lot of empirical data for the learning algorithm. Otherwise, it will reduce the recognition rate of the tool wear.

    In this paper, an approach based on wavelet packet coefficient and HMM for tool wear monitoring is proposed. In order to monitor the tool wear states in machining process, the dynamometer is used for data acquisition. The wavelet packet decomposition is adopted for data processing. The root mean square (RMS) of the wavelet packet coefficients at different scales are taken as the feature observations vector. The HMM is used to recognize the states of tool wear. The results show that the proposed method has a relatively high recognition rate.

    1.Introduction

    1.1.Wavelet packet analysis

    Wavelet packet decomposes the lower as well as the higher frequency bands and leads to a balanced binary tree structure. Wavelet Packet could be defined as:

    (1)

    Where,hl-2kandgl-2kare called as orthogonal mirror filter, the function seriesW(2-jt-k) is called as orthogonal wavelet packet.

    Wavelet packet function is defined as

    (2)

    Where,Nis the set of positive integers andZis the set of integers;nis the oscillation parameter;jandkare the frequency localization parameters and the time localization parameter, respectively.

    The first two wavelet packet functions are defined as:

    (3)

    The basic wavelet functionΨ(t) is defined as:

    (4)

    Where,a,b∈L2(R) (square-integrable space),a≠0. Parameterais called as scale parameter, which is related to the frequency. Parameterbis called as position parameter, which determines the time-domain or space-domain information in the transformed results.

    The diagram of this algorithm is shown in Figure 1, where,AandDare the wavelet packet coefficients[6].

    Figure 1. Wavelet packet decomposition tree at level 3

    When sampling frequency 2fsis adopted, the different frequency bands range by three layers of wavelet packet decomposition could be shown in Table 1.

    The decomposition coefficients of a signalf(t) into Wavelet Packet are computed by applying the low-pass and high-pass filters iteratively. The decomposition coefficients are defined as:

    (5) Table 1. Different frequency bands range

    1.2.Hidden Markov model

    HMM is an extension of Markov chains. Unlike Markov chains, HMM is doubly stochastic process, i.e., not only is the transition from one state to another state stochastic, but the output symbol generated at each state is also stochastic. Thus the model can only be observed through another set of stochastic processes. The actual sequences of states are not directly observable but are “hidden” from observer. A HMM are illustrated in Figure 2.

    Figure 2. Hidden Markov model

    2.Experiment and feature extraction

    TheexperimentalsetupusedinthisstudyisillustratedinFigure3.Thecuttingtestsareconductedonfive-axismachiningcenterMikronUCP800Duro.ThethrustforceismeasuredbyaKistler9253823dynamometer.TheforcesignalsareamplifiedbyKistlermultichannelchargeamplifier5070andsimultaneouslyrecordedbyNIPXIe-1802datarecorderwith5kHzsamplingfrequency.ThecollectedsignalsaredisplayedbyCathoderaytubeCRT.Theworkpieceiscontinuouslyprocessedunderdifferentprocessingconditionsuntiltheobviouscuttingtoolwearisobserved.

    Figure 3. Experimental setup for cutting processing

    The tool wear states are classified into three categories: the initial processing status of the tool is named as sharp state (pattern 1), the wear processing status of the tool is named aswearstate (pattern 3), and the status between sharp state and wear state is named asslightwearstate(pattern 2)[8].

    The real-time cutting processing signals under different cutting tool condition are shown in Figure 4. Signal I represents the sharp cutting tool condition. Signal II represents the slight wear cutting tool condition. Signal III represents the wear cutting tool condition. By using the fast Fourier transforms (FFT) processing, the time domain signals are shown in Figure 5. We can see that the time-frequency amplitude is different significantly for these three wear states.

    Figure 4. Dynamometer signals

    Figure 5. The chart of frequency spectrum

    A four-level wavelet packet decomposition is used in this paper. The root mean square (RMS) of the wavelet coefficients at different scales is shown in Figure 6. It could be found that RMS results are significantly different for these three states. The RMS of the wavelet coefficients at different scales are taken as the feature observations vector.

    Figure 6. The RMS of wavelet coefficient in three wear states

    3.Tool wear monitoring

    Flow chart of the tool states recognition based on HMM is shown in Figure 7. It is composed of the wavelet-based feature extraction and the RMS of the wavelet coefficients for HMM input. Each HMM pattern is trained by the RMS from post treatment, and the test sample is recognized by the HMM based classification method. As shown in Table 1, 21 test samples are recognized. The same recognition procedure based on the BP neural network and the recognition results are presented in Table 2.

    Table 2. Pattern classification results of the tool wear

    Figure 7. Flow chart of the tool states recognition

    As shown in Table 2, most samples have been recognized correctly and the accuracy rate of HMM is 20/21=95%, the accuracy rate of HMM is 19/21=90%. The results show that the HMM-based classification has a higher recognition rate than that of ANN.

    4.Conclusion

    Tool wear monitoring in machining process is very important for mechanical manufacturing process. In this paper, an approach based on wavelet packet coefficient and HMM for tool wear monitoring is proposed. Wavelet packet decomposition is used for signal processing. The RMS of the wavelet coefficients is adopted for the input of HMM. According to HMM-based recognition method, tool wear states are recognized. In future works, uncertainty in processing should be regarded in modeling and signal acquisition.

    [1] Vallejo A J,Menéndez R M,Alique J R.On-line cutting tool condition monitoring in machining processes using artificial intelligence[J].Robotics,Automation and Control,2008,143-166.

    [2] XIE F Y.A method of state recognition in machining process based on wavelet and hidden Markov model[J].In Proceedings of the ISMR 2012,2012:639-643.

    [3] XIE F Y.On-line condition monitoring based on empirical mode decomposition and neural network[J].Machine Tool & Hydraulics,2013.

    [4] Haber R E,Alique,A.Intelligent Process Supervision for Predicting Tool Wear in Machining Processes[J].Mechatronics,2003,13:825-849.

    [5] Owsley L M,Atlas L E,Bernard G D.Self-Organizing Feature maps and hidden Markov models for machine-tool monitoring[J].IEEE Transactions on Signals Processing,1997,45:2787-2798.

    [6] Chen H X.Fault degradation assessment of water hydraulic motor by impulse vibration signal with wavelet packet analysis and Kolmogorov-Smirnov test[Z].2008,22:1670-1684.

    [7] Rabiner L R.A tutorial on hidden Markov models and selected applications in speech recognition[J].Proceedings of the IEEE,1989,77:257-286.

    [8] XIE F Y,Hu Y M,Wu B.A generalized interval probability-based optimization method for training generalized hidden Markov model[J].Signal Processing,2014,94(1):319-329.

    基于小波包系數(shù)與隱馬爾科夫模型的刀具磨損監(jiān)測(cè)*

    邱 英,謝鋒云?

    華東交通大學(xué) 機(jī)電學(xué)院, 南昌 330013

    在機(jī)械自動(dòng)化加工中,為了防止刀具損壞,刀具磨損過程的監(jiān)測(cè)是非常重要的。然而,由于加工過程的復(fù)雜性,對(duì)刀具磨損狀態(tài)的監(jiān)測(cè)十分困難。提出了一個(gè)基于小波包系數(shù)與隱馬爾科夫模型的刀具磨損監(jiān)測(cè)方法。將加工信號(hào)在不同頻帶上小波包系數(shù)的均方根值作為特征觀測(cè)向量,即為隱馬爾科夫模型的輸入,并用隱馬爾科夫模型模式識(shí)別方法識(shí)別刀具磨損狀態(tài)。實(shí)驗(yàn)結(jié)果顯示,提出的方法對(duì)刀具磨損狀態(tài)具有很高的識(shí)別率。

    刀具磨損;小波包系數(shù);隱馬爾科夫模型;均方根

    TH133;TP391

    2014-01-20

    10.3969/j.issn.1001-3881.2014.12.008

    *Project supported by Jiangxi Province Education Department Science Technology Project (GJJ14365),Jiangxi Province Nature Science Foundation (20132BAB201047,20114BAB206003)

    ? Feng-yun XIE, PhD. E-mail: xiefyun@163.com

    猜你喜歡
    馬爾科夫波包識(shí)別率
    基于疊加馬爾科夫鏈的邊坡位移預(yù)測(cè)研究
    基于改進(jìn)的灰色-馬爾科夫模型在風(fēng)機(jī)沉降中的應(yīng)用
    基于類圖像處理與向量化的大數(shù)據(jù)腳本攻擊智能檢測(cè)
    基于真耳分析的助聽器配戴者言語(yǔ)可懂度指數(shù)與言語(yǔ)識(shí)別率的關(guān)系
    基于小波包Tsallis熵和RVM的模擬電路故障診斷
    提升高速公路MTC二次抓拍車牌識(shí)別率方案研究
    高速公路機(jī)電日常維護(hù)中車牌識(shí)別率分析系統(tǒng)的應(yīng)用
    基于小波包變換的電力系統(tǒng)諧波分析
    馬爾科夫鏈在教學(xué)評(píng)價(jià)中的應(yīng)用
    小波包理論與圖像小波包分解
    欧美亚洲 丝袜 人妻 在线| 久久性视频一级片| 不卡一级毛片| 爱豆传媒免费全集在线观看| 国产成人精品久久二区二区91| 在线看a的网站| 伊人亚洲综合成人网| a级毛片在线看网站| 亚洲熟女毛片儿| 丰满饥渴人妻一区二区三| 高潮久久久久久久久久久不卡| 国产一区二区在线观看av| 精品国产一区二区久久| 操出白浆在线播放| 亚洲国产av新网站| 中文字幕色久视频| 精品一区在线观看国产| www.熟女人妻精品国产| 黄色片一级片一级黄色片| 欧美黄色淫秽网站| 国产成人av教育| 亚洲人成电影观看| 欧美日韩福利视频一区二区| 黄色视频不卡| 在线永久观看黄色视频| 亚洲视频免费观看视频| 亚洲精品国产精品久久久不卡| 少妇裸体淫交视频免费看高清 | 国产在视频线精品| 搡老熟女国产l中国老女人| 亚洲va日本ⅴa欧美va伊人久久 | 男女床上黄色一级片免费看| 俄罗斯特黄特色一大片| 母亲3免费完整高清在线观看| 91国产中文字幕| 麻豆国产av国片精品| av片东京热男人的天堂| www.精华液| 人妻久久中文字幕网| 久久青草综合色| 91九色精品人成在线观看| 日韩 亚洲 欧美在线| 亚洲精品国产区一区二| 不卡一级毛片| 黑人巨大精品欧美一区二区mp4| 国产欧美日韩一区二区三区在线| 久久久久久免费高清国产稀缺| 日韩制服丝袜自拍偷拍| 亚洲欧美色中文字幕在线| 丝袜喷水一区| 啦啦啦免费观看视频1| av视频免费观看在线观看| 高清视频免费观看一区二区| 视频区欧美日本亚洲| 免费高清在线观看日韩| 性色av乱码一区二区三区2| av网站免费在线观看视频| 国产成人精品久久二区二区91| 国产精品一区二区在线观看99| 国产亚洲精品久久久久5区| 久久国产精品大桥未久av| 久久人妻福利社区极品人妻图片| 中文字幕人妻丝袜制服| 交换朋友夫妻互换小说| 欧美日韩视频精品一区| bbb黄色大片| 一本—道久久a久久精品蜜桃钙片| 狂野欧美激情性xxxx| 老司机午夜十八禁免费视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品在线美女| 午夜免费成人在线视频| 99九九在线精品视频| 777米奇影视久久| 性高湖久久久久久久久免费观看| 亚洲 国产 在线| 精品一区二区三卡| 国产免费视频播放在线视频| 成人手机av| 国产成人av教育| 亚洲第一欧美日韩一区二区三区 | 精品久久久精品久久久| 亚洲成人国产一区在线观看| 在线观看一区二区三区激情| 国产成人系列免费观看| 日韩一区二区三区影片| 久久久久国产精品人妻一区二区| 曰老女人黄片| 一边摸一边抽搐一进一出视频| 777久久人妻少妇嫩草av网站| 国产亚洲一区二区精品| 精品久久久久久电影网| 国产欧美日韩一区二区精品| 中文精品一卡2卡3卡4更新| 高清在线国产一区| 久久 成人 亚洲| 亚洲自偷自拍图片 自拍| 97人妻天天添夜夜摸| 日本五十路高清| 91麻豆精品激情在线观看国产 | 一本色道久久久久久精品综合| 老汉色∧v一级毛片| 一边摸一边抽搐一进一出视频| 不卡av一区二区三区| 一级a爱视频在线免费观看| 国产免费视频播放在线视频| 男男h啪啪无遮挡| 啦啦啦在线免费观看视频4| 国产av又大| 一区二区日韩欧美中文字幕| 国产熟女午夜一区二区三区| 午夜影院在线不卡| 国产日韩欧美视频二区| 国产成人av激情在线播放| 18禁裸乳无遮挡动漫免费视频| 国产黄色免费在线视频| 欧美乱码精品一区二区三区| 美女福利国产在线| 在线观看舔阴道视频| 无限看片的www在线观看| 一级a爱视频在线免费观看| 亚洲三区欧美一区| 啦啦啦啦在线视频资源| 精品人妻一区二区三区麻豆| 国产91精品成人一区二区三区 | 黄色视频,在线免费观看| 国产成人精品久久二区二区91| 菩萨蛮人人尽说江南好唐韦庄| 午夜免费鲁丝| 成年人午夜在线观看视频| 在线亚洲精品国产二区图片欧美| 日韩欧美一区二区三区在线观看 | 亚洲第一青青草原| 久久av网站| 亚洲av日韩在线播放| 99热国产这里只有精品6| 中文字幕色久视频| 18禁国产床啪视频网站| 欧美 亚洲 国产 日韩一| 老司机深夜福利视频在线观看 | av在线app专区| 午夜福利乱码中文字幕| 国产在线免费精品| 久久久久国内视频| 国产97色在线日韩免费| 啦啦啦在线免费观看视频4| 9热在线视频观看99| 亚洲国产成人一精品久久久| 欧美黑人精品巨大| 国产av精品麻豆| 欧美精品一区二区大全| 又大又爽又粗| 老司机午夜福利在线观看视频 | 国产国语露脸激情在线看| 在线av久久热| 国产成人a∨麻豆精品| 国产日韩欧美视频二区| 亚洲精品久久成人aⅴ小说| 精品久久久久久久毛片微露脸 | 啦啦啦在线免费观看视频4| 国产在视频线精品| 国产xxxxx性猛交| 亚洲九九香蕉| 日韩有码中文字幕| 精品一区二区三区四区五区乱码| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧美日韩高清在线视频 | 一区二区三区激情视频| 在线观看免费视频网站a站| 亚洲久久久国产精品| 91av网站免费观看| 99热网站在线观看| 一级毛片精品| 天堂俺去俺来也www色官网| 国产在线观看jvid| 午夜福利,免费看| 久久久久久久久久久久大奶| 欧美黄色淫秽网站| 亚洲av片天天在线观看| 天天躁夜夜躁狠狠躁躁| 在线精品无人区一区二区三| 永久免费av网站大全| 久9热在线精品视频| 亚洲精品av麻豆狂野| 下体分泌物呈黄色| 人人妻,人人澡人人爽秒播| 精品少妇黑人巨大在线播放| 精品国产乱码久久久久久男人| 女警被强在线播放| 黄色a级毛片大全视频| 少妇 在线观看| 精品人妻一区二区三区麻豆| www.999成人在线观看| 色精品久久人妻99蜜桃| 国产男人的电影天堂91| 丁香六月欧美| 一级a爱视频在线免费观看| 国产野战对白在线观看| 90打野战视频偷拍视频| 国产色视频综合| 国产精品一区二区免费欧美 | 久久人妻熟女aⅴ| 一区二区av电影网| 久久ye,这里只有精品| 欧美日韩亚洲综合一区二区三区_| 69av精品久久久久久 | 国产成人一区二区三区免费视频网站| 50天的宝宝边吃奶边哭怎么回事| 在线十欧美十亚洲十日本专区| 亚洲精品国产av蜜桃| 18禁国产床啪视频网站| 交换朋友夫妻互换小说| 大片电影免费在线观看免费| 欧美人与性动交α欧美软件| 精品人妻一区二区三区麻豆| 国产三级黄色录像| 久久久国产成人免费| 人人澡人人妻人| 午夜两性在线视频| h视频一区二区三区| 大型av网站在线播放| 一区二区av电影网| 日日摸夜夜添夜夜添小说| 老熟妇仑乱视频hdxx| 免费在线观看完整版高清| 国产免费福利视频在线观看| 老司机午夜十八禁免费视频| 大片免费播放器 马上看| 日韩中文字幕欧美一区二区| 国产一卡二卡三卡精品| 电影成人av| svipshipincom国产片| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲黑人精品在线| 熟女少妇亚洲综合色aaa.| 欧美日韩av久久| 欧美97在线视频| av网站免费在线观看视频| 国产精品 欧美亚洲| 午夜福利影视在线免费观看| 亚洲少妇的诱惑av| 国产精品一区二区在线观看99| 操出白浆在线播放| 亚洲精品久久午夜乱码| 黄网站色视频无遮挡免费观看| 亚洲国产精品999| 在线观看免费日韩欧美大片| 久久ye,这里只有精品| 建设人人有责人人尽责人人享有的| 黄片小视频在线播放| 在线观看免费日韩欧美大片| 淫妇啪啪啪对白视频 | 久久天堂一区二区三区四区| 18在线观看网站| av天堂久久9| 亚洲欧美激情在线| 黄片小视频在线播放| a在线观看视频网站| 正在播放国产对白刺激| 丝袜脚勾引网站| 两个人免费观看高清视频| 国产福利在线免费观看视频| 午夜成年电影在线免费观看| 色播在线永久视频| 亚洲国产成人一精品久久久| 99re6热这里在线精品视频| 欧美日韩视频精品一区| 亚洲av电影在线观看一区二区三区| 日韩 亚洲 欧美在线| 宅男免费午夜| 91国产中文字幕| 精品国产乱子伦一区二区三区 | 日韩欧美免费精品| 两人在一起打扑克的视频| 亚洲精品久久午夜乱码| 亚洲专区中文字幕在线| 90打野战视频偷拍视频| 大码成人一级视频| 丝袜脚勾引网站| 久久中文看片网| 欧美激情高清一区二区三区| 少妇人妻久久综合中文| 国产成人a∨麻豆精品| 少妇精品久久久久久久| 久久人妻福利社区极品人妻图片| 高清av免费在线| 欧美精品亚洲一区二区| 久久毛片免费看一区二区三区| 99香蕉大伊视频| 久久综合国产亚洲精品| 天堂俺去俺来也www色官网| 精品人妻熟女毛片av久久网站| 免费在线观看黄色视频的| 国产成人a∨麻豆精品| 波多野结衣av一区二区av| 亚洲性夜色夜夜综合| 一本—道久久a久久精品蜜桃钙片| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产日韩一区二区| av福利片在线| 国产日韩一区二区三区精品不卡| 欧美日韩黄片免| 亚洲精品国产精品久久久不卡| 三级毛片av免费| 色婷婷久久久亚洲欧美| 色婷婷av一区二区三区视频| 色婷婷久久久亚洲欧美| 中文字幕人妻丝袜一区二区| 亚洲一码二码三码区别大吗| 男女国产视频网站| 美女国产高潮福利片在线看| 欧美黑人精品巨大| 香蕉国产在线看| 欧美人与性动交α欧美软件| 一区二区日韩欧美中文字幕| 国产精品成人在线| 国产免费一区二区三区四区乱码| 欧美黑人精品巨大| 如日韩欧美国产精品一区二区三区| 精品少妇内射三级| h视频一区二区三区| 日本av免费视频播放| 国产亚洲精品一区二区www | 精品一区二区三区av网在线观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 各种免费的搞黄视频| 欧美国产精品va在线观看不卡| 91成人精品电影| 电影成人av| 久久青草综合色| 日韩视频在线欧美| 青草久久国产| 高清在线国产一区| 午夜精品国产一区二区电影| 亚洲一码二码三码区别大吗| 天堂8中文在线网| 午夜免费成人在线视频| 欧美激情极品国产一区二区三区| 91av网站免费观看| 国产人伦9x9x在线观看| 国产日韩欧美亚洲二区| 搡老岳熟女国产| 日本精品一区二区三区蜜桃| 性少妇av在线| 国产日韩欧美视频二区| 叶爱在线成人免费视频播放| 亚洲avbb在线观看| 日韩中文字幕欧美一区二区| 色94色欧美一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲五月色婷婷综合| 国产欧美亚洲国产| 国产精品亚洲av一区麻豆| 美国免费a级毛片| 久久av网站| 亚洲成国产人片在线观看| 一级黄色大片毛片| 亚洲av日韩精品久久久久久密| 亚洲伊人久久精品综合| 成年人午夜在线观看视频| 高清视频免费观看一区二区| 操美女的视频在线观看| 久久国产精品影院| 午夜福利在线免费观看网站| 欧美少妇被猛烈插入视频| 婷婷色av中文字幕| 国产一区二区激情短视频 | 午夜精品国产一区二区电影| 99国产综合亚洲精品| 欧美另类亚洲清纯唯美| 少妇粗大呻吟视频| 美女脱内裤让男人舔精品视频| 成人影院久久| 精品亚洲成国产av| 国产成人影院久久av| 又黄又粗又硬又大视频| 久久av网站| 中文字幕色久视频| 欧美 日韩 精品 国产| 男女下面插进去视频免费观看| 真人做人爱边吃奶动态| 国产主播在线观看一区二区| 99香蕉大伊视频| 夜夜骑夜夜射夜夜干| 一二三四社区在线视频社区8| 国产区一区二久久| 妹子高潮喷水视频| 肉色欧美久久久久久久蜜桃| 人人澡人人妻人| 精品亚洲成a人片在线观看| 少妇被粗大的猛进出69影院| 精品久久久久久电影网| 99热全是精品| 亚洲欧美精品自产自拍| 黄色毛片三级朝国网站| 美女中出高潮动态图| 99热国产这里只有精品6| 日韩 亚洲 欧美在线| 欧美激情高清一区二区三区| 一级毛片女人18水好多| 国产日韩欧美在线精品| 人人妻人人澡人人看| 亚洲免费av在线视频| 亚洲精品美女久久久久99蜜臀| 成年人免费黄色播放视频| 母亲3免费完整高清在线观看| av天堂久久9| 亚洲精品国产av成人精品| 久久综合国产亚洲精品| 99国产精品一区二区蜜桃av | 一区二区三区精品91| 国产成人av激情在线播放| 波多野结衣av一区二区av| 中文字幕人妻熟女乱码| av免费在线观看网站| 亚洲av电影在线进入| 两个人看的免费小视频| 久久精品国产a三级三级三级| 久久久久国内视频| 精品久久久精品久久久| 久久久久精品人妻al黑| 两个人看的免费小视频| av欧美777| 成年女人毛片免费观看观看9 | 国产精品av久久久久免费| 黑人欧美特级aaaaaa片| 免费黄频网站在线观看国产| 69精品国产乱码久久久| 国产精品久久久久久精品电影小说| 日本黄色日本黄色录像| 搡老乐熟女国产| 精品国产一区二区三区四区第35| 精品国产一区二区久久| 午夜激情av网站| 满18在线观看网站| 久久国产亚洲av麻豆专区| 啪啪无遮挡十八禁网站| 人人妻人人澡人人看| 亚洲精品一卡2卡三卡4卡5卡 | 两性夫妻黄色片| 亚洲天堂av无毛| 国产日韩一区二区三区精品不卡| 十八禁高潮呻吟视频| 免费高清在线观看视频在线观看| 午夜91福利影院| 十八禁网站网址无遮挡| 亚洲国产中文字幕在线视频| 丁香六月天网| 久久香蕉激情| 丰满饥渴人妻一区二区三| 亚洲精品一区蜜桃| 1024视频免费在线观看| 亚洲情色 制服丝袜| 女性生殖器流出的白浆| 国产精品成人在线| 老熟妇乱子伦视频在线观看 | 亚洲国产av影院在线观看| 国产高清视频在线播放一区 | 女人被躁到高潮嗷嗷叫费观| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品一区三区| 国产精品久久久人人做人人爽| 亚洲综合色网址| 国产亚洲av片在线观看秒播厂| 日本一区二区免费在线视频| 999精品在线视频| 欧美精品一区二区免费开放| 亚洲专区国产一区二区| 亚洲国产精品一区二区三区在线| 久久99热这里只频精品6学生| 亚洲精品一二三| 亚洲欧洲精品一区二区精品久久久| 男女无遮挡免费网站观看| 亚洲综合色网址| 国产精品久久久av美女十八| 日韩一卡2卡3卡4卡2021年| 亚洲全国av大片| 中文字幕人妻熟女乱码| 黄色 视频免费看| 国产一区二区三区av在线| 黑人巨大精品欧美一区二区mp4| 老鸭窝网址在线观看| 老司机亚洲免费影院| 久久精品国产亚洲av高清一级| 久久久精品94久久精品| 男人舔女人的私密视频| bbb黄色大片| 久久精品国产a三级三级三级| 免费不卡黄色视频| 老熟女久久久| 久久久国产成人免费| 在线观看www视频免费| 成人手机av| av免费在线观看网站| 99国产精品一区二区蜜桃av | 国产欧美日韩综合在线一区二区| 在线观看www视频免费| 久久精品成人免费网站| 国产精品1区2区在线观看. | 高清欧美精品videossex| 欧美午夜高清在线| 婷婷丁香在线五月| 悠悠久久av| 精品国产乱码久久久久久小说| 欧美亚洲日本最大视频资源| 国产av又大| 每晚都被弄得嗷嗷叫到高潮| 欧美人与性动交α欧美精品济南到| 韩国高清视频一区二区三区| 久久性视频一级片| 每晚都被弄得嗷嗷叫到高潮| 最黄视频免费看| 亚洲国产成人一精品久久久| 亚洲人成电影免费在线| 天天躁夜夜躁狠狠躁躁| 三级毛片av免费| 午夜精品国产一区二区电影| 国产成人av教育| 99国产极品粉嫩在线观看| 一级,二级,三级黄色视频| 一本综合久久免费| 午夜福利在线免费观看网站| 午夜日韩欧美国产| 俄罗斯特黄特色一大片| 亚洲欧美清纯卡通| 亚洲七黄色美女视频| 99国产精品99久久久久| 成在线人永久免费视频| 高清欧美精品videossex| 在线看a的网站| 日韩 亚洲 欧美在线| 亚洲人成电影观看| 在线观看www视频免费| 99香蕉大伊视频| 亚洲 国产 在线| 三级毛片av免费| 国产日韩欧美亚洲二区| 欧美日韩一级在线毛片| 女人被躁到高潮嗷嗷叫费观| 18禁黄网站禁片午夜丰满| 日本五十路高清| 亚洲综合色网址| 他把我摸到了高潮在线观看 | 国产高清videossex| 午夜精品国产一区二区电影| 午夜老司机福利片| 老熟女久久久| 在线av久久热| 搡老岳熟女国产| 午夜久久久在线观看| 日韩欧美一区视频在线观看| 国产成人啪精品午夜网站| 国产又色又爽无遮挡免| 两个人看的免费小视频| 欧美日本中文国产一区发布| 国产精品一区二区免费欧美 | 两个人看的免费小视频| 久久久久精品人妻al黑| 91精品国产国语对白视频| 亚洲九九香蕉| 老司机亚洲免费影院| 一级,二级,三级黄色视频| 丰满饥渴人妻一区二区三| 99精品久久久久人妻精品| 乱人伦中国视频| 少妇的丰满在线观看| 精品人妻1区二区| 亚洲第一欧美日韩一区二区三区 | 纯流量卡能插随身wifi吗| 色婷婷av一区二区三区视频| 日韩 欧美 亚洲 中文字幕| 丰满人妻熟妇乱又伦精品不卡| 欧美精品高潮呻吟av久久| 女人精品久久久久毛片| 亚洲国产看品久久| 亚洲综合色网址| 宅男免费午夜| 国产av国产精品国产| 日韩熟女老妇一区二区性免费视频| 亚洲专区字幕在线| 欧美精品一区二区大全| 亚洲五月色婷婷综合| 麻豆国产av国片精品| 男人舔女人的私密视频| 桃花免费在线播放| 日韩精品免费视频一区二区三区| 日本猛色少妇xxxxx猛交久久| 精品乱码久久久久久99久播| 啦啦啦视频在线资源免费观看| 久久久水蜜桃国产精品网| 搡老熟女国产l中国老女人| 一区二区日韩欧美中文字幕| 久久久久久久久免费视频了| 女性生殖器流出的白浆| 亚洲专区字幕在线| 免费看十八禁软件| 少妇粗大呻吟视频| 最新在线观看一区二区三区| av欧美777| 91老司机精品| 国产男女超爽视频在线观看| 午夜福利影视在线免费观看| 男女边摸边吃奶| 飞空精品影院首页| 亚洲精品乱久久久久久| 欧美变态另类bdsm刘玥| 50天的宝宝边吃奶边哭怎么回事| 午夜福利免费观看在线| 色婷婷久久久亚洲欧美| 欧美亚洲 丝袜 人妻 在线| 伊人久久大香线蕉亚洲五| 人妻久久中文字幕网| 精品人妻在线不人妻| 高清视频免费观看一区二区| 99久久综合免费|