趙艷萍
【內(nèi)容摘要】在高中數(shù)學教學中,教師應該以學生為本,立足學生角度,組織教學活動?;谒麄円延兄R、經(jīng)驗、興趣,靈活引導,給每位同學提供展示、創(chuàng)造的舞臺,促使他們主動參與學習過程。
【關(guān)鍵詞】數(shù)學課堂 生本理念 實施策略
以生為本,是素質(zhì)教育與新課標的要求,是任何課程教學都需要遵循的教育理念,是實現(xiàn)有效課堂的重要基礎(chǔ)。在高中數(shù)學教學中,教師該如何以學生為本,立足學生角度,組織教學活動。對此,筆者結(jié)合教學實踐,提出如下教學建議,以期打造互動有效的高中數(shù)學課堂。
一、關(guān)注興趣,順應學生思維
我國著名教育家陶行知指出,在教育教學中要避免兩種不同的傾向:其一,完全泯除教與學的界限,否定教師主導作用的錯誤傾向。其二,只管教,不問學生興趣,不重視學生提出問題的錯誤傾向。前一傾向勢必是無計劃;后一傾向勢必將學生灌輸成燒鴨。同樣,在高中數(shù)學教學中,教師也需要避免上述錯誤傾向,需要以學生實際為出發(fā)點,關(guān)注興趣,順應學生思維,巧妙引導與啟發(fā),促使教學結(jié)構(gòu)由“教師為中心”的轉(zhuǎn)向“主導與主體相結(jié)合”。
如在數(shù)學教學中,有些教師會結(jié)合教學內(nèi)容,先講講相關(guān)的故事,幫助學生了解知識背景,促使其不知不覺的進入課堂,進入學習意境。在故事的講述中,教師會巧妙的將其中蘊含的一些公式推導演示給學生,還可引導學生順水“推”舟。在學生推導過程中,可暴露思維,便于教師了解學生卡在何處,然后有目的、有針對性地引導與分析,而不是完全照搬教材,將教師的思想強加給學生。
例如:推導“前n個自然數(shù)的平方和公式”時,故事誘導:根據(jù)有關(guān)數(shù)學史,約公元前三千年,巴比倫人就算出了前十個自然數(shù)的平方和。到公元前三世紀,古希臘物理學家、數(shù)學家阿基米德算出了前n個自然數(shù)的平方和的一般公式,同學們,你們是否也能試著求出該公式呢?故事牽引,問題誘導,調(diào)動學生探究欲望。而后教師板書:Sn=12+22+32+42+……+n2=?大部分同學會想到先算前幾項的和,后求出規(guī)律。但在實際操作中卻遭遇困難,因為此處的規(guī)律不好找。此時,教師適時啟發(fā):這是由哪一問題引出的?(自然數(shù)的一次和)。有同學還建議道:是否可以將自然數(shù)的一次和與自然數(shù)的二次和的前幾項寫到一塊,看看有怎樣的規(guī)律?而后教師帶領(lǐng)學生繼續(xù)探索與推導。這樣,教師的教學順應了學生的思維發(fā)展,根據(jù)學生的實際變化而靈活展開,從而促使學生主動思考問題,大膽提出新問題,在新問題的思考與質(zhì)疑中形成新的思維,幫助學生深入知識理解,提高學生思考能力。
二、探究活動,自主發(fā)現(xiàn)創(chuàng)造
數(shù)學家波利亞非常注重學生思考與分析問題能力的培養(yǎng),指出“教會年輕人思考”才是教育的根本宗旨,他認為“學習任何知識的最佳途徑是由自己去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解最深、也最容易掌握其中的規(guī)律、性質(zhì)和聯(lián)系?!绷硗?,由數(shù)學課程標準看,提倡積極主動、敢于探索的學習方式,讓學習者的主動性被調(diào)動起來,讓學生的創(chuàng)造性釋放出來,讓數(shù)學學習轉(zhuǎn)變?yōu)榻虒W者有效引導與指導下的“再創(chuàng)造”過程,而不是被動接受現(xiàn)有結(jié)論。所以,在高中數(shù)學教學中,教師需要借助實驗操作、猜想推理等等形式多樣的學生自學、合作探究活動,讓學生基于原有知識、經(jīng)驗與方法自主摸索,親身體驗數(shù)學發(fā)現(xiàn)與數(shù)學創(chuàng)造過程,把握數(shù)學思想,發(fā)展數(shù)學思維,提高數(shù)學能力。
如教學《導數(shù)在研究函數(shù)中的應用》,分析函數(shù)的單調(diào)性與導數(shù)時,教師先呈現(xiàn)有關(guān)問題,要求學生求出所給函數(shù)的單調(diào)區(qū)間,思考“某點處導數(shù)的幾何意義?”等等。這樣,以問題形式引導學生回顧舊知,再引出新的思考問題:三次函數(shù)判斷單調(diào)性,圖象法、定義法不是很便捷,那是否有其他捷徑?設(shè)置問題情境,激發(fā)學生問題意識,促使其主動融入探究過程。而后再引導學生畫出如下函數(shù)的圖象,同時結(jié)合圖象說說函數(shù)的單調(diào)區(qū)間:①y=1/x;②y=x2-2x-1。同學們先動手獨立畫圖,猜想函數(shù)單調(diào)性和導數(shù)有怎樣的關(guān)系。而后實驗驗證,根據(jù)flash動畫演示,試著總結(jié)有關(guān)定理。這樣,通過獨立思索、猜想、探究、觀察、總結(jié)等活動,學生可以親身體驗到數(shù)學發(fā)現(xiàn)過程,由被動學習轉(zhuǎn)變?yōu)橹鲃荧@知,進一步強化學生主體意識,推進課堂有效教學。
三、開放教學,拓寬思維空間
在新課程教學中,教師需要面對全體學生,而學生本身具有明顯的個體差異,有不同的發(fā)展層次,對問題的思考角度與深度是有所不同的,得出的結(jié)論與答案也就“五花八門?!倍趥鹘y(tǒng)教學中,教師往往惟標準答案是從,沒有認真聆聽學生的思維過程,制約了學生個性化發(fā)展。所以,在教學過程中,若要遵循以學生為本的教學理念,教師需要注意開放式教學、分層式教學,鼓勵學生大膽提問,促進學生個性發(fā)展。
如引入適量的開發(fā)性題目,促進學生思維的開放與發(fā)散。同時,在解題中,不管是常規(guī)題、開放題,均需要關(guān)注解題過程,引導同學們參與其中,大膽說出自己的思路與解題方法,對于獨特的、簡便的方法予以肯定與贊揚。其次,注意習題內(nèi)容的趣味性、層次性、解題方法的多樣化,拓寬學生思維空間,讓各發(fā)展水平的同學都有所收獲。如復習“平面向量”有關(guān)知識時,教師可借助多媒體課件展示有關(guān)案例,同學們觀察例題,自主設(shè)計題目。雖然有的同學會答不全,卻獲得了思考空間。而后教師整理歸納學生提出的問題,從中篩選,特別是一題多解、可拓展變式的習題,師生共同探討。
總之,在高中數(shù)學教學中,教師扮演的角色不應是“獨裁者”,不是給學習者灌輸知識,而需要以學生為本,基于他們已有知識、經(jīng)驗、興趣上,靈活引導,給每位同學提供展示、創(chuàng)造的舞臺,促使他們主動參與學習過程,積極思索,發(fā)揮自己的主體作用,享受探究、實踐帶來的快樂。
【參考文獻】
[1] 米愛軍. 課改成功的關(guān)鍵在于創(chuàng)設(shè)“生本課堂”[J]. 現(xiàn)代教育論叢,2008(06).
[2] 沈玉忠. 改造課堂教學 構(gòu)建生本化課堂[J]. 中國校外教育(理論),2007(10).
[3] 李巧萍. 生本教育使課堂教學實現(xiàn)積極、歡快、優(yōu)質(zhì)和高效[J]. 現(xiàn)代教育論叢書,2005(05).