王念良
(商洛學(xué)院 數(shù)學(xué)與計(jì)算機(jī)應(yīng)用學(xué)院/應(yīng)用數(shù)學(xué)研究所,陜西商洛726000)
廣義高階Bernoulli多項(xiàng)式的一些恒等式及其應(yīng)用
王念良
(商洛學(xué)院 數(shù)學(xué)與計(jì)算機(jī)應(yīng)用學(xué)院/應(yīng)用數(shù)學(xué)研究所,陜西商洛726000)
Bernoulli多項(xiàng)式及其多種推廣形式在組合數(shù)學(xué)、解析數(shù)論等領(lǐng)域中起著十分重要的作用。廣義Bernoulli多項(xiàng)式Bn,χ(x)與Euler多項(xiàng)式、Dirichlet級(jí)數(shù)有密切的聯(lián)系。應(yīng)用絕對(duì)收斂Laurent級(jí)數(shù)的卷積公式,給出了廣義高階Bernoulli多項(xiàng)式的一些表達(dá)式和一個(gè)推論。
Bernoulli數(shù);廣義高階Bernoulli多項(xiàng)式;Laurent級(jí)數(shù)
設(shè)q是大于1的正整數(shù),χ是模q的Dirichlet特征。廣義高階Bernoulli數(shù)、廣義高階Bernoulli多項(xiàng)式分別定義[1]為:
廣義Bernoulli數(shù)能給出Dirichlet L函數(shù)在0和負(fù)整數(shù)處的值[2]Bernoulli數(shù)、Bernoulli多項(xiàng)式及其推廣形式,在解析數(shù)論、組合數(shù)學(xué)中有著十分重要的地位,吸引了許多國(guó)際、國(guó)內(nèi)學(xué)者、專家的研究興趣,得到了很多有趣的結(jié)論,部分內(nèi)容讀者可參閱文獻(xiàn)[1-17]。本文應(yīng)用第一類stirling數(shù)s(m,k),Dirichlet級(jí)數(shù)在s=-n,(n∈Z,n≥0)處的值,給出了廣義高階Bernoulli多項(xiàng)式的一些卷積和公式,并由此得到了廣義高階Bernoulli數(shù)的一個(gè)恒等式,即
這就證明了定理1。
推論1的證明由定理1和(1)式、(2)式,顯然結(jié)論成立。
[1]Wang N,Li C,Li H.Some identities on the Generalized Higher-order Euler and Bernoulli numbers[J].Ars Combinatoria,2011,2:517-528.
[2]Chen K W.Sums of products of Generalized Bernoulli polynomials[J].Pacific Journal of Mathematics,2003, 208(1):39-52.
[3]Ireland K,Rosen M.A classical introduction to modern number theory,graduate texts in mathematics[J].Springer,New York,1990,84(2):394.
[4]Tom M.Apostol,introduction to analytic number Theory[M].Springer-Verlag,New York,1976:265.
[5]王念良.關(guān)于廣義Bernoulli數(shù)的一些恒等式[J].內(nèi)蒙古師范大學(xué)學(xué)報(bào):自然科學(xué)漢文版,2014,43(4):403-407.
[6]Liu G,Luo H.Some identities involving Bernoulli numbers[J].The Fibonacci Quarterly,2005,43(3):208-212.
[7]Liu G.On congruences of Euler numbers modulo an square[J].The Fibonacci Quarterly,2005,43(2):132-136.
[8]王念良,李復(fù)活.高階Apostol-Bernoulli函數(shù)的—些恒等式[J].商洛學(xué)院學(xué)報(bào),2011,25(6):3-6.
[9]Kanebo M.A recurrence formula for the Bernoulli numbers[J].Proc Japan Acad Ser A Math Sci,1995,71:192-193.
[10]Lehmer E.On congruences involving bernoulli numbers and the quotients of fermat and Wilson[J].Annals of Math,1938,39:350-360.
[11]Eie M,Lai K F.On Bernoulli identities and appilications[J].Rev Mat Iberoamericana,1998,14(1):167-213.
[12]Kanemitsu S,Ubanowicz J,Wang N.On some new congruences for generalized Bernoulli numbers[J].Acta Arith,2012,155(3):247-258.
[13]Yuan Y.Some identities involving Bernoulli numbers and Euler numbers[J].Scientia Magna,2006,2(1):102-107.
[14]何 園,張文鵬.關(guān)于一個(gè)多項(xiàng)式序列的對(duì)稱關(guān)系[J].西南師范大學(xué)學(xué)報(bào):自然科學(xué)版,2013,38(4):28-30.
[15]巫朝霞,何 園.關(guān)于Bernoulli和Euler多項(xiàng)式的一個(gè)注記[J].內(nèi)蒙古師范大學(xué)學(xué)報(bào):自然科學(xué)漢文版, 2012,41(6):604-606.
[16]Szmidt J,Urbanowicz J,Zagier D.Congruences among generalized Bernoulli numbers[J].Acta Arithmetica,LXXI, 1995,3:273-278.
[17]雒秋明.廣義Bernoulli數(shù)和廣義高階Bernoulli數(shù)[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2002,18(4):305-308.
(責(zé)任編輯:李堆淑)
Some Identities Involving Generalized Higher-order Bernoulli Polynom ials and Its Applications
WANG Nian-liang
(College of Mathematics and Computer Application,Shangluo University/Institute of Applied Mathematics,Shangluo 726000,Shaanxi)
Bernoulli polynomials and its variety generalizations play a central role in the theory of Combination and Analytic Number Theory.It is well-known that the generalized Bernoulli polynomial Bn,χ(x)closely related to Euler polynomials and Dirichlet series.By the product formulas of the absolute convergence Laurent expansion,a representation of generalized Higher-order Bernoulli polynomial and a corollary are obtained.
Bernoulli number;generalized higher-order Bernoulli polynomial;Laurent series
O156.4
:A
:1674-0033(2014)06-0003-03
10.13440/j.slxy.1674-0033.2014.06.001
2014-09-28
陜西省教育廳專項(xiàng)科研計(jì)劃項(xiàng)目(2013JK0570)
王念良,男,陜西商州人,博士,教授