• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation on Excited-State Photophysical Characteristics of Low Bandgap Polymer APFO3

    2014-07-19 11:17:08LiliQuYinghuiWngZhihuiKngYugungHnzhungZhng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Li-li Qu,Ying-hui Wng,?,Zhi-hui Kng,Yu-gung M,Hn-zhung Zhng?

    a.Femtosecond laser laboratory,College of Physics,Jilin University,Changchun 130012,China

    b.State Key Laboratory of Supramolecular Structure and Materials,Jilin University,Changchun 130012, China

    Investigation on Excited-State Photophysical Characteristics of Low Bandgap Polymer APFO3

    Li-li Qua,Ying-hui Wanga,b?,Zhi-hui Kanga,Yu-guang Mab,Han-zhuang Zhanga?

    a.Femtosecond laser laboratory,College of Physics,Jilin University,Changchun 130012,China

    b.State Key Laboratory of Supramolecular Structure and Materials,Jilin University,Changchun 130012, China

    The excited state photophysics of low bandgap polymer APFO3 has been investigated in detail.The chemical calculations conf i rm that the intrachain charge transfer(ICT)may occur after photo-excitation and is mainly responsible for the f i rst absorption band.The transient absorption results conf i rm that ICT indeed exists and competes with the vibrational relaxation at the same time,when APFO3 is in a monodisperse system.This ICT process would disappear due to the influence of interchain interaction when APFO3 is in the condensed phase,where the exciton decay would be dominant in the relaxation process after photoexcitation.The photoexcitation dynamics of APFO3 film blending with PC61BM are presented,which shows that the exciton may be dissociated completely as the percentage of PC61BM reaches~50%.Meanwhile,the photovoltaic performance based on blend heterojunction shows that the increase of photocurrent is little if the percentage of PC61BM exceeds~50%.Overall,the present study has covered several fundamental processes taking place in the APFO3 polymer.

    Conjugated polymer,Transient absorption,Intrachain charge transfer

    I.INTRODUCTION

    Semiconductor polymers have attracted much attention in the f i elds of commerce and science,because of their potential application in the optoelectronic f i elds, such as organic f i eld effect transistor[1],organic emitting light diode[2],and polymer solar cell[3].These organic materials own many advantages over conversional semiconductors,such as the good solution processability and the mechanical properties,and are able to allow access to generation of cheap and f l exible devices.Recently,the solar cells based on polymer have increased very much and reached~10%in 2012[4]. In order to further improve the performance of photovoltaic devices,it is necessary to synthesize the lowbandgap polymers,so as to broaden the harvesting region of photon and enhance the short circuit current of photovoltaic device[5].The alternating polyfluorene copolymer(poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-5,5-(40,70-di-2-thienyl-20,benzothiadiazole)])(APFO3), with structure shown in Fig.1,is one kind of πconjugated copolymers,which is composed of the electron-donor unit(fluorine group)and the electronacceptor units(benzothiadiazole and two thiophene units).Its absorption bandedge has reached~700 nm in the solution and its carrier mobility is also excellent, which makes it suitable for photovoltaic application[7]. In addition,APFO3 has also been used as a model polymer to investigate the charge transfer and geminate recombination processes occurring in the polymer blending heterojunction with PCB60M[8]and PCB70M[9]. Although the photophysics of heterojunction based on APFO3 have been investigated in detail,some questions still need to be interpreted,such as evolution of photophysical properties under different situations,the direct photo-generation of separated charges in the excited state,and the role and origin of possible interchain electronic species.In order to answer these questions, it is necessary to present a broad investigation on this conjugated polymer and compare the photoexcitation dynamics of conjugated polymer under different conditions.

    FIG.1 Molecular structure of APFO3.

    In this work,we performed a series of investigations on the photophysics of conjugated polymer APFO3 to understand its photoexcitation dynamics in a monodisperse system and a condensed phase.Through intro-ducing the PC61BM in the APFO3 film,we also detected the exciton dissociation dynamics and further prepared the photovoltaic devices.In addition,we could employ the density functional theory(DFT)to know the basic electronic transition mechanism after the photoexcitation.Finally,we provided the spectroscopic studies of APFO3 in detail.

    II.EXPERIMENTS

    A.Materials

    The chemicals used were all purchased from Lumtec Technology without further purif i cation.The polymerdissolvedinthechlorobenzene(CB)solvent with concentration of 100μg/mL.The APFO3 and APFO3:PC61BM thin films were prepared through spin coating the sample solution in the CB solution onto 2 mm thick fused silica glass substrates.

    B.Experimental details

    Steady-state absorption measurements were carried out using a UV-Vis spectrophotometer(Purkinje, TU-1810PC).Photoluminescence(PL)spectra were recorded by a f i ber optic spectrometer(Ocean Optics, USB4000)with excitation pulse at 400 nm.We employed a mode-lock Ti:Sapphire femtosecond laser system(Coherent),which offered 2.0 mJ,130 fs pulses at 800 nm with a repetition rate of 1 kHz.The setup of transient absorption(TA)measurement was reported in Ref.[10].Brief l y,the output of femtosecond laser beam was split into two parts.The major one was frequency-doubled by a 1 mm thick BBO crystal to generate 400 nm pulses,which will be used as the pump beam,while the minor one was focused into a 5 mm quartz cell filled with pure water to generate a white light continuum as the probe beam.The probe beam was also focused onto the sample to overlap with the pump beam.The transmittance change of probe pulse was detected by a photomultiplier tube (Zolix,PMTH-S1-CR131)connected to the lock-in Amplif i er(SR830,DSP).Photovoltaic devices were comprised of thin film with indium tin oxide(ITO)anode, PEDOT:PSS hole transport layer,active layer of spincoated PDPP-F/PC61BM blend,and capped with Al cathode.The J-V(current density-voltage)characteristics of photovoltaic device were tested under sun-like illumination.The light source was a Xenon lamp with an AM1.5G filter of which intensity was calibrated to 100 mW/cm2.All measurements were carried out at room temperature.

    C.Computational methods

    FIG.2Normalizedabsorptionandemissionspectra of(a)APFO3 in solution with different polarity and (b)APFO3 film(λexe=400 nm).The concentration of solution is 100μg/mL.

    The ground geometry of APFO3n(n=1-4 repeat unit)was optimized with DFT[11],B3LYP functional [12],and 6-31G(d)basis set.All calculations were performed by the Gaussian 09 program package[13].The influence of peripheral carbon chains was believed to be so small that such chains were replaced by H to avoid excessive computation demand.Electronic transition in the optical absorption of the APFO32oligomer with two repeat units was computed with time-dependent DFT (TD-DFT)[14],CAM-B3LYP functional[15],and 6-31G(d)basis.The corresponding electronic properties and geometries were calculated by assuming APFO3 oligomers to be isolated molecules in the vacuum.

    III.RESULTS AND DISCUSSION

    As is depicted in Fig.2(a),the absorption spectra of APFO3 in the solution with different polarity are all composed of two broad absorption bands,peaking at 389(P2peak)and 548 nm(P1peak),respectively,which exhibits that the absorption features of APFO3 are almost independent of the polarity of solvent.Their emission spectra have a broad unstructured emission band centered at 653 nm(CB),664 nm(THF), and 674 nm(CHCl3),and their corresponding bandwidth seems to be a little narrower in comparison with that of the P1band in the absorption spectra.The polarity-dependent emission spectra of APFO3 show an apparent solvatochromism behavior.The emission band red shifts as the polarity of solvent gradually enhances,implying the intrachain charge transfer(ICT) may occur in this π-conjugated polymer[16].Moreover, the emission spectra in different solvents show a good enantiomorphous feature.The bandgap could be estimated from the intersection point between the normal-ized absorption and emission spectra in Fig.2(b),which is~2.05 eV(CB),2.04 eV(THF)and 2.02 eV(CHCl3), respectively.The Stokes shift,given by the frequency di ff erence between the emission maximum and the fi rst absorption peak,is~2935 cm-1(CB),3188 cm-1(THF)and 3412 cm-1(CHCl3),respectively,and gradually increases with the increasing of solvent polarity. It is noted that the geometry of D-A type conjugated polymer in excited state could be sensitive to the solvent polarity.For the APFO3 in the condensed phase,the fi rst absorption band may broaden from~4083 cm-1(in the solution)to~5234 cm-1.Due to the interchain interaction,the P1and P2peaks in the absorption spectra red shift from~390 and~546.5 nm to~397 and~576 nm,respectively.Meanwhile,the emission peak also red shifts to 708 nm,the bandgap decreases to 1.89 eV,the Stokes shift changes to~3292 cm-1.

    FIG.3(a)Optimized geometry,HOMO and LUMO of APFO3 with two repeat units.(b)Calculated absorption spectrum of APFO3 oligomer with two repeat units.(c)The repeat unit-dependent HOMO-LUMO.

    The ground geometry of APFO32oligomer with two repeat units is optimized by B3LYP/6-31G(d).Herein, the donor unit(fluorine group)and the acceptor units (benzothiadiazole unit and two thiophene units)all own planarity(as seen in Fig.3(a)),but a twist appears between the donor and the acceptor units.The corresponding value is~23.9?,which may has a little influence on the ICT character.As is seen in Fig.3(a),the highest occupied molecular orbital(HOMO)is almost distributed over the whole oligomer backbone,while the lowest unoccupied molecular orbital(LUMO)is mainly localized in the acceptor units.After photoexcitation,the charge cloud in oligomers clearly redistributes through the ICT process,and eventually the charge almost distributes on the acceptor units.The simulated absorption spectrum of APFO32oligomer with DT-DFT/6-31G is presented in Fig.3(b),and the spectral shape with a“camel back”character is known to be a f i ngerprint of the donor-acceptor conjugated copolymer structure with an ICT state[17].Similarly to the experimental data,the simulated absorption spectrum of APFO3 is also composed of two absorption band, but both of them show a little blue shift in comparison with the experimental data.According to the repeat unit-dependent HOMO and LUMO shown in Fig.3(c),we f i nd that both of them gradually converge to an extremum and the bandgap gradually also decreases to a constant,indicating that the increase of repeat unit would lead to the red shift of the simulated absorption spectra and reduce the difference between the simulated absorption spectrum and experimental data.In addition,the calculated electronic transition is assumed to be in the vacuum,which may be also responsible for the difference between the theoretical and the experimental data.Using the calculated data for the oligomer with two repeating units,the contribution of the frontier molecular orbitals to the electronic transitions is analyzed.The low energy absorption(P1peak)band may be ascribed to S0→S1transition and is mainly composed of HOMO→LUMO transition,where the ICT transition is dominant in S0→S1transition.The high energy absorption(P2peak)band may be attributed to the π→π?transition and its component is so complex,and the detailed electronic transitions in APFO32oligomer are shown in Table I.

    TABLEI Calculated transition energies ETand oscillator strengths f for APFO32oligomer with two repeat units.

    FIG.4(a)Time-dependent TA spectra of APFO32in CB solution with concentration of 100μg/mL(λexe=400 nm). (b)Temporal evolution of TA signal at λprobe=440,560,620,and 860 nm,the solid lines are fitted results.(c)The photophysical process of APFO32in a monodisperse system.

    TABLE II Best-fit parameters of TA traces of APFO3 with multi-exponential functions.

    The time-dependent TA spectra of the APFO3 in the CB solution with concentration of 100μg/mL at different time are shown in Fig.4(a),and the aggregation between copolymer is expected to be insignif i cant in this concentration[18].The TA spectrum of APFO3 at 1.0 ps has four main spectral features.Two positive absorption bands at~390 and~550 nm are attributed to ground state photo-bleaching(GSPB)because of the close resemblance to the optical absorption spectrum,and the other two negative excited absorption bands at~450(EA1)and above 600 nm(EA2and EA3)may correspond to the excited state absorption.It is interestingly found the GSPB1gradually blue shifts from 570 nm to 550 nm with time,indicating that the simulated emission(SE)should be overlapped with the GSPB1in this spectral region.In order to understand the photophysical character of the excited APFO3,we exhibit the temporal evolution of EA1, GSPB1,EA2,and EA3bands at selected λprobe=440, 560,620,and 860 nm,and all of them are fitted by a multi-exponential function.The fitted results are shown in Fig.4(b)and summarized in Table II.Their different decay behaviors ref l ect that the transient species that we are monitoring come from different energy states. The temporal trace of EA3at 860 nm shows an initial decay with the lifetime of~2.0 ps,showing that some transient species directly relax from the high energy excited state.Simultaneously,the dynamics of EA1also exhibit a fast rising dynamic behavior with the lifetime of~2.5 ps and is a little longer than that of the fast dynamic component in EA3trace,suggesting that some transient species in high energy excited state may relax to the low energy excited state through vibrational thermal relaxation.In addition,the GSPB1trace offers an initial decay with time constant~1.9 ps,indicating that some transient species maybe directly come back from the high energy state to the ground state.The EA2signal at 620 nm is accordingly overlapped with a residual GSPB band and displays an instantaneous formation(<0.5 ps),beyond our temporal resolution,and a slow rising component with a long lifetime of~11 ps, indicating that a intermediate state is generated after photoexcitation.Considering the polarity-dependent emission(Fig.2(a))and the quantum chemical calculation(Fig.3(a)),we expect that this rising process should correspond to the inter-conversion from the initial high energy excited state to the ICT state.All the photophysical processes of APFO3 in a monodisperse system are summarized in Fig.4(c).The vibrational thermal relaxation(~2 ps),the relaxation to the ground state,and the ICT process with lifetime of~11 ps may occur at the same time,and then the last transient species would all gradually come back to the ground state.Herein,our analysis provides a systemic evidence of complex relaxation processes of APFO3 polymer in the monodisperse solution system.

    FIG.5(a)Transient absorption spectra of pristine APFO3 film(λexe=400 nm).(b)Wavelength-dependent TA curves of pristine APFO3 film at 590 and 860 nm.(c)The photophysical process of APFO3 in condensed system.

    FIG.6 (a)TA curves of pristine APFO3 and its blend films with different concentrations of PC61BM(λexe=400 nm). (b)Current-voltage curves measured for photovoltaic devices based on blend heterojunction(wAPFO3:wPC61BM=1:1 and 1:3).(c)The photophysical process of APFO3 blend film with PC61BM.

    And then,we offer the TA spectra of the pristine APFO3 film at different times(as seen in Fig.5(a))so as to understand the photophysical character of the excited APFO3 in the condensed phase.The TA spectrum at~1.0 ps has a little difference from that in the CB solution,and the component of SE disappears in the condensed phase.It contains f i ve main spectral features:three negative bands at~450,720,and 845 nm, and two positive bands at~410 and~575 nm.The positive absorption bands are also assigned to the GSPB, and three negative absorption bands are the EA part, which may correspond to the singlet-singlet(S1→Sn) photo-induced absorption.Due to the interchain interaction,the GSPB features both red shift,meanwhile all the spectral features in TA spectra decay with time, showing that no intermediate transient species appears after photoexcitation.Note that the GSPB2and EA3dynamics(as depicted in Fig.5(b)),at 590 and 860 nm, respectively,display the similar temporal decay behavior,because they are both related to transitions from the f i rst excited singlet state as depicted in Fig.5(c). At this time,the interchain exciton relaxation may be dominant in the relaxation process of excited APFO3 in the condensed phase.The dynamics of GSPB2and EA3are fitted by tri-exponential function and the fitted results are also summarized in Table II.There is a difference between the GSPB2dynamics(hτi≈486 ps)and EA3dynamics(hτi≈974 ps),which may be assigned to the superimposition of the excited state absorption and the ground state absorption.The complicated dynamic behavior of GSPB2and EA3indicates that there are rich dynamic processes occurring in the film at the same time,which maybe involves the excition-exction annihilation,the excition migration and the polaron relaxation.

    When the APFO3 fi lm is blended with PC61BM,the phase segregation and the heterogeneity occur in the fi lm morphologies.After photoexcitation,the exciton would di ff use in the polymer phase and dissociate on the interface between APFO3 and PC61BM phase.Figure 6(a)offer the normalized TA curves at 780 nm of the pristine APFO3 film and the blend films with different percentage of PC61BM.After the introduction of a little PC61BM(5%),the component of fast exciton relaxation process obviously weakens,as presented in Fig.6(c),indicating that a part of photo-generated exciton may dissociate and form charge-transfer state(CT-S)with long lifetime.As the percentage of PC61BM reaches~50%,the interface area between APFO3 and PC61BM increases.As seen in Fig.6(a),the fast exciton relaxation completely disappears,indicating that the photogenerated exciton has been completely dissociated after photoexcitation and the exciton dissociation yield almost reaches~100%.In addition,the dynamic process with long lifetime should be assigned to the recombination of separated carriers.The photovoltaic devices based on blend heterojunction have been performed and the weight proportion between APFO3 and PC61BM is 1:1 and 1:3,so as to ensure the high effective exciton dissociation.Their current density-voltage(J-V)curves under the illumination of AM1.5G,100 mW/cm2are shown in Fig.6(b).The measurement results show that Vocobviously increases from 0.38 V to 0.58 V and the Jscalso improves from 5.84 mA/cm2to 5.96 mA/cm2as the percentage of PC61BM increase from 50%to 75%.Their fill factors(FF)are invariable(~0.28).Finally, the PCE could increase from 0.61%to 1.01%.The enhancement of voltage is~200 mV,which may be responsible for the improvement of photovoltaic performance.The increasing of photocurrent is only 0.12 mA/cm2after the percentage of PC61BM further increases.This indicates that the increasing of PC61BM almost couldn’t influence the generation process of free charge after the percentage of PC61BM has exceeded~50%.

    IV.CONCLUSION

    We systemically study the excited state photophysical character of APFO3 in the monodisperse system, the condensed phase and the mixing phase.The chemical calculations and polarity-dependent emission spectra conf i rm that the ICT really occurs after photoexcitation,and is mainly responsible for the f i rst absorption band in the red region of absorption.The TA measurements conf i rm that ICT,as an intermediate state,really exists in a monodisperse system and competes with the vibrational thermal relaxation at the same time.Due to the influence of interchain interaction,the ICT process would disappear in the condensed phase.In addition,the photo-generated exciton could dissociate in the blended film with PC61BM, whose yield would reach~100%as the percentage of PC61BM increases to~50%.The photovoltaic parameters still exhibit that the increase of photocurrent is small after the percentage of PC61BM exceeds~50%. Several fundamental situations have been covered in the study of APFO3 in excited state which is benef i cial to further understand the conjugated polymers.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21103161 and No.11274142)and the China Postdoctoral Science Foundation(No.2011M500927).

    [1]H.Sirringhaus,P.J.Brown,R.H.Friend,M.M. Nielsen,K.Bechgaard,B.M.W.Langeveld-Voss,A. J.H.Spiering,R.A.J.Janssen,E.W.Meijer,P.Herwig,and D.M.de Leeuw,Nature 401,685(1999).

    [2]R.H.Friend,R.W.Gymer,A.B.Holmes,J.H. Burroughes,R.N.Marks,C.Taliani,D.D.C.Bradley, D.A.Dos Santos,J.L.Bredas,M.Logdlund,and W. R.Salaneck,Nature 397,121(1999).

    [3]S.E.Shaheen,C.J.Brabec,N.S.Sariciftci,F. Padinger,T.Fromherz,and J.C.Hummelen,Appl. Phys.Lett.78,841(2001).

    [4]Z.C.He,C.M.Zhong,S.J.Su,M.Xu,H.B.Wu,and Y.Cao,Nat.Photon.6,591(2012).

    [5]J.Peet,J.Y.Kim,N.E.Coates,W.L.Ma,D.Moses, A.J.Heeger,and G.C.Bazan,Nat.Mater.6,497 (2007).

    [6]C.M.Bjorstrom,A.Bernasik,J.Rysz,A.Budkowski, S.Nilsson,M.Svensson,M.R.Andersson,K.O.Magnusson,and E.Moons,J.Phys.:Conden.Mater.17, L529(2005).

    [7]A.Gadisa,F.L.Zhang,D.Sharma,M.Svensson,M. R.Andersson,and O.Inganas,Thin Solid Films 515, 3126(2007).

    [8]S.De,T.Pascher,M.Maiti,K.G.Jespersen,T.Kesti, P.Zhang,O.Ingan¨as,A.Yartsev,and V.Sundstr¨om, J.Am.Chem.Soc.129,8466(2007).

    [9]S.K.Pal,T.Kesti,M.Maiti,F.Zhang,O.Ingan¨as,S. Hellstr¨om,M.R.Andersson,F.Oswald,F.Langa,T. ¨Osterman,T.Pascher,A.Yartsev,and V.Sundrstr¨om, J.Am.Chem.Soc.132,12440(2010).

    [10]Y.H.Wang,J.Q.Hou,Z.H.Kang,L.J.Gong,T.H. Huang,L.L.Qu,Y.G.Ma,R.Lu,and H.Z.Zhang, Chem.Phys.Lett.566,17(2013).

    [11]P.Hohenberg and W.Kohn,Phys.Rev.136,B864 (1964).

    [12]A.D.Becke,Phys.Rev.A 38,3098(1988).

    [13]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E. Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani, V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M. Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa, M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai, T.Vreven,J.A.Jr.Montgomery,J.E.Peralta,F. Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N. Kudin,V.N.Staroverov,R.Kobayashi,J.Normand, K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M. Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo, J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev, A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski, R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A. Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A. D.Daniels,O.Farkas,J.B.Foresman,J.V.Ortiz,J. Cioslowski,and D.J.Fox,Gaussian 09,Revision A02, Wallingford CT:Gaussian,Inc.,(2009).

    [14]E.K.U.Gross and W.Kohn,Phys.Rev.Lett.55,2850 (1985).

    [15]T.Yanai,D.Tew,and N.Handy,Chem.Phys.Lett. 393,51(2004).

    [16]S.A.Jenekhe,L.Lu,and M.M.Alam,Macromolecules 34,7315(2001).

    [17]K.G.Jespersen,W.J.D.Beenken,Y.Zaushitsyn, A.Yartsev,M.Andersson,T.Pullerits,and V.Sundrstr¨om,J.Chem.Phys.121,12613(2004).

    [18]N.Banerji,S.Cowan,M.Leclerc,E.Vauthey,and A. J.Heeger,J.Am.Chem.Soc.132,17459(2010).

    ceived on June 25,2013;Accepted on August 7,2013)

    ?Authors to whom correspondence should be addressed.E-mail:yinghui-wang@jlu.edu.cn,zhanghz@jlu.edu.cn

    亚洲精品国产一区二区精华液| 18禁裸乳无遮挡免费网站照片 | 俄罗斯特黄特色一大片| 成人特级黄色片久久久久久久| 大陆偷拍与自拍| 99久久久亚洲精品蜜臀av| 91精品国产国语对白视频| 国产精品 欧美亚洲| 一进一出抽搐动态| 男女做爰动态图高潮gif福利片 | 国产麻豆69| 亚洲久久久国产精品| 国产精品香港三级国产av潘金莲| 淫妇啪啪啪对白视频| 亚洲欧美激情综合另类| 久久久久国产一级毛片高清牌| 日本a在线网址| 19禁男女啪啪无遮挡网站| 亚洲国产精品sss在线观看| 搡老熟女国产l中国老女人| 欧美日韩一级在线毛片| 久久久水蜜桃国产精品网| 色老头精品视频在线观看| 国产麻豆成人av免费视频| 国产免费av片在线观看野外av| 免费在线观看视频国产中文字幕亚洲| 三级毛片av免费| 天堂√8在线中文| 国产一级毛片七仙女欲春2 | 香蕉国产在线看| 亚洲七黄色美女视频| 亚洲av成人av| 欧美黄色片欧美黄色片| 久久国产精品男人的天堂亚洲| av免费在线观看网站| 久久久精品国产亚洲av高清涩受| 国产精品久久久久久亚洲av鲁大| 国产精品一区二区在线不卡| 欧美乱妇无乱码| 中文字幕另类日韩欧美亚洲嫩草| 1024香蕉在线观看| 久久久久亚洲av毛片大全| 精品福利观看| 色播在线永久视频| 中文字幕色久视频| 亚洲aⅴ乱码一区二区在线播放 | 欧美黄色淫秽网站| 黄色片一级片一级黄色片| 免费在线观看黄色视频的| 又大又爽又粗| 欧美日韩福利视频一区二区| 欧美人与性动交α欧美精品济南到| 丰满的人妻完整版| 最好的美女福利视频网| 亚洲全国av大片| 曰老女人黄片| 亚洲av电影不卡..在线观看| 很黄的视频免费| 亚洲欧美激情综合另类| 亚洲性夜色夜夜综合| 国产精品久久久人人做人人爽| 大型黄色视频在线免费观看| 欧美一区二区精品小视频在线| 最新在线观看一区二区三区| 后天国语完整版免费观看| 丰满的人妻完整版| 亚洲少妇的诱惑av| 怎么达到女性高潮| 亚洲国产中文字幕在线视频| 可以免费在线观看a视频的电影网站| 欧美色欧美亚洲另类二区 | xxx96com| 别揉我奶头~嗯~啊~动态视频| 国产午夜精品久久久久久| 在线观看免费视频网站a站| 搡老岳熟女国产| 亚洲 欧美 日韩 在线 免费| 国产精品免费视频内射| 欧美精品亚洲一区二区| 亚洲午夜精品一区,二区,三区| 搞女人的毛片| 国产成+人综合+亚洲专区| 91在线观看av| 一本综合久久免费| 99久久99久久久精品蜜桃| 18禁黄网站禁片午夜丰满| 久久久久久久午夜电影| 亚洲自拍偷在线| 麻豆成人av在线观看| 日韩欧美在线二视频| 一边摸一边抽搐一进一小说| 丝袜美腿诱惑在线| 1024香蕉在线观看| 久久精品国产亚洲av香蕉五月| 色综合亚洲欧美另类图片| 午夜免费观看网址| 欧美午夜高清在线| 国产91精品成人一区二区三区| 国产私拍福利视频在线观看| 亚洲av熟女| 久久人人精品亚洲av| 999久久久国产精品视频| 亚洲 欧美 日韩 在线 免费| 久久久久久免费高清国产稀缺| 9热在线视频观看99| 亚洲欧美激情在线| 久久 成人 亚洲| 欧美日韩亚洲国产一区二区在线观看| 夜夜爽天天搞| 久久天躁狠狠躁夜夜2o2o| 亚洲精品久久国产高清桃花| 香蕉国产在线看| 在线观看免费午夜福利视频| 熟女少妇亚洲综合色aaa.| 亚洲国产精品成人综合色| 成在线人永久免费视频| 国产一区二区在线av高清观看| 美女高潮喷水抽搐中文字幕| 黄片小视频在线播放| 999精品在线视频| 一区二区三区激情视频| 久久精品91蜜桃| 亚洲国产高清在线一区二区三 | 国产亚洲av嫩草精品影院| 一本久久中文字幕| 国产极品粉嫩免费观看在线| 亚洲av成人av| 国产私拍福利视频在线观看| 精品人妻1区二区| 色老头精品视频在线观看| 亚洲天堂国产精品一区在线| 可以免费在线观看a视频的电影网站| 久久天躁狠狠躁夜夜2o2o| 高清毛片免费观看视频网站| 成人免费观看视频高清| 欧美激情高清一区二区三区| 亚洲欧美一区二区三区黑人| 18禁裸乳无遮挡免费网站照片 | 国产精品久久久人人做人人爽| 国产精品一区二区三区四区久久 | 国产精品精品国产色婷婷| 亚洲国产精品999在线| 亚洲中文字幕一区二区三区有码在线看 | av在线播放免费不卡| 波多野结衣av一区二区av| 神马国产精品三级电影在线观看 | 禁无遮挡网站| 91国产中文字幕| 国产色视频综合| 一区二区三区精品91| 青草久久国产| 在线观看午夜福利视频| 嫁个100分男人电影在线观看| 高清毛片免费观看视频网站| 久久久久国内视频| 一进一出抽搐动态| 午夜精品久久久久久毛片777| 亚洲狠狠婷婷综合久久图片| 乱人伦中国视频| 一a级毛片在线观看| 一二三四社区在线视频社区8| 免费观看人在逋| 老汉色av国产亚洲站长工具| 久久久水蜜桃国产精品网| 亚洲人成77777在线视频| 丝袜美腿诱惑在线| 丝袜人妻中文字幕| 99精品久久久久人妻精品| 午夜免费激情av| 亚洲成av人片免费观看| 夜夜夜夜夜久久久久| 亚洲国产中文字幕在线视频| 日日夜夜操网爽| 一本大道久久a久久精品| 侵犯人妻中文字幕一二三四区| 久久久久久免费高清国产稀缺| 婷婷精品国产亚洲av在线| 精品熟女少妇八av免费久了| 十八禁网站免费在线| 一区福利在线观看| 亚洲国产看品久久| 国产三级黄色录像| 免费观看人在逋| 久久这里只有精品19| 黄片大片在线免费观看| 久久人妻福利社区极品人妻图片| 国产三级黄色录像| 亚洲久久久国产精品| 亚洲av熟女| 母亲3免费完整高清在线观看| 给我免费播放毛片高清在线观看| 99久久国产精品久久久| 午夜久久久在线观看| 久久国产亚洲av麻豆专区| 欧美日韩精品网址| 久久人人97超碰香蕉20202| 国产蜜桃级精品一区二区三区| 变态另类丝袜制服| 制服丝袜大香蕉在线| 色综合站精品国产| 国产三级黄色录像| 久久久久久久午夜电影| 国产黄a三级三级三级人| 国产三级黄色录像| 亚洲九九香蕉| 亚洲av熟女| 日韩大码丰满熟妇| 好男人在线观看高清免费视频 | 少妇裸体淫交视频免费看高清 | 久久久久精品国产欧美久久久| 久久 成人 亚洲| 无限看片的www在线观看| 免费在线观看影片大全网站| 午夜影院日韩av| 欧美午夜高清在线| 久久久国产精品麻豆| 欧美成人性av电影在线观看| 一区在线观看完整版| 性欧美人与动物交配| 我的亚洲天堂| 色老头精品视频在线观看| www.自偷自拍.com| 国产精品,欧美在线| 电影成人av| 十八禁人妻一区二区| 国产麻豆成人av免费视频| 免费不卡黄色视频| 制服人妻中文乱码| 咕卡用的链子| 亚洲精品一卡2卡三卡4卡5卡| 嫩草影视91久久| 美女免费视频网站| 国产欧美日韩精品亚洲av| 亚洲av熟女| 国产精品美女特级片免费视频播放器 | 国产免费av片在线观看野外av| 国产av精品麻豆| 一本久久中文字幕| 中亚洲国语对白在线视频| 色播亚洲综合网| 大香蕉久久成人网| 亚洲国产欧美一区二区综合| 午夜福利在线观看吧| 一区二区三区精品91| 18禁裸乳无遮挡免费网站照片 | 啦啦啦免费观看视频1| 长腿黑丝高跟| 久久亚洲真实| 在线av久久热| 亚洲中文日韩欧美视频| 动漫黄色视频在线观看| 久久精品国产亚洲av香蕉五月| 免费观看人在逋| 亚洲色图 男人天堂 中文字幕| 色av中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 欧美另类亚洲清纯唯美| 精品国内亚洲2022精品成人| 久久 成人 亚洲| 中文字幕精品免费在线观看视频| 亚洲中文字幕日韩| 男女午夜视频在线观看| 91麻豆精品激情在线观看国产| 嫩草影院精品99| 十八禁人妻一区二区| 亚洲一区高清亚洲精品| 国产在线精品亚洲第一网站| 又黄又粗又硬又大视频| 一进一出抽搐gif免费好疼| 亚洲片人在线观看| videosex国产| 久久精品成人免费网站| 很黄的视频免费| 国产精品野战在线观看| 手机成人av网站| 好男人电影高清在线观看| 国产免费av片在线观看野外av| 国产精品av久久久久免费| 人人妻人人澡人人看| 久久热在线av| 欧美丝袜亚洲另类 | 黄色成人免费大全| 午夜福利高清视频| 欧美黄色片欧美黄色片| 亚洲国产精品成人综合色| 欧美丝袜亚洲另类 | 国产成人av激情在线播放| av免费在线观看网站| 午夜影院日韩av| 成人亚洲精品一区在线观看| 黄片大片在线免费观看| 99久久国产精品久久久| 午夜福利成人在线免费观看| 欧美最黄视频在线播放免费| 中出人妻视频一区二区| 脱女人内裤的视频| 一区二区三区国产精品乱码| 久久久久国产精品人妻aⅴ院| 亚洲欧美精品综合一区二区三区| 精品国产超薄肉色丝袜足j| 日韩成人在线观看一区二区三区| avwww免费| 黑丝袜美女国产一区| 在线观看免费日韩欧美大片| 国产色视频综合| 人人澡人人妻人| 国产午夜福利久久久久久| 1024香蕉在线观看| 欧美成人一区二区免费高清观看 | 中出人妻视频一区二区| 亚洲国产日韩欧美精品在线观看 | 精品乱码久久久久久99久播| 亚洲av成人av| 色播亚洲综合网| 欧美黄色淫秽网站| 日日爽夜夜爽网站| 久久国产精品影院| 97人妻精品一区二区三区麻豆 | 纯流量卡能插随身wifi吗| 在线永久观看黄色视频| 最近最新中文字幕大全免费视频| 欧美色欧美亚洲另类二区 | 国产91精品成人一区二区三区| 久久久久久久精品吃奶| 中文字幕人妻熟女乱码| 国产人伦9x9x在线观看| 动漫黄色视频在线观看| 国产一卡二卡三卡精品| 久久亚洲真实| 欧美国产日韩亚洲一区| 亚洲欧美日韩另类电影网站| 色综合亚洲欧美另类图片| 桃红色精品国产亚洲av| 中文字幕av电影在线播放| 少妇 在线观看| 一级a爱片免费观看的视频| 叶爱在线成人免费视频播放| 精品国产一区二区久久| 精品卡一卡二卡四卡免费| 女人高潮潮喷娇喘18禁视频| 黑丝袜美女国产一区| 日韩一卡2卡3卡4卡2021年| 亚洲国产日韩欧美精品在线观看 | 国产av又大| 一级毛片女人18水好多| 亚洲精品在线美女| 午夜福利,免费看| 高清毛片免费观看视频网站| 丰满人妻熟妇乱又伦精品不卡| 久久国产精品影院| 国产精品久久久久久亚洲av鲁大| 色综合亚洲欧美另类图片| 亚洲无线在线观看| 99精品久久久久人妻精品| 欧美中文综合在线视频| 欧美日本视频| 亚洲中文字幕日韩| 一区福利在线观看| videosex国产| 国产欧美日韩综合在线一区二区| 精品高清国产在线一区| 国产精品久久久久久亚洲av鲁大| 俄罗斯特黄特色一大片| 亚洲一区高清亚洲精品| 超碰成人久久| 欧美黑人精品巨大| 国产成人影院久久av| 亚洲在线自拍视频| 欧美一区二区精品小视频在线| 久久精品人人爽人人爽视色| 精品国产一区二区久久| 搡老熟女国产l中国老女人| 每晚都被弄得嗷嗷叫到高潮| 国产成年人精品一区二区| 一级,二级,三级黄色视频| aaaaa片日本免费| 亚洲午夜理论影院| 欧美一区二区精品小视频在线| 国产欧美日韩精品亚洲av| 后天国语完整版免费观看| 啦啦啦观看免费观看视频高清 | 久久精品国产亚洲av高清一级| 成年女人毛片免费观看观看9| 成人欧美大片| 亚洲精品在线美女| 国产成年人精品一区二区| 在线观看午夜福利视频| 一级毛片女人18水好多| 久久婷婷成人综合色麻豆| 国产精品日韩av在线免费观看 | 日本黄色视频三级网站网址| www.999成人在线观看| 久久亚洲真实| 99久久综合精品五月天人人| 久久精品亚洲精品国产色婷小说| 国产主播在线观看一区二区| 日韩大码丰满熟妇| 日日摸夜夜添夜夜添小说| 国产在线观看jvid| 黄片大片在线免费观看| 久久 成人 亚洲| 成人三级黄色视频| 1024视频免费在线观看| 看免费av毛片| 91成人精品电影| 午夜亚洲福利在线播放| 午夜久久久在线观看| 一级a爱视频在线免费观看| 国产欧美日韩一区二区三| 1024视频免费在线观看| 免费观看精品视频网站| 久久人人精品亚洲av| 国产精品 国内视频| 国产aⅴ精品一区二区三区波| 亚洲三区欧美一区| 琪琪午夜伦伦电影理论片6080| 成年女人毛片免费观看观看9| 亚洲国产精品合色在线| 岛国视频午夜一区免费看| 国产精品美女特级片免费视频播放器 | 叶爱在线成人免费视频播放| 欧美中文综合在线视频| 不卡av一区二区三区| 婷婷精品国产亚洲av在线| 黄色视频,在线免费观看| 国内精品久久久久久久电影| 女人爽到高潮嗷嗷叫在线视频| 此物有八面人人有两片| 91成年电影在线观看| 可以在线观看的亚洲视频| 99精品在免费线老司机午夜| 亚洲成人久久性| 久久久久久大精品| 久久久久国产一级毛片高清牌| 色婷婷久久久亚洲欧美| 黄色女人牲交| 18禁黄网站禁片午夜丰满| 色老头精品视频在线观看| 这个男人来自地球电影免费观看| 18禁黄网站禁片午夜丰满| 老司机深夜福利视频在线观看| 国产蜜桃级精品一区二区三区| 别揉我奶头~嗯~啊~动态视频| 久久久久久久久中文| 男女做爰动态图高潮gif福利片 | 成熟少妇高潮喷水视频| 老司机靠b影院| 日日干狠狠操夜夜爽| 亚洲 欧美一区二区三区| 国产又色又爽无遮挡免费看| 69精品国产乱码久久久| 欧美绝顶高潮抽搐喷水| 久久香蕉国产精品| 少妇的丰满在线观看| 亚洲国产高清在线一区二区三 | 每晚都被弄得嗷嗷叫到高潮| 18禁美女被吸乳视频| 看免费av毛片| 久久人人97超碰香蕉20202| 国产亚洲精品久久久久5区| 久久人人爽av亚洲精品天堂| 在线视频色国产色| 久久香蕉激情| 精品福利观看| 90打野战视频偷拍视频| 欧美一级毛片孕妇| 一区二区三区激情视频| 18禁美女被吸乳视频| 国产99久久九九免费精品| 99re在线观看精品视频| 在线观看免费午夜福利视频| 国产精品99久久99久久久不卡| 亚洲,欧美精品.| 十分钟在线观看高清视频www| 国产精品1区2区在线观看.| 久久精品影院6| 多毛熟女@视频| 亚洲伊人色综图| 高清毛片免费观看视频网站| 国产亚洲精品av在线| 免费av毛片视频| 欧美黄色淫秽网站| 变态另类成人亚洲欧美熟女 | 黄色丝袜av网址大全| 亚洲美女黄片视频| 在线观看日韩欧美| 午夜激情av网站| 精品免费久久久久久久清纯| 国产精品一区二区免费欧美| 伊人久久大香线蕉亚洲五| 国产精品 国内视频| 精品久久久久久久人妻蜜臀av | 啦啦啦 在线观看视频| √禁漫天堂资源中文www| 国产欧美日韩一区二区三区在线| 久久久久久久久久久久大奶| 午夜免费鲁丝| 97人妻精品一区二区三区麻豆 | 人人妻人人澡欧美一区二区 | 成人国产综合亚洲| 国产三级黄色录像| 精品欧美国产一区二区三| 亚洲国产精品合色在线| 在线天堂中文资源库| 国内久久婷婷六月综合欲色啪| 午夜免费成人在线视频| 国产精华一区二区三区| 97人妻天天添夜夜摸| 女性生殖器流出的白浆| 亚洲精品国产一区二区精华液| 99re在线观看精品视频| 亚洲欧美精品综合久久99| 国产成人系列免费观看| 日韩一卡2卡3卡4卡2021年| 久久国产精品影院| 91成年电影在线观看| 国产精品 欧美亚洲| 午夜福利18| 在线观看免费日韩欧美大片| 在线观看舔阴道视频| 黄片小视频在线播放| 在线av久久热| 日本免费一区二区三区高清不卡 | 最新美女视频免费是黄的| 一级a爱片免费观看的视频| 两人在一起打扑克的视频| 亚洲人成网站在线播放欧美日韩| 男女之事视频高清在线观看| 91在线观看av| 国产精品九九99| 日韩大尺度精品在线看网址 | 性欧美人与动物交配| 好男人电影高清在线观看| 这个男人来自地球电影免费观看| 欧美精品啪啪一区二区三区| 黑丝袜美女国产一区| 中文字幕av电影在线播放| 久久精品影院6| 91老司机精品| 午夜免费观看网址| 精品久久久久久成人av| 国产在线观看jvid| 性少妇av在线| 91字幕亚洲| 欧美人与性动交α欧美精品济南到| 免费无遮挡裸体视频| 叶爱在线成人免费视频播放| 亚洲色图综合在线观看| 91麻豆精品激情在线观看国产| 成熟少妇高潮喷水视频| 亚洲自拍偷在线| 老司机午夜十八禁免费视频| 午夜精品国产一区二区电影| 欧美乱妇无乱码| 亚洲成人免费电影在线观看| 亚洲精华国产精华精| 国产精品国产高清国产av| 免费女性裸体啪啪无遮挡网站| 热re99久久国产66热| 女生性感内裤真人,穿戴方法视频| 日韩大尺度精品在线看网址 | 美女扒开内裤让男人捅视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产区一区二久久| 婷婷精品国产亚洲av在线| 国产国语露脸激情在线看| 麻豆久久精品国产亚洲av| 国产色视频综合| 精品一区二区三区视频在线观看免费| 亚洲人成电影观看| 少妇 在线观看| 亚洲五月天丁香| 在线观看免费视频日本深夜| www.www免费av| 欧美 亚洲 国产 日韩一| 日韩视频一区二区在线观看| 久久久久久久久中文| 日韩视频一区二区在线观看| 国产亚洲精品一区二区www| 国产精品精品国产色婷婷| 久久精品国产综合久久久| 免费高清在线观看日韩| 看黄色毛片网站| 精品久久久久久久毛片微露脸| 久久热在线av| 国产成年人精品一区二区| 夜夜躁狠狠躁天天躁| www.999成人在线观看| 国内精品久久久久精免费| 欧美日本中文国产一区发布| 可以在线观看毛片的网站| av有码第一页| 91精品国产国语对白视频| 久久久水蜜桃国产精品网| 窝窝影院91人妻| 欧美日韩中文字幕国产精品一区二区三区 | 日本一区二区免费在线视频| 成人av一区二区三区在线看| 国产极品粉嫩免费观看在线| 好男人电影高清在线观看| 三级毛片av免费| 黑人巨大精品欧美一区二区蜜桃| 亚洲人成伊人成综合网2020| 在线视频色国产色| 成人亚洲精品av一区二区| 久热这里只有精品99| 国产高清videossex| 老汉色av国产亚洲站长工具| 高潮久久久久久久久久久不卡| 欧美日本中文国产一区发布| 免费在线观看日本一区| 久久久水蜜桃国产精品网| 精品高清国产在线一区| 国产一区二区三区在线臀色熟女| 看黄色毛片网站|