• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetic Implication from Temperature effect on Hydrogen Evolution Reaction at Ag Electrode

    2014-07-19 11:17:08JingKangChuhongLinYaoYaoYanxiaChen
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Jing Kang,Chu-hong Lin,Yao Yao,Yan-xia Chen

    Hefei National Laboratory for Physical Sciences at Microscale,Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China

    Kinetic Implication from Temperature effect on Hydrogen Evolution Reaction at Ag Electrode

    Jing Kang,Chu-hong Lin,Yao Yao,Yan-xia Chen?

    Hefei National Laboratory for Physical Sciences at Microscale,Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China

    Hydrogen evolution reaction(HER)at polycrystalline silver electrode in 0.1 mol/L HClO4solution is investigated by cyclic voltammetry in the temperature range of 278-333 K.We found that at electrode potential ?<PZC(potential of zero charge),the apparent activation energy Ea,appdecreases with ?,while pre-exponential factor A remains nearly unchanged, which conforms well the prediction from Butler-Volmer equation.In contrast,with ? negative shifts from the onset potential for HER to the potential of zero charge(PZC≈-0.4 V), both Ea,appand A for HER increase(e.g.,Ea,appincreases from 24 kJ/mol to 32 kJ/mol). The increase in Ea,appand A with negative shift in ? from-0.25 V to PZC is explained by the increases of both internal energy change and entropy change from reactants to the transition states,which is correlated with the change in the hydrogen bond network during HER.The positive entropy effects overcompensate the adverse effect from the increase in the activation energy,which leads to a net increase in HER current with the activation energy negative shift from the onset potential of HER to PZC.It is pointed out that entropy change may contribute greatly to the kinetics for electrode reaction which involves the transfer of electron and proton,such as HER.

    Hydrogen evolution reaction,Ag electrode,Temperature effect,Activation energy,Pre-exponential factor,Internal energy,Entropy change

    I.INTRODUCTION

    Hydrogen evolution reaction(HER)is a typical model reaction for understanding the principle of electrocatalysis due to the simplicity of its reaction mechanism[1]. The overall reaction for HER in acidic electrolyte is:

    where H+(aq)denotes the hydrated proton,which may be in the form such as H9O4+,H5O2+,or H3O+[2] Depending on the nature of the electrocatalysts,HER can follow two different paths,the Volmer-Tafel or the Volmer-Heyrovsky mechanisms[3],and in both pathways the f i rst step is believed to be the Volmer reaction, i.e.,the discharge of H+,

    It may be followed by Heyrovsky reaction,i.e.,an electrochemical desorption step,

    Or through the Tafel reaction,i.e.,the combination of two adsorbed H atoms and the subsequent desorption of H2,

    The effect of catalyst structure on the HER activity has been extensively studied in the past years,a volcano plot between the rate for HER and the M-H binding energy(EM-H)is well accepted[4,5].From systematic theoretical studies,Norskov et al.suggested that the volcano plot for HER may be better expressed as the rate for HER versus the Gibbs free energy for the H adsorption(GH)at different metal substrates[6], and the best catalysts for HER keep the Gibbs free energy change of all the elementary steps in HER close to zero.Calculations on the activation energy(?6=Gact) for the rate determining step(rds)for HER at various metal electrodes have also been carried out[7,13-15]. A surprising feature is that the calculated?6=Gactis remarkably higher than the experimentally measured activation energy,e.g.,from DFT calculation.Norskov et al.found that at Pt(111),?6=Gactfor HER was ca. 0.85 eV[8],which was much higher than the apparent activation energy(Ea,app)of ca.0.2 eV deduced from temperature-dependent exchange current density reported by Markovic et al.[9].Chen et al.found?6=Gactfor HER was ca.0.55 eV at Pt(111),whichwas in the middle of the value reported by Norskov and Markovic[10].Schmickler et al.reported that at Cu(111),Ag(111),and Au(111)electrodes,?6=Gactwas about 0.75 eV[11],while the experimentally measured Ea,appfor HER at Ag(111)from the same group was just in the range from 0.05 eV to 0.25 eV[12].From our recent measurement of temperature effect on HER at quasi-Au(111)electrode,the apparent activation energy is also estimated to be ca.0.2 eV[13].

    In theoretical studies,the pre-expoential factor A is very difficult to be calculated,so usually only the activation barrier is used to discuss the activity toward HER [2,11,14-16].Considering the fact that the reactants such as proton and water are located in the hydrogenbonded network,whose structure and configuration are under dynamic changes during HER[17-19],we expect that the entropy change(pre-exponential factor in the Arrhenius equation)may also play a very important role in HER rate.In order to figure out whether such effects are important for HER or not,we have carried out systematic studies of the temperature effect on HER at Pt(111)[20],Ag,Cd,and GC electrodes[21],the parameters,such as apparent activation energy Ea,appand A as well as their potential dependence have been derived.In this work,we report the related data for HER at Ag electrode.

    II.EXPERIMENTS

    A polycrystalline Ag wire(99.99%,diameter:1 mm, denoted as pc-Ag here after)embedded in a glass holder is used as working electrode(WE).It is polished using Al2O3powder with size of 3,1,and 0.05μm,successively,and before switching to the polishing powder with lower diameter,it is flushed carefully with tape water.After that,it is dipped into 0.1 mol/L HNO3for ca. 10 s,and flushed carefully with Milli-Q water(18.2 M?, Milli-Q pure water system).Then,the electrode surface is covered by a water droplet and transferred to the electrochemical cell immediately.A conventional two compartment,three electrodes cell is used in the present study,which is similar to the conventional cell used for RDE system[22],except for an additional glass jacket that allows water circulating around the cell for controlling the cell temperature.An Ag|AgCl(with saturated KCl solution)electrode and an Ag wire are used as reference(RE)and counter electrode(CE),respectively. The potential of the Ag|AgCl(with saturated KCl solution)is-0.256 V vs.reversible hydrogen electrode (RHE)at 298 K.The RE is placed in the second compartment to avoid the contamination of the solution by the leakage of Cl-ions or by traces of dissolved Ag+and it is kept at room temperature(298 K).All potentials in the work are quoted against RHE at 298 K.

    FIG.1 Cyclic voltammogram of Ag electrode in N2saturated 0.1 mol/L HClO4,potential scan rate of 50 mV/s.

    The electrolyte solution is 0.1 mol/L HClO4,which is prepared using perchloric acid(70%,Sigma-Aldrich) and ultra-pure water.Before studying the temperature effect,electrode potential is cycled continuously in the potential region from-0.7 V to 0.9 V at a scan rate of 50 mV/s until clean and reproducible cyclic voltammograms(CVs)are obtained.Then,the electrode is washed carefully by ultra-pure water and immediately inserted into the cell filled with newly prepared solutions for HER measurements.When recording the i-E curves for HER,the electrode is rotated at a speed of 500 r/min in order to avoid the interference of H2bubbles on HER kinetics.The rotation of electrode is controlled by a modulated rotator(Hokuto Denko Ltd.). IR compensation has been carried out automatically by the CHI instrument based on positive feed-back principle.The uncompensated Ohmic resistance is measured by AC impedance.During all the measurements,the cell and the atmosphere above the cell are continuously purged with N2(99.999%,Nanjing Special gas,Corp.).

    III.RESULTS AND DISCUSSION

    A.Cyclic voltammetric characterization of Ag electrode and HER kinetics

    Figure 1 displays the cyclic voltammorgams(CV)of Ag electrode in 0.1 mol/L HClO4recorded at room temperature,the pair of redox peaks at ca.0.7 V is due to Ag++e?Ag,and the potential region from-0.1 V to 0.4 V is double layer charging potential regime.At potential negative of-0.15 V,HER occurs,its current density increases monotonically with negative shift in electrode potential.Such features of the CV are quite similar to that reported for Ag/acidic electrolyte system in Ref.[12].The electrochemical active surface area of Ag electrode is estimated to be ca.0.015 cm2(with a roughness factor of ca.2)from the ratio of its double layer capacitance to that of Ag(111),the latter is 40μF/cm2according to Ref.[23].In order to avoid the change of surface roughness of Ag electrode by cycling to higher potentials especially at elevated temperatures, we have only recorded CV up to 0.9 V at room temperature before the measurements for the i-E curves forHER at other temperatures.For the subsequent HER measurements by cyclic voltammetry,the upper potential limit is kept at 0.05 V.

    FIG.2 Polarization curves for HER at Ag electrode in N2saturated 0.1 mol/L HClO4at various constant temperatures,potential scan rate of 50 mV/s.

    FIG.3 Arrhenius plots for hydrogen evolution reactions at Ag electrode in 0.1 mol/L HClO4at various constant potentials,raw data from Fig.2.

    Figure 2 displays the polarization curves for HER in 0.1 mol/L HClO4at various temperatures from 278 K to 323 K.From Fig.2 it is seen that at the same temperature,the HER current increases exponentially toward negative potentials.At f i xed potential the currents display an obvious increase with temperature(the onset potential for HER also increases slightly e.g.,it shifts from-0.2 V at 278 K to ca.-0.15 V at 323 K).All these facts conf i rm that HER at Ag electrode is a fast process.Qualitatively,the temperature and potential dependent HER behavior at Ag electrode is very similar to our previous results on HER at Au electrode [13],except that the onset potential for HER at Ag is ca.0.1 V more negative than that at Au electrode in otherwise identical conditions.

    FIG.4 The plots of(a)apparent activation energies(Ea,app) and(b)lnA(pre-expotential factor)for hydrogen evolution reactions at Ag electrode in 0.1 mol/L HClO4as a function of reaction potential,data derived from curves given in Fig.2.

    FIG.5 Tafel plots for hydrogen evolution reactions at Ag electrode in N2saturated 0.1 mol/L HClO4at various constant temperatures,data derived from curves given in Fig.2.

    The Arrhenius plots for hydrogen evolution reactions at Ag electrode in 0.1 mol/L HClO4at various constant potentials are given in Fig.3,which displays roughly linear behavior and the lines upshift toward more negative potentials.Ea,appand A for HER on pc-Ag at different constant potentials are derived from the slope and the intercept at Y axis of the lines,which are plotted as a function of electrode potential in Fig.4.From Fig.4 it is seen that Ea,appincreases from 24 kJ/mol to 31.5 kJ/mol with electrode potential negative scan from-0.25 V to-0.4 V.And with further negative shift in electrode potential from-0.4 V to-0.55 V, Ea,appdecreases gradually to 28 kJ/mol.On the other hand,with negative potential shift from-0.25 V to -0.40 V,A also displays a monotonically increase,and it remains nearly unchanged at potentials from-0.4 V to-0.55 V.

    The Tafel plots for HER at Ag electrode in 0.1 mol/L HClO4at constant temperatures are displayed in Fig.5, from which the Tafel slopes b are found to be ca.180-200 mV/dec in the potential region from-0.2 V to -0.55 V.From the Tafel slope,the transfer coefficient β is found to be ca.0.3 according to Butler-Volmer equation β=RT/bF.Such numbers are very close to those found at Ag(111)[12],which is ca.0.34 to 0.4.It is found that the potential,where the maximum activation energy appears,is just close to the potential of zero charge(PZC)for pc-Ag[23].And the maximum Ea,appfor HER at Ag(111)and Ag(110)in 0.5 mol/L H2SO4also appears at Ea,appclose to the PZC’s of Ag(111)and Ag(110)[12,23,24].The similar potential-dependent behavior of Ea,appand A for HER found at pc-Ag and pc-Ag(111)in different labs as well as its well correlation with the PZCs indicate that such phenomenon should be a well reproducible behavior for such system.

    B.Kinetic implications from the temperature effects on HER

    The widely accepted mechanism for HER at Ag electrode in acidic electrolyte is that HER goes through Volmer-Heyrovsky pathway with adsorbed Hadatom as reaction intermediate,and the f i rst charge transfer step (Eq.(2))is the rate determining step(rds),which is f i rst order with respect to H+.The total current density for HER can be written as:

    where 2 is the number of electrons transferred for formation of one H2molecule,F is the Faraday constant,is the concentration of H+near the electrode surface. krds(E)is the rate constant for the Volmer reaction, which can be expressed as:

    where A(η)and Ea(η)are the pre-exponential factor and the activation energy for the Volmer reaction at overpotential η for HER.According to the transition state theory(TST),for elementary electrochemical reaction,the activation energy is just the Gibbs free energy change(denoted as?6=Gact)from reactants to the transition state at reaction potential of E.It can be expressed as

    For Volmer reaction,GRandare the Gibbs free energy of the hydrated proton in the reactant and transition state,the term βFη represents the contribution from potential induced change in the free energy of the electron.For HER at constant temperature and pressure,is the sum of the change in internal energy from reactants to the transition states?,the related pressure volume change Pand temperature-entropy change T?6=Sactterms,which can be expressed as:

    Since the reaction occurs at the electrode/electrolyte interface,the contribution of P?6=Vactmay be neglected, there is

    Obviously,both?6=U and?6=S are potential dependent.Substituting Eq.(9)into Eq.(6),and by proper rearrangement,we have

    where A0represents the part of pre-exponential factor which is potential independent.Since the Volmer reaction is the rds for HER at Ag electrode and it is the fi rst step during the sequence for HER,and assuming that all reaction sites are uniform,+βFη for Volmer reaction should be proportional to the Ea,appfor HER derived from the experiments.In analog,for the Volmer reaction should be proportional to the experimentally determined A for HER,which ref l ects the effects of solvent dynamics[25]. For the Volmer reaction,it is expected that the reactants,i.e.,proton-containing complex(may be H9O4+or H5O2+or H3O+)to be discharged are mainly located in the outer Helmholtz layer[14],while the transition state may be in a region somewhat closer to the electrode surface.During the discharge process,the hydrated proton has to move close to the electrode surface, gets discharged somewhere near the electrode surface, replaces the water molecules adsorbed at the surface and f i nally forms adsorbed Had.

    Since η is negative for HER,hence negative shift in electrode potential should lead to a decrease in the activation energy,i.e.,U6=-UR+βFη,this is opposite to what is observed for HER at Ag in the low overpotential region(e.g.,from-0.25 V to-0.4 V,Fig.4).Hence there must be an increase of the term of-URin this potential region,which overcompensates the decrease in activation energy induced by the increase in the potential energy of the electron.Since the binding energy for Ag-Hadis smaller than that for Ag-OH2[6,26],it is expected that a signif i cant part of activation energy has to be paid to get adsorbed water molecule detached from Ag surface,i.e.,to overcome the electrostatic interaction between water and the electrode surface as well as to break the hydrogen bond(HBs)of the adsorbed water molecule from its HBs network.

    Since-0.4 V is just the PZC of pc-Ag in such system [23],in the potential region from-0.25 V to-0.4 V,the electrode surface has been positively charged,and the water molecules at the surface orient with their O atoms pointing toward electrode surface,where the HBs are partly broken.On the other hand,at PZC the water molecules form ice-like structure with well organized HB network.When decreasing from-0.25 V to-0.4 V, the positive electric field across the interface gradually decreases,HBs between the water molecules within the fi rst layer close to the electrode surface become stronger. And since the electric field is not so strong,in order to replace the water molecule from the surface the energy paid to break the HBs is higher than that for overcoming the electrostatic interaction.As a result,-URincreases from-0.25 V to-0.4 V.Alternatively,this may also be understood that from-0.25 V to-0.4 V during the Volmer reaction the entropy change for HB network environment increases.

    On the other hand,compared to the reactant,the transition state is closer to the electrode surface and becomes restricted,the degree of freedom for the transition state is smaller than that for the reactants,hence-SRis negative.The increase of the preexponential factor for HER with negative shift of potential from-0.25 V to-0.4 V may be due to thatS| decreases in this low overpotential regime.With potential negative shift from-0.25 V to-0.4 V,the electric field across the interface decreases,hence the di ff erence between the structure of the transition state and that of the reactant becomes smaller.The decrease in|?6=S| leads to a signif i cant increase in A0.At molecular level,the increase of A with potential from -0.25 V to-0.4 V may be envisaged by the increase in the transformation dynamics from the reactants’confi guration to the transition state with decrease in the positive electric field across the interface.This e ff ect prevails the adverse e ff ect from potential induced increase in activation energy and leads to a net increase in HER current at Ag from-0.25 V to 0.4 V.

    At potentials more negative than the PZC of Ag,it is seen from Fig.4 that when the potential is negatively shifted from-0.4 V to-0.55 V,the Ea,appdecreases by ca.4 kJ/mol,from the Tafel plots given in Fig.5, it is found that the symmetric factor for the Volmer reaction is ca.0.3.Hence,the decrease in activation energy with electrode potential can be solely attributed to the term of βFη,while the contribution of the potential dependent change for the term U6=-URto the activation energy is negligible.Furthermore, we found that at E<PZC,the pre-exponential factor does not change with potential at all,this suggests that the term?6=S=S6=-SRdoes not change with potential much.Both the lacking of the change of?6=U and?6=S can be easily explained by the fact that at E<PZC, proton-containing complex(may be H9O4+or H5O2+or H3O+)[2]to be discharged orient with H end toward the electrode surface,the structure of the transition state is quite similar to that for the reactant.As similar to the outer-sphere electrode reaction,the term of potential induced change of electron energy of βFη is the key factor which controls potential-dependent change of HER kinetics in this potential region,because with the increase in the negative electric f i eld across the interface toward more negative potentials,the electrons can tunnel into the solution further away from the surface, in the solution side more reactants further away from electrode surface may take part in the reaction[27].It should be mentioned that compared to that for HER at Au or Cd electrode in acidic electrolyte,the Ea,appfor HER just displays a monotonically decrease toward negative potentials,due to that the potential for HER is always negative of PZC of Au(ca.0.35 V)[28]and Cd electrodes.This is in good agreement with previous observation that at metals with low catalytic activity for HER,usually metals with more positive PZC display higher HER activity than those with lower PZCs [29].

    It should be mentioned that Ea,appwe derived from this study as well as those obtained by Schmickler et al. at Ag(111)from temperature dependent activity measurements[12]are in the range of 20-30 kJ/mol,by taking the transfer coefficient of 0.5,the Ea,appat the equilibrium potential will be below 40 kJ/mol,which is smaller than?6=G deduced from the recent theoretical calculation[13].For example,Schmickler et al.reported that at single crystalline Ag electrode,?6=G is about 0.75 eV[11].On the other hand,from DFT calculation Norskov et al.have also found that at Pt(111),?6=G for HER is ca.0.85 eV[30],which is much higher than the experimentally observed value of ca.0.2 eV by Markovic et al.[9].Such discrepancies indicate that either the models or the method used for theoretical calculation may not be appropriate.We hope such comparison may help theoreticians to construct more reliable model and develop more appropriate method in order to understand the essence for reactions such as electrochemical HER microscopically.

    IV.CONCLUSION

    Hydrogen evolution reaction at polycrystalline silver electrode in 0.1 mol/L HClO4solution is investigated by cyclic voltammetry in the temperature range of 278-333 K.A clear increase in HER current with reaction overpotential and temperature is observed. The apparent activation energy Ea,appincreases from 24 kJ/mol to 32 kJ/mol with electrode potential negative scan from-0.25 V to-0.4 V.And with further negative shift in electrode potential from-0.4 V to-0.55 V,Ea,appdecreases gradually to 28 kJ/mol. On the other hand,with negative potential shift from -0.25 V to-0.40 V the pre-exponential factor A also displays a monotonically increase,and it remains nearly unchanged at potentials from-0.4 V to-0.55 V.And -0.4 V is just near the PZC for pc-Ag.

    The monotonical decrease in Ea,appwith electrode potential and the potential-independence of A at E<PZC agree well with the prediction from the Butler-Volmer’s law,suggesting that under such conditions, the reaction is similar to outer-shpere reactions.The increases in Ea,appand A with negative shift in electrode potential from the onset potential for HER to PZC is just opposite to what is predicted by Butler-Volmer equation.During the Volmer reaction,the displacement of adsorbed water leads to an increase in the change of both the internal energy and the entropy from reactants to the transition states.Present results reveal that the solvent dynamics and the related entropy term (pre-exponential factor)may contribute greatly to the kinetics for electrode reaction.

    V.ACKNOWLEDGMENTS

    This work was supported by the One Hundred Talents Program of the Chinese Academy of Science,the National Natural Science Foundation of China(No.21073176),and the National Basic Research Program of China National Science and Technology (No.2010CB923302).

    [1]A.R.Despic,Comprehensive Treatise of Electrochemistry,New York and London:Plenum,(1983).

    [2]F.Wilhelm,W.Schmickler,R.Nazmutdinov,and E. Spohr,Electrochim.Acta 56,10632(2011).

    [3]B.E.Conway,Sci.Pro.71,479(1987).

    [4]R.Parson,Catalysis in Electrochemistry:From Fundamentals to strategies for Fuel Cell,John Wiley&Son: Development,1(2011).

    [5]S.Trasatti,J.Electroanal.Chem.39,163(1972).

    [6]J.K.Norskov,T.Bligaard,A.Logadottir,J.R. Kitchin,J.G.Chen,and S.Pandelov,J.Electrochem. Soc.152,J23(2005).

    [7]M.T.M.Koper,J.Solid State Electrochem.17,339 (2013).

    [8]E.Skulason,V.Tripkovic,M.E.Bjorketun,S.Gudmundsdottir,G.Karlberg,J.Rossmeisl,T.Bligaard, H.Jonsson,and J.K.Norskov,J.Phys.Chem.C 114, 18182(2010).

    [9]N.M.Markovic,B.N.Grgur,and P.N.Ross,J.Phys. Chem.B 101,5405(1997).

    [10]Q.Zhang,Y.Liu,and S.Chen,J.Electroanal.Chem. 688,158(2013).

    [11]E.Santos,P.Quaino,and W.Schmickler,Phys.Chem. Chem.Phys.14,11224(2012).

    [12]D.Eberhardt,E.Santos,and W.Schmickler,J.Electroanal.Chem.461,76(1999).

    [13]Z.Q.Tang,L.W.Liao,Y.L.Zheng,J.Kang,and Y. X.Chen,Chin.J.Chem.Phys.25,469(2012).

    [14]E.Santos,P.Hindelang,P.Quaino,and W.Schmickler, Phys.Chem.Chem.Phys.13,6961(2011).

    [15]J.K.Norskov,T.Bligaard,A.Logadottir,J.R. Kitchin,J.G.Chen,and S.Pandelov,J.Electrochem. Soc.152,J23(2005).

    [16]J.K.Norskov,E.Skulasson,J.Rossmeisl,T.Bligaard, G.Karlberg,J.P.Greeley,and H.Jonsson,Abstracts of Papers of the American Chemical Society,Vol.233, Washington,DC 20036 USA:Am.Chem.Soc.,(2007).

    [17]J.F.Li,Y.F Huang,S.Duan,R.Pang,D.Y.Wu,B. Ren,X.Xu,and Z.Q.Tian,Phys.Chem.Chem.Phys. 12,2493(2010).

    [18]X.Xu,B.Ren,D.Y.Wu,H.Xian,X.Li,P.Shi,and Z.Q.Tian,Surf.Interf.Anal.28,111(1999).

    [19]D.Y.Wu,S.Duan,X.M.Liu,Y.C.Xu,Y.X.Jiang, B.Ren,X.Xu,S.H.Lin,and Z.Q.Tian,J.Phys. Chem.A 112,1313(2008).

    [20]F.Yang,Master Thesis Dissertation,Heifei:University of Science and Technology of China,(2013).

    [21]J.Kang,Master Thesis Dissertation,Heifei:University of Science and Technology of China,(2013).

    [22]Q.J.Chen,Y.L.Zheng,L.W.Liao,J.Kang,and Y. X.Chen,Sci.Sin.Chim.41,1777(2011).

    [23]K.A.Soliman and L.A.Kibler,Electrochim.Acta 52, 5654(2007).

    [24]W.Schmickler and E.Santos,Interfacial Electrochemistry,Springer-Verlag Berlin and Heidelberg GmbH& Co.K,(2010).

    [25]S.Hammes-Schiffer and A.A.Stuchebrukhov,Chem. Rev.110,6939(2010).

    [26]X.D.Song,Y.F.Zhao,P.X.Zhang,and G.H.Zhang, Inter.J.Quantum Chem.111,2109(2011).

    [27]R.Pang,L.J.Yu,D.Y.Wu,B.W.Mao,and Z.Q. Tian,Electrochim.Acta 101,272(2013).

    [28]D.Eberhardt,E.Santos,and W.Schmickler,J.Electroanal.Chem.419,23(1996).

    [29]L.M.Doubova,and S.Trasatti,J.Electroanaly.Chem. 467,164(1999).

    [30]E.Skulason,G.Karlberg,J.Rossmeisl,T.Bligaard,J. P.Greeley,H.Jonsson,and J.K.Norskov,Abstracts of Papers of the American Chemical Society,Vol.233, Washington,DC 20036 USA:Am.Chem.Soc.,(2007).

    ceived on May 28,2013;Accepted on June 8,2013)

    ?Author to whom correspondence should be addressed.E-mail:yachen@ustc.edu.cn,Tel./FAX:+86-551-6360035

    日韩中字成人| av在线天堂中文字幕| 久久久久精品性色| 精品午夜福利在线看| av在线观看视频网站免费| 热re99久久精品国产66热6| 亚洲av免费高清在线观看| 国产av不卡久久| 亚洲成人中文字幕在线播放| 偷拍熟女少妇极品色| 少妇人妻一区二区三区视频| 久久久久久九九精品二区国产| 国产91av在线免费观看| 99热这里只有是精品在线观看| 日产精品乱码卡一卡2卡三| 亚洲最大成人中文| 成人一区二区视频在线观看| 亚洲精品国产av蜜桃| 日韩不卡一区二区三区视频在线| 神马国产精品三级电影在线观看| 午夜福利在线观看免费完整高清在| 亚洲丝袜综合中文字幕| 欧美极品一区二区三区四区| 最近的中文字幕免费完整| 免费观看的影片在线观看| 伦精品一区二区三区| 人妻少妇偷人精品九色| 亚洲伊人久久精品综合| 日本色播在线视频| 在线观看av片永久免费下载| 国产女主播在线喷水免费视频网站| 久久久色成人| 久久综合国产亚洲精品| 亚洲自偷自拍三级| 亚洲av中文字字幕乱码综合| 国产91av在线免费观看| 中文乱码字字幕精品一区二区三区| 国产免费视频播放在线视频| 一级毛片久久久久久久久女| 少妇人妻一区二区三区视频| 久久久久久九九精品二区国产| 高清午夜精品一区二区三区| 国产精品一区二区三区四区免费观看| 嫩草影院新地址| 亚洲精品成人久久久久久| 人妻夜夜爽99麻豆av| www.av在线官网国产| 成人一区二区视频在线观看| 一级爰片在线观看| 亚洲高清免费不卡视频| 国产视频首页在线观看| 日韩三级伦理在线观看| 3wmmmm亚洲av在线观看| 久热这里只有精品99| 国语对白做爰xxxⅹ性视频网站| 国产综合精华液| 国产成人福利小说| 久久人人爽人人爽人人片va| 亚洲精品乱久久久久久| 搡女人真爽免费视频火全软件| av.在线天堂| 精品久久久噜噜| videos熟女内射| 国国产精品蜜臀av免费| 亚洲欧美成人综合另类久久久| 午夜福利在线在线| 亚洲精品亚洲一区二区| 搞女人的毛片| 香蕉精品网在线| 亚洲精品成人av观看孕妇| 一区二区三区乱码不卡18| 男女边吃奶边做爰视频| 一边亲一边摸免费视频| 午夜福利高清视频| 久久热精品热| 内射极品少妇av片p| 观看免费一级毛片| 欧美丝袜亚洲另类| 亚洲精品国产av成人精品| 日本一二三区视频观看| 91精品伊人久久大香线蕉| 神马国产精品三级电影在线观看| 网址你懂的国产日韩在线| 国产精品一区二区三区四区免费观看| 人妻制服诱惑在线中文字幕| 免费人成在线观看视频色| 国产色爽女视频免费观看| 午夜福利视频1000在线观看| 嫩草影院新地址| 久久97久久精品| 校园人妻丝袜中文字幕| 爱豆传媒免费全集在线观看| 肉色欧美久久久久久久蜜桃 | 男人狂女人下面高潮的视频| 五月天丁香电影| 2021少妇久久久久久久久久久| 爱豆传媒免费全集在线观看| 伦理电影大哥的女人| 久久久久国产精品人妻一区二区| 国产人妻一区二区三区在| 国产精品三级大全| 少妇人妻 视频| 亚洲美女视频黄频| 一区二区av电影网| 亚洲av免费在线观看| 日本免费在线观看一区| 91狼人影院| 人妻一区二区av| 天堂俺去俺来也www色官网| 久久精品国产亚洲网站| 蜜桃亚洲精品一区二区三区| 国产成人a∨麻豆精品| 黄色怎么调成土黄色| 嫩草影院精品99| 久久久国产一区二区| 99热网站在线观看| 亚洲国产欧美在线一区| 国产一区二区亚洲精品在线观看| 国产精品偷伦视频观看了| 美女脱内裤让男人舔精品视频| 岛国毛片在线播放| 国产高清不卡午夜福利| 日日啪夜夜爽| 直男gayav资源| 国产 一区 欧美 日韩| 欧美 日韩 精品 国产| 内地一区二区视频在线| 国产片特级美女逼逼视频| 久久精品夜色国产| 99久国产av精品国产电影| 综合色丁香网| 国产免费一区二区三区四区乱码| 国产精品熟女久久久久浪| 久久精品久久精品一区二区三区| 女人十人毛片免费观看3o分钟| 校园人妻丝袜中文字幕| 国产成人免费无遮挡视频| 国产黄片视频在线免费观看| 搡老乐熟女国产| 免费观看性生交大片5| 在线观看三级黄色| 97超视频在线观看视频| 亚洲国产欧美在线一区| 精品一区在线观看国产| 嫩草影院精品99| 亚洲精品视频女| 色网站视频免费| 老司机影院毛片| 麻豆久久精品国产亚洲av| 成人高潮视频无遮挡免费网站| 国产黄片美女视频| 网址你懂的国产日韩在线| 大香蕉久久网| 最近中文字幕2019免费版| 身体一侧抽搐| 欧美精品人与动牲交sv欧美| 男女啪啪激烈高潮av片| 亚洲欧美精品专区久久| 少妇被粗大猛烈的视频| 亚洲成人精品中文字幕电影| 久久久久久久久久人人人人人人| 成年版毛片免费区| 成人毛片60女人毛片免费| www.av在线官网国产| 欧美日韩一区二区视频在线观看视频在线 | 建设人人有责人人尽责人人享有的 | 波多野结衣巨乳人妻| 麻豆成人av视频| 看十八女毛片水多多多| 国产在线男女| 国产精品人妻久久久久久| 日本熟妇午夜| 午夜福利网站1000一区二区三区| 精品国产一区二区三区久久久樱花 | 中国国产av一级| 欧美xxxx黑人xx丫x性爽| 有码 亚洲区| 亚洲色图综合在线观看| 啦啦啦中文免费视频观看日本| 久久久久久伊人网av| 亚洲av福利一区| 午夜免费鲁丝| 亚洲va在线va天堂va国产| 三级国产精品片| av卡一久久| 一级毛片我不卡| 亚洲国产精品成人久久小说| 亚洲成人一二三区av| 久久综合国产亚洲精品| 成人漫画全彩无遮挡| 久久久久久伊人网av| av又黄又爽大尺度在线免费看| 精品一区在线观看国产| 午夜福利视频精品| 亚洲国产精品成人久久小说| 97精品久久久久久久久久精品| 亚洲av不卡在线观看| 中文字幕亚洲精品专区| 国产高清三级在线| 免费在线观看成人毛片| 久久久久久久大尺度免费视频| 99久久人妻综合| 大又大粗又爽又黄少妇毛片口| 极品教师在线视频| 国产午夜精品一二区理论片| 看十八女毛片水多多多| 成年版毛片免费区| 制服丝袜香蕉在线| 亚洲精品成人久久久久久| 亚洲av福利一区| 亚洲,一卡二卡三卡| 成人无遮挡网站| 18禁在线无遮挡免费观看视频| 在线免费十八禁| 香蕉精品网在线| 欧美日韩亚洲高清精品| 女人被狂操c到高潮| 精品亚洲乱码少妇综合久久| 80岁老熟妇乱子伦牲交| 亚洲成色77777| 国产女主播在线喷水免费视频网站| 国产老妇女一区| 只有这里有精品99| 亚洲综合色惰| 3wmmmm亚洲av在线观看| 国产男人的电影天堂91| 嫩草影院新地址| 国产精品99久久99久久久不卡 | 国产男女超爽视频在线观看| 日本与韩国留学比较| 亚洲精品日韩av片在线观看| 国产成人91sexporn| 国产精品爽爽va在线观看网站| 一级毛片电影观看| 能在线免费看毛片的网站| 亚洲欧美一区二区三区国产| 18禁动态无遮挡网站| 国产 一区 欧美 日韩| 波多野结衣巨乳人妻| 国产熟女欧美一区二区| 欧美日韩在线观看h| 少妇被粗大猛烈的视频| 欧美日韩视频精品一区| 日韩av免费高清视频| 天天躁日日操中文字幕| 欧美3d第一页| 日本黄色片子视频| 大又大粗又爽又黄少妇毛片口| 国产精品一区二区三区四区免费观看| 国产毛片在线视频| 久久久久久久久久人人人人人人| 日韩av不卡免费在线播放| 日韩制服骚丝袜av| 成人特级av手机在线观看| 男插女下体视频免费在线播放| 国产淫片久久久久久久久| 内地一区二区视频在线| 18+在线观看网站| 亚洲欧美精品自产自拍| 欧美日韩在线观看h| 精品久久久久久久久av| 亚洲精品国产av成人精品| 国产精品久久久久久久久免| 熟女av电影| 国产在线男女| 白带黄色成豆腐渣| 国产高清不卡午夜福利| 国产有黄有色有爽视频| 国内揄拍国产精品人妻在线| 久久影院123| 中文乱码字字幕精品一区二区三区| 婷婷色av中文字幕| 午夜免费观看性视频| av.在线天堂| 亚洲美女视频黄频| 青青草视频在线视频观看| 热99国产精品久久久久久7| 日韩 亚洲 欧美在线| 涩涩av久久男人的天堂| 内射极品少妇av片p| 汤姆久久久久久久影院中文字幕| 亚洲美女视频黄频| 亚洲av一区综合| 国产中年淑女户外野战色| 99热这里只有是精品50| 成人亚洲欧美一区二区av| 少妇丰满av| 久久人人爽av亚洲精品天堂 | 中国国产av一级| 亚洲欧美一区二区三区国产| 夜夜爽夜夜爽视频| 九草在线视频观看| eeuss影院久久| 国内揄拍国产精品人妻在线| 高清日韩中文字幕在线| 国产精品久久久久久av不卡| 韩国高清视频一区二区三区| 可以在线观看毛片的网站| 成年女人看的毛片在线观看| 亚洲天堂av无毛| 五月玫瑰六月丁香| 国产视频首页在线观看| 日本欧美国产在线视频| 老师上课跳d突然被开到最大视频| 一个人看的www免费观看视频| 欧美日韩精品成人综合77777| 在线观看美女被高潮喷水网站| 观看美女的网站| 啦啦啦啦在线视频资源| 免费人成在线观看视频色| 身体一侧抽搐| 国内揄拍国产精品人妻在线| 色视频在线一区二区三区| 丝袜美腿在线中文| 成年免费大片在线观看| 在线播放无遮挡| 国产精品成人在线| 久久久久久国产a免费观看| 在线 av 中文字幕| 男人添女人高潮全过程视频| 亚洲成人av在线免费| 久久99精品国语久久久| 青春草亚洲视频在线观看| 最近的中文字幕免费完整| 亚洲人成网站在线观看播放| 91久久精品电影网| 国产精品久久久久久精品电影| 又粗又硬又长又爽又黄的视频| 禁无遮挡网站| 国产日韩欧美在线精品| 精品国产一区二区三区久久久樱花 | 亚洲高清免费不卡视频| 亚洲av不卡在线观看| 尾随美女入室| 街头女战士在线观看网站| 高清av免费在线| 亚洲国产色片| 午夜免费观看性视频| 中文字幕av成人在线电影| 国产成人福利小说| 狂野欧美激情性bbbbbb| 日韩视频在线欧美| 国产永久视频网站| 国产视频首页在线观看| 亚洲欧美一区二区三区国产| 国产精品久久久久久精品古装| 熟女av电影| 中文欧美无线码| 观看美女的网站| 麻豆精品久久久久久蜜桃| 亚洲不卡免费看| 国产精品.久久久| 99久久精品热视频| 一边亲一边摸免费视频| 熟女人妻精品中文字幕| 小蜜桃在线观看免费完整版高清| 午夜福利在线在线| 国产精品女同一区二区软件| 男人狂女人下面高潮的视频| 久久久久久久大尺度免费视频| 一个人看视频在线观看www免费| 少妇人妻一区二区三区视频| av在线播放精品| 中文字幕免费在线视频6| 亚洲性久久影院| 精品人妻视频免费看| 69av精品久久久久久| 精品亚洲乱码少妇综合久久| 欧美激情久久久久久爽电影| 欧美日韩在线观看h| 日韩欧美精品v在线| 丰满乱子伦码专区| 少妇裸体淫交视频免费看高清| 日韩一区二区三区影片| 日韩视频在线欧美| av在线蜜桃| 亚洲国产欧美人成| 久久99热6这里只有精品| 天天一区二区日本电影三级| 青春草亚洲视频在线观看| 国产片特级美女逼逼视频| 一边亲一边摸免费视频| 亚洲va在线va天堂va国产| 最近2019中文字幕mv第一页| 建设人人有责人人尽责人人享有的 | 男女啪啪激烈高潮av片| 中文欧美无线码| 哪个播放器可以免费观看大片| 日产精品乱码卡一卡2卡三| 久久久午夜欧美精品| 色哟哟·www| 免费黄色在线免费观看| 97超碰精品成人国产| 亚洲欧美成人综合另类久久久| 久久综合国产亚洲精品| 欧美成人精品欧美一级黄| 三级经典国产精品| 国产真实伦视频高清在线观看| 国产亚洲av嫩草精品影院| 久久精品熟女亚洲av麻豆精品| 只有这里有精品99| 中文欧美无线码| 国产欧美另类精品又又久久亚洲欧美| 午夜老司机福利剧场| 狂野欧美白嫩少妇大欣赏| 白带黄色成豆腐渣| 丰满人妻一区二区三区视频av| 麻豆成人午夜福利视频| 亚洲丝袜综合中文字幕| 午夜福利在线在线| 一区二区三区乱码不卡18| 熟女av电影| 777米奇影视久久| 亚洲国产成人一精品久久久| 亚洲电影在线观看av| 五月玫瑰六月丁香| 久久午夜福利片| 亚洲图色成人| 国产精品一区二区在线观看99| 少妇的逼好多水| 日韩一区二区三区影片| 国产成人freesex在线| 日韩大片免费观看网站| 晚上一个人看的免费电影| 国产乱人视频| 午夜激情福利司机影院| 婷婷色麻豆天堂久久| 久久久久网色| 日韩国内少妇激情av| 自拍欧美九色日韩亚洲蝌蚪91 | 国产片特级美女逼逼视频| 国产大屁股一区二区在线视频| 国产精品无大码| 美女cb高潮喷水在线观看| 成人午夜精彩视频在线观看| 中国三级夫妇交换| 建设人人有责人人尽责人人享有的 | 超碰97精品在线观看| 在线精品无人区一区二区三 | 2021天堂中文幕一二区在线观| 激情五月婷婷亚洲| 国产亚洲av嫩草精品影院| 小蜜桃在线观看免费完整版高清| 在线观看一区二区三区| 日韩免费高清中文字幕av| 中文字幕久久专区| 看非洲黑人一级黄片| 天堂俺去俺来也www色官网| 欧美日韩视频精品一区| 下体分泌物呈黄色| 边亲边吃奶的免费视频| 自拍偷自拍亚洲精品老妇| 国产高清有码在线观看视频| 新久久久久国产一级毛片| 国产免费福利视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 久久人人爽人人片av| 国产有黄有色有爽视频| 欧美日韩视频高清一区二区三区二| 丝袜喷水一区| 视频区图区小说| a级毛色黄片| 麻豆久久精品国产亚洲av| 国内精品宾馆在线| 在线观看av片永久免费下载| 亚洲欧美清纯卡通| 亚洲精品自拍成人| 国内精品宾馆在线| 免费观看在线日韩| 国产精品久久久久久av不卡| 精品久久久久久久人妻蜜臀av| 国产成人freesex在线| av在线观看视频网站免费| 国产av国产精品国产| 极品少妇高潮喷水抽搐| 国产 一区精品| 精品一区二区三区视频在线| .国产精品久久| 国产精品精品国产色婷婷| 日韩视频在线欧美| av免费在线看不卡| 久久精品国产鲁丝片午夜精品| 国产一区二区在线观看日韩| 成人鲁丝片一二三区免费| 在线看a的网站| 色播亚洲综合网| 亚洲av成人精品一区久久| 五月伊人婷婷丁香| 下体分泌物呈黄色| 伦理电影大哥的女人| 亚洲精品乱久久久久久| 韩国av在线不卡| 一级毛片黄色毛片免费观看视频| 少妇裸体淫交视频免费看高清| 午夜精品一区二区三区免费看| 黄片wwwwww| 欧美3d第一页| 亚洲欧美成人综合另类久久久| 亚洲三级黄色毛片| 国产成人福利小说| 青春草视频在线免费观看| 黑人高潮一二区| 99热这里只有精品一区| 91久久精品电影网| 久久99热这里只频精品6学生| 美女高潮的动态| 大香蕉久久网| 97在线视频观看| 99热这里只有是精品50| 国产精品福利在线免费观看| 一本一本综合久久| 亚洲精华国产精华液的使用体验| 免费av毛片视频| 久久精品熟女亚洲av麻豆精品| 搡老乐熟女国产| 免费av观看视频| 国产一区二区亚洲精品在线观看| 亚洲在久久综合| 国产亚洲av嫩草精品影院| 2021天堂中文幕一二区在线观| 高清在线视频一区二区三区| 欧美少妇被猛烈插入视频| 日日摸夜夜添夜夜添av毛片| 一级二级三级毛片免费看| 亚洲精品一二三| 亚洲国产欧美在线一区| 别揉我奶头 嗯啊视频| 日产精品乱码卡一卡2卡三| 日韩亚洲欧美综合| 亚洲国产精品999| 97超视频在线观看视频| 嘟嘟电影网在线观看| 神马国产精品三级电影在线观看| 男人爽女人下面视频在线观看| 亚洲欧美一区二区三区黑人 | 国产精品秋霞免费鲁丝片| 香蕉精品网在线| av在线观看视频网站免费| 亚洲人与动物交配视频| 亚洲电影在线观看av| 啦啦啦中文免费视频观看日本| 美女被艹到高潮喷水动态| 久久久久久伊人网av| 亚洲av不卡在线观看| 哪个播放器可以免费观看大片| 超碰97精品在线观看| 少妇人妻一区二区三区视频| 少妇熟女欧美另类| 国产精品国产三级专区第一集| 青春草国产在线视频| 黄片无遮挡物在线观看| 嘟嘟电影网在线观看| 亚洲精品成人久久久久久| 免费看av在线观看网站| 日本与韩国留学比较| 国产精品一区www在线观看| 免费观看av网站的网址| 国产免费一区二区三区四区乱码| 女人久久www免费人成看片| 嫩草影院新地址| 女人久久www免费人成看片| 最近中文字幕高清免费大全6| 精品少妇黑人巨大在线播放| 嫩草影院新地址| 国产黄片美女视频| 亚洲精品成人av观看孕妇| 99热网站在线观看| 国产午夜精品一二区理论片| 亚洲婷婷狠狠爱综合网| freevideosex欧美| tube8黄色片| 精品一区在线观看国产| 欧美人与善性xxx| 欧美zozozo另类| 久久久久久久久久成人| 国产精品女同一区二区软件| 亚洲精华国产精华液的使用体验| 亚洲av福利一区| 一级爰片在线观看| 免费不卡的大黄色大毛片视频在线观看| 99久久人妻综合| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最近最新中文字幕大全电影3| 久久久国产一区二区| 另类亚洲欧美激情| 亚洲精品国产色婷婷电影| 熟女av电影| 嫩草影院新地址| 免费大片黄手机在线观看| 校园人妻丝袜中文字幕| 尾随美女入室| 观看美女的网站| www.av在线官网国产| 校园人妻丝袜中文字幕| 国产精品一区二区三区四区免费观看| 国模一区二区三区四区视频| 制服丝袜香蕉在线| 97精品久久久久久久久久精品| 成人黄色视频免费在线看| 亚洲国产成人一精品久久久| 日韩不卡一区二区三区视频在线| 国产91av在线免费观看| 日韩中字成人| 直男gayav资源| 大码成人一级视频| 大又大粗又爽又黄少妇毛片口| 自拍欧美九色日韩亚洲蝌蚪91 | 国产av不卡久久| 亚洲欧美成人精品一区二区| 69av精品久久久久久| 国产高清不卡午夜福利| 亚洲va在线va天堂va国产| 国产免费一级a男人的天堂| 最近2019中文字幕mv第一页| 欧美亚洲 丝袜 人妻 在线|