• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Study on the High-Temperature Pˉ6 and Pˉ60Phases of Si3N4: A Tool to Aid in Ceramics Development

    2014-07-19 11:17:08BenhaiYuDongChen
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Ben-hai Yu,Dong Chen

    College of Physics and Electronic Engineering,Xinyang Normal University,Xinyang 464000,China

    Theoretical Study on the High-Temperature Pˉ6 and Pˉ60Phases of Si3N4: A Tool to Aid in Ceramics Development

    Ben-hai Yu,Dong Chen?

    College of Physics and Electronic Engineering,Xinyang Normal University,Xinyang 464000,China

    Atomistic modeling based on the density functional theory combined with the quasi-harmonic approximation is used to investigate the lattice parameters and elastic moduli of the Pˉ6 and Pˉ60phases of Si3N4.β-Si3N4is set as a benchmark system since accurate experiments are available.The calculated lattice constants and elastic constants of β-Si3N4are in good agreement with the experimental data.The crystal anisotropy,mechanical stability,and brittle behavior of Pˉ6-and Pˉ60-Si3N4are also discussed in the pressure range of 30-55 GPa. The results show that these two polymorphs are metallic compounds.The brittleness and elastic anisotropy increase with applied pressure increasing.Besides,the phase boundaries of the β→Pˉ60→δ transitions are also analysed.The β phase is predicted to undergo a phase transition to the Pˉ60phase at 40.0 GPa and 300 K.Upon further compression,the Pˉ60→δ transition can be observed at 53.2 GPa.The thermal and pressure effects on the heat capacity,cell volume and bulk modulus are also determined.Some interesting features are found at high temperatures.

    First-principles,Nitrides,Brittleness,Phase diagram

    I.INTRODUCTION

    Silicon nitride(Si3N4)belongs to the group-IV nitrides exhibiting unique physical properties.As an important ceramic,Si3N4can be used as gas turbines, cutting tools,etch masks,solar cells,and energy conversion materials[1,2].Its low density,high strength, tunable electrical conductivity and high decomposition temperature lead to numerous applications[1,3].There are several Si3N4polymorphs,namely α phase(space group:P31c)[4],β phase(space group:P63/m)[4], willemite-II phase(wII-Si3N4,space group:Iˉ43d)[5],γ phase(space group:Fdˉ3m)[6],δ phase(space group: P3)[7],and post-spinel phase(space group:BBMM) [8].In recent years,the α→β[9,10],β→wII[5],β→γ [7,11-13],α→γ[7],β→δ[7],and γ→post-spinel[8,14] phase transitions have been carefully investigated.

    Xu et al.found new Si3N4polymorphs(the hexagonal Pˉ6 and Pˉ60phases,space group:P3),and observed the high-pressure β→Pˉ60→δ phase transitions[7].Although many efforts have been made on Si3N4,the Pˉ6 and Pˉ60phases are far less studied than their counterparts α-,β-,wII-,δ-and γ-Si3N4.Due to the difficulties in the preparation of polycrystalline samples[7],theoretical calculations,especially f i rst-principles method, can help.Using f i rst-principles calculation,we provide predictions of the thermal quantities,elastic properties, phase stabilities,and phase transition characters of the β,Pˉ6,Pˉ60,and δ phases.

    II.BENCHMARK CALCULATION

    Present calculations are performed using the f i rstprinciples plane-wave method[15]in combination with ultrasoft pseudo-potentials(US-PP)[16]to calculate the total energy of Si3N4.The Perdew-Burke-Ernzerhof functional[17]is used for the exchange-correlation potential.In consideration of accuracy,the plane-wave cut of fenergies of 500 eV(β-Si3N4),450 eV(Pˉ6-Si3N4), 450 eV(Pˉ60-Si3N4),and 450 eV(δ-Si3N4)are used in our calculation.The k-point meshes,based on the Monkhorst-Pack scheme[18],are 4×4×12 for β-Si3N4, 5×5×12 for Pˉ6-Si3N4,5×5×12 for Pˉ60-Si3N4,and 6×6×15 for δ-Si3N4,respectively.The internal coordinates of different atoms have been fully relaxed. Reference configurations for the valence electrons are Si3s23p2and N2s22p3.The calculated total energies of Si3N4are converged to less than 1μeV/atom.Besides, the crystal structures and atomic coordinates of Pˉ6-and Pˉ60-Si3N4can be found in Ref.[7].

    The k-point mesh should be described in order to avoid the unclearness.In fact,the k-points are determined by the equation(1/a:1/b:1/c),where a,b,and c are the lattice constants.For β-Si3N4,the experimental values of the lattice constants are a=b=0.7607 nm and c=0.2907 nm(see Table I),thus 1/a:1/b:1/c≈1:1:2.62. The k-point mesh can be chosen as 3×3×8,4×4×12,5×5×14,etc.According to our convergence tests,the plane-wave cutof f500 eV and the k-points 4×4×12 can generate good results for β-Si3N4.For the hexagonal Pˉ6-and Pˉ60-Si3N4,we do not know the experimental lattice constants.The only known parameters are the internal coordinates of atoms[7].We have built the unit cell for Pˉ60-Si3N4using a=b=1.0 nm and c=0.5 nm. After geometry optimization and full relaxation of internal coordinates with very high cut-of fenergy and k-points,the equilibrium lattice constants can be obtained.According to the equation(1/a:1/b:1/c)and the convergence tests,the adequate parameters for Pˉ60-and Pˉ6-Si3N4are found to be cut-of fenergy of 450 eV and k-points 5×5×12.

    Then,we apply the quasi-harmonic approximation (QHA)scheme[19,20],in which the non-equilibrium Gibbs function G?(V;P,T)can be determined by

    where E(V)is the total energy,pV represents the hydrostatic pressure condition,Avibis the vibrational term,which can be written as[21]:

    where n,θD,T,and D(θD/T)are the number of atoms, the Debye temperature,the temperature and the Debye integral,respectively.Accordingly,G?(V;P,T)can be minimized by

    By solving Eq.(3),some thermal properties such as constant-volume heat capacity(CV),isobaric heat capacity(CP)and isothermal bulk modulus(BT)can be obtained by

    FIG.1 All-known polymorphs of Si3N4and the transition paths among these phases.The dashed lines denote the β→Pˉ6→δ transitions.

    TABLEI Lattice constants a,c,and cell volume V of the β,Pˉ60,Pˉ6,and δ phases.

    where V0is the equilibrium volume,kBthe Boltzmann’s constant,α the thermal expansion coefficient,B0the zero-pressure bulk modulus,γ the Gr¨uneisen parameter,pspthe spinodal pressure,L?the fitting parameter, and B00is the f i rst-order derivative of B0,respectively. A detailed expression of QHA can be found in Refs.[19, 20].

    III.RESULTS AND DISCUSSION

    The experimentally conf i rmed and theoretically hypothesized transition paths of the Si3N4polymorphs are illustrated in Fig.1.The β→Pˉ6→δ transitions(dashed line)have not been verif i ed by experiments or theoretical studies.In order to have a deep insight into the fundamental properties of Si3N4,we have calculated the pressure dependences of lattice constants,cell volumes, elastic constants,and elastic moduli.The results are shown in Tables I and II.

    Since the experimental data of β-Si3N4are available, we have calculated the fundamental properties of theβ phase.As shown in Table I,the predicted lattice constants and cell volumes are in excellent agreement with the experimental data and the theoretical results. The calculated elastic constants of β-Si3N4given in our previous work[10]were also in satisfactory agreement with the results in Refs.[7,22].For Pˉ6-and Pˉ60-Si3N4, a,c,and V decrease with the pressure increasing.The cell volume of the Pˉ6 phase is larger than that of the Pˉ60phase.Therefore,the channels in the Pˉ60phase are larger than those in Pˉ60-Si3N4.

    TABLE II Calculated elastic constants Cij(in GPa),bulk modulus BH(in GPa),shear modulus GH(in GPa),Young’s modulus YH(in GPa),Poisson ratio σ and anisotropy factor A of Pˉ6-and Pˉ60-Si3N4.

    It is well known that the elastic constants are calculated by means of Taylor expansion of the total energy, E(V,δ),for the system with respect to a small strain δ of the cell volume V.The energy of a strained system can be expressed as follows[28]:

    where,E(V0,T)is the energy of the unstrained system with equilibrium volume V0at different temperatures,τiis an element in the stress tensor,and ξiis a factor to consider Voigt index[28].The total energy E(V0,T)at a certain temperature T and the f i nite temperature lattice constant can be obtained by the vibrational Debye-like model.According to the Voigt-Reuss-Hill approximation,the bulk modulus BH,shear modulus GH,Young’s modulus YH,Poisson ratio σ and anisotropy factor A can be obtained by[29]

    where the subscripts V,R,and H are the Voigt index, the Reuss index,and the Hill index,respectively.These quantities are listed in Table II.

    For a hexagonal lattice,there are f i ve independent elastic constants C11,C12,C13,C33,and C44(2C66=C11-C12).As listed in Table II,the elastic constants Cij,elastic moduli BH,GH,and YHof Pˉ60-Si3N4increase monotonously with applied pressure,but the slopes are different.The pressure effect on Cijis signif i cant.The decrease of C44ref l ects the shear resistance decreases in the{010}or{100}plane in the h001i direction.The value of the Poisson ratio σ for covalent materials is quite small(about 0.1),whereas for metallic materials a typical σ is 0.33[30].The calculated σ is 0.320-0.336,showing moderate lateral expansion when compressed.The Pˉ60phase is a metallic compound in the whole pressure range of 30-55 GPa. The anisotropy factor A=1 represents completely elastic isotropy while any value smaller or larger than 1 indicates elastic anisotropy.A increases as the pressure increases f i rst,then the elastic anisotropy of Pˉ60-Si3N4is quite small at 40 GPa.When P>40 GPa,A will gradually strengthen with the pressure increasing.Besides,the BH/GHratio ref l ects the brittle and ductile behaviors of polycrystalline materials since solids behave in brittle manners if BH/GH>2[31].Pˉ60-Si3N4remains brittle in the pressure range of 30-55 GPa. The brittleness increases with the pressure increasing. More importantly,the chemical bonds in Pˉ60-Si3N4are ionic due to the fact that the typical B/G ratios for covalent and ionic solids are 0.91 and 1.67,respectively.

    FIG.2(a)Gibbs free energy difference(GPˉ60-Gβ)as a function of pressure.(b)Critical pressure as a function of Gibbs free energy difference of the Pˉ60→δ transition at 300 K.(c)Relationships of the transition pressures of the β→Pˉ60→δ transitions with temperature.

    In Table II,we can see that the elastic moduli of Pˉ6-Si3N4do not follow the same trend.C12,C13,and BHincrease with the increasing pressure whereas GHand YHshow the opposite trends.C11,C33,and C44increase f i rst,and then decrease with the increasing pressure.The calculated σ is 0.347-0.399,which indicates that Pˉ6-Si3N4is a metallic compound.The variation of A with pressure(Pˉ6-Si3N4)is similar to that of Pˉ6-Si3N4.The anisotropy of Pˉ6-Si3N4is stronger than that of Pˉ60-Si3N4since|A(Pˉ60)-1|>|1-A(Pˉ6)|. According to the BH/GHratio,Pˉ6-Si3N4is more brittle than Pˉ60-Si3N4.For a hexagonal structure,the mechanical stability can be determined by the Born’s criteria[32]:C11-|C12|>0,C44>0,(C11+C12)C33-2C213>0. At 0 K,Pˉ6-and Pˉ60-Si3N4are stable in the pressure range of 30-55 GPa since all the elastic constants satisfy these criteria.Besides,the bulk moduli of the two phases are greater than the bulk moduli of α,β,and γ phases[33].

    The transition pressures among different phases of solids can be obtained by comparing the Gibbs free energy G of different phases.We have calculated the Gibbs free energy difference between β-Si3N4and Pˉ60-Si3N4,as shown in Fig.2(a).The thermodynamic requirement,for the equality of G,at the critical points, suggests that the transition pressures of the β→Pˉ60transition are 40.0,42.7,and 46.2 GPa at temperatures of 300,500,and 700 K,respectively.β-Si3N4has the lower free energy at low pressures,which indicates that this phase is the low-temperature phase of Si3N4.The Gibbs free energy difference obtained,Gδ-GPˉ60,as a function of pressure is given in Fig.2(b).It is clearly seen that the transition pressure between the Pˉ60phase and the δ phase is 53.2 GPa(at 300 K),at which the Pˉ60phase will automatically transform into δ-Si3N4.Pˉ60-Si3N4has the lower free energies when P<53.2 GPa. The δ phase has the lower free energies at higher pressure,i.e.δ-Si3N4would be favored at sufficiently high pressures.The δ phase boundaries of the β→Pˉ60→δ transitions are illustrated in Fig.2(c).

    As shown in Fig.2(c),the slopes of the β→Pˉ60and Pˉ60→δ transitions are both positive,which suggests that at higher temperatures it will require higher pressures to synthesize Pˉ60-Si3N4/δ-Si3N4.It is found that the transition pressure from the β phase to the Pˉ60phase is 40.0 GPa(at 300 K).The critical pressure of the β→Pˉ60transition is about 13 GPa higher than that of the Pˉ60→δ transition.According to the Clausius-Clapeyron relation[11],the slope of the phase boundary can be determined by?S/?V,where?S and?V are the entropy change and the volume variation,respectively.Therefore,the β→Pˉ60→δ transitions are accompanied by the shrinkage of volume,which is in agreement with the cell volumes listed in Table I(the calculated volume of δ-Si3N4at 55 GPa is 109.6?A3).

    One of the most important vibrational properties of solids is the temperature dependence of heat capacity. Figure 3(a)and(b)give the evolutions of the constantpressure heat capacity CPwith temperature for Pˉ6-and Pˉ60-Si3N4,respectively.As shown in Fig.3(a),CPis very small at low temperature.From 0 to 500 K,CPincreases exponentially with the temperature increasing.At high temperatures,CPfollows a linear increase, which is not similar to the constant-volume heat capacity CV(CVfollows the Dulong-Petit’s law,i.e.3R for monoatomic solids).Although CVgives direct information on the intrinsic anharmonic effects,it is CPthat is experimentally measured,and it contains both anharmonic effects and quasi-harmonic contributions.In Fig.3(b),it is clearly seen that CPincreases rapidly at low temperatures,and reaches a plateau region at high temperatures.The heat capacity of Pˉ6-Si3N4is larger than that of Pˉ60-Si3N4at the same temperature.

    In Fig.3(c),it is clearly seen that the volumes of Pˉ6-and Pˉ60-Si3N4decrease smoothly as pressure increases.The V/V0ratio of Pˉ6-Si3N4decreases faster than that of Pˉ60-Si3N4.At high pressures,the difference between the two curves can be clearly seen.This means that the Pˉ6 phase is more compressible than the Pˉ60phase.Figure 3(d)shows the evolutions of bulk moduli with pressure at 300 K.The bulk modulus increases with the increasing pressure but the rate of increase is moderate.The f i rst sticking feature is that the bulk modulus of Pˉ60-Si3N4is greater than that of Pˉ6-Si3N4.The second feature is that the slopes of the two curves are different.At 50 GPa and 300 K,the calculated bulk modulus and heat capacity are 391.4 GPa (343.2 GPa)and 44.8 J/(mol K)(77.2 J/(mol K))forPˉ60-Si3N4(Pˉ6-Si3N4),respectively.

    FIG.3 The constant-pressure heat capacity CP(at 50 GPa)for(a)Pˉ6-Si3N4,(b)Pˉ60-Si3N4,(c)the normalized cell volume V/V0(V0is the equilibrium cell volume at 40 GPa),and(d)bulk modulus of Si3N4at 300 K.

    IV.CONCLUSION

    First-principlescalculationsarecarriedouton Si3N4in the recently-discovered Pˉ60and Pˉ6 phases to investigate their stability and physical properties, which have not yet been established experimentally.As a benchmark system(β-Si3N4),the calculated lattice constants and elastic moduli are in agreement with the experimental data.The lattice parameters,cell volume,elastic constants,elastic moduli,anisotropy factor and Poisson ratio of Pˉ6-and Pˉ60-Si3N4are also predicted in the pressure range of 30-55 GPa. β-Si3N4is predicted to undergo a f i rst-order phase transition to the Pˉ60phase at 40.0 GPa and 300 K. Upon further compression,the Pˉ60→δ transformation can be observed at 53.2 GPa.The positive slopes of the β→Pˉ60→δ transitions mean that the two phase transformations are accompanied by the shrinkage of volume.The two polymorphs are brittle compounds with little metallic character,which is not similar to the β phase.The anisotropy of Pˉ60-Si3N4increases with the increasing pressure while the anisotropy of Pˉ6-Si3N4shows the opposite trend.The heat capacity increases rapidly at low pressures,and reaches a plateau at high pressures.Furthermore,the Pˉ6 phase is more compressible than the Pˉ60phase.

    V.ACKNOWLEDGMENTS

    This work was supported by the National NaturalScienceFoundationofChina(No.U1204501, No.11105115,and No.11304141),the Project of Basic and Advanced Technology of Henan Province of China (No.112300410021),and the Key Project of Henan Educational Committee(No.12A140010).The authors are grateful to Prof.M.A.Blanco from the Departamento de Qu′?mica F′?sicay Analitica,Faculatad de Qu′?mica, Universidad de Oviedo for the Gibbs code.

    [1]S.Y.Ren and W.Y.Ching,Phys.Rev.B 23,5454 (1981).

    [2]W.X.Wang,D.H.Li,Z.C.Liu,and S.H.Liu,Appl. Phys.Lett.62,321(1993).

    [3]Y.N.Xu and W.Y.Ching,Phys.Rev.B 51,17379 (1995).

    [4]S.D.Mo,L.Z.Ouyang,W.Y.Ching,I.Tanaka, Y.Koyam,and R.Riedel,Phys.Rev.Lett.83,5046 (1999).

    [5]P.Kroll,J.Solid State Chem.176,530(2003).

    [6]A.Zerr,G.Miehe,G.Serghiou,M.Schwarz,E.Kroke, R.Riedel,H.Fue?,P.Kroll,and R.Boehler,Nature (London)400,340(1999).

    [7]B.Xu,J.J.Dong,P.F.McMillan,O.Shebanova,and A.Salamat,Phys.Rev.B 84,014113(2011).

    [8]K.Tatsumi,I.Tanaka,and H.Adachi,J.Am.Ceram. Soc.85,7(2002).

    [9]N.V.Danilenko,G.S.Oleinik,V.D.Dobrovol’skii,V. F.Britun,and N.P.Semenenko,Sov.Powder Metal. Met.Ceram.31,1035(1992).

    [10]B.H.Yu and D.Chen,Chin.Phys.B 21,060508(2012).

    [11]A.Kuwabara,K.Matsunaga,and I.Tanaka,Phys.Rev. B 78,064104(2008).

    [12]A.Togo and P.Kroll,J.Comput.Chem.29,2255 (2008).

    [13]H.L.He,T.Sekine,T.Kobayashi,and H.Hirosaki, Phys.Rev.B 62,11412(2000).

    [14]P.Kroll and J.von Appen,Phys.Stat.Sol.B 226,R6 (2001).

    [15]P.Hohenberg and W.Kohn,Phys.Rev.136,B864 (1964).

    [16]D.Vanderbilt,Phys.Rev.B 41,7892(1990).

    [17]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [18]H.J.Monkhorst and J.D.Pack,Phys.Rev.B 13,5188 (1976).

    [19]M.A.Blanco,E.Francisco,and V.Lua′na,Comput. Phys.Commun.158,57(2004).

    [20]A.Otero-de-la-Roza and V.Lua′na,Comput.Phys. Commun.182,1708(2011).

    [21]M.Fl′orez,J.M.Recio,E.Francisco,M.A.Blanco,and A.Martin Pend′as,Phys.Rev.B 66,144112(2002).

    [22]C.M.Marian,M.Gastreich,and J.D.Gale,Phys.Rev. B 62,3117(2000).

    [23]W.Y.Ching,L.Z.Ouyang,and J.D.Gale,Phys.Rev. B 61,8696(2000).

    [24]M.Yashima,Y.Ando,and Y.Tabira,J.Phys.Chem. B 111,3609(2007).

    [25]H.F.Priest,F.C.Burns,G.L.Priest,and E.C.Skaar, J.Am.Ceram.Soc.56,395(1973).

    [26]N.Hirosaki,S.Ogata,C.Kocer,H.Kitagawa,and Y. Nakamura,Phys.Rev.B 65,134110(2002).

    [27]W.Y.Ching,Y.N.Xu,J.L.D.Gale,and M.R¨uhle, J.Am.Ceram.Soc.81,3189(1998).

    [28]L.Fast,J.M.Wills,B.Johansson,and O.Eriksson, Phys.Rev.B 51,17431(1995).

    [29]M.B.Kanoun,S.Goumri-Said,A.H.Reshak,and A. E.Merad,Solid State Sci.12,887(2010).

    [30]J.Haines,J.M.Leger,and G.Bocquillon,Annu.Rev. Mater.Res.31,1(2001).

    [31]S.F.Pugh,Philos.Mag.Ser.45,823(1954).

    [32]M.Born and K.Huang,Dynamical Theory of Crystal Lattics,Oxford:Clarendon,(1956).

    [33]C.Zhang,J.X.Sun,R.G.Tian,and S.Y.Zou,Acta Phys.Sin.56,5969(2007).

    ceived on August 15,2013;Accepted on October 14,2013)

    ?Author to whom correspondence should be addressed.E-mail:chchendong2010@163.com,Tel.:+86-376-6391731,FAX:+86-376-6391731

    无人区码免费观看不卡| 午夜视频精品福利| 伦理电影免费视频| av超薄肉色丝袜交足视频| 最近最新中文字幕大全电影3 | 99国产精品一区二区蜜桃av| 国产一区二区激情短视频| 日韩 欧美 亚洲 中文字幕| 搞女人的毛片| 亚洲国产精品合色在线| 又黄又粗又硬又大视频| 女人爽到高潮嗷嗷叫在线视频| 色播在线永久视频| 人人妻人人看人人澡| 成年女人毛片免费观看观看9| 日本一区二区免费在线视频| 狠狠狠狠99中文字幕| 黄色视频,在线免费观看| 午夜免费观看网址| 一级黄色大片毛片| 日韩欧美国产在线观看| 制服诱惑二区| 亚洲中文av在线| 亚洲欧美日韩无卡精品| 亚洲欧美精品综合一区二区三区| 99久久99久久久精品蜜桃| 国产亚洲精品久久久久5区| 天堂√8在线中文| 亚洲自拍偷在线| 又黄又爽又免费观看的视频| 亚洲欧洲精品一区二区精品久久久| 国产成人影院久久av| av有码第一页| 日韩成人在线观看一区二区三区| 激情在线观看视频在线高清| 久久国产精品人妻蜜桃| 日本一区二区免费在线视频| 性色av乱码一区二区三区2| 午夜福利一区二区在线看| 丝袜在线中文字幕| 男男h啪啪无遮挡| 特大巨黑吊av在线直播 | 国产又黄又爽又无遮挡在线| 后天国语完整版免费观看| 国产成人影院久久av| 叶爱在线成人免费视频播放| 在线观看一区二区三区| 国产一区二区三区视频了| 757午夜福利合集在线观看| 国产熟女xx| 久久热在线av| 久久国产精品人妻蜜桃| 大香蕉久久成人网| 国产主播在线观看一区二区| 亚洲 欧美 日韩 在线 免费| 欧美激情久久久久久爽电影| 色播在线永久视频| 香蕉国产在线看| 国产一卡二卡三卡精品| 精品国产超薄肉色丝袜足j| 国产亚洲精品av在线| 免费看日本二区| 最近最新免费中文字幕在线| 久久中文字幕一级| 国产精品九九99| 人人妻,人人澡人人爽秒播| 不卡av一区二区三区| 丁香六月欧美| 最新美女视频免费是黄的| 国产亚洲欧美精品永久| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲aⅴ乱码一区二区在线播放 | 日本熟妇午夜| 中文字幕最新亚洲高清| 精品熟女少妇八av免费久了| 男女视频在线观看网站免费 | 亚洲自拍偷在线| 999久久久国产精品视频| 妹子高潮喷水视频| 久热爱精品视频在线9| 国内精品久久久久精免费| 可以在线观看的亚洲视频| 欧美黄色片欧美黄色片| 国产蜜桃级精品一区二区三区| 亚洲av成人不卡在线观看播放网| 欧美日本视频| 成人国产综合亚洲| 日韩欧美在线二视频| 在线观看日韩欧美| 99精品久久久久人妻精品| 一进一出抽搐动态| 69av精品久久久久久| 久久久水蜜桃国产精品网| 欧美在线黄色| 成人av一区二区三区在线看| 欧美性长视频在线观看| 脱女人内裤的视频| 熟女少妇亚洲综合色aaa.| 久久久精品国产亚洲av高清涩受| 一级片免费观看大全| 淫秽高清视频在线观看| 国产精品久久久久久精品电影 | 亚洲七黄色美女视频| 长腿黑丝高跟| 男女做爰动态图高潮gif福利片| 神马国产精品三级电影在线观看 | 欧美乱色亚洲激情| 怎么达到女性高潮| 亚洲国产中文字幕在线视频| 免费在线观看亚洲国产| 国产亚洲av嫩草精品影院| 51午夜福利影视在线观看| 99在线人妻在线中文字幕| 久久精品夜夜夜夜夜久久蜜豆 | 日日夜夜操网爽| 91大片在线观看| 最近最新中文字幕大全电影3 | 亚洲av片天天在线观看| 亚洲av片天天在线观看| 91九色精品人成在线观看| 国产成+人综合+亚洲专区| 日本成人三级电影网站| 成人18禁高潮啪啪吃奶动态图| 欧美日韩亚洲国产一区二区在线观看| 亚洲成国产人片在线观看| 国产精品亚洲av一区麻豆| 91麻豆av在线| 在线看三级毛片| 亚洲五月婷婷丁香| 狠狠狠狠99中文字幕| 日韩视频一区二区在线观看| 日本精品一区二区三区蜜桃| 美女午夜性视频免费| 国产真人三级小视频在线观看| 亚洲国产毛片av蜜桃av| 欧美+亚洲+日韩+国产| 好男人电影高清在线观看| 亚洲 国产 在线| 亚洲国产毛片av蜜桃av| 国产男靠女视频免费网站| 亚洲精品国产区一区二| 国产精品一区二区精品视频观看| 久久久久免费精品人妻一区二区 | 不卡av一区二区三区| 欧美日本视频| 国产成人精品久久二区二区免费| 精品久久久久久久久久免费视频| 国产人伦9x9x在线观看| 欧美另类亚洲清纯唯美| 亚洲一区高清亚洲精品| 美女扒开内裤让男人捅视频| 日韩欧美国产在线观看| 精品第一国产精品| 日韩欧美国产在线观看| 男女那种视频在线观看| 一级毛片女人18水好多| 男男h啪啪无遮挡| 国产亚洲精品av在线| 国产高清videossex| 丰满人妻熟妇乱又伦精品不卡| 亚洲男人的天堂狠狠| 高清在线国产一区| 国产在线精品亚洲第一网站| 免费在线观看日本一区| 亚洲av中文字字幕乱码综合 | 午夜福利18| 亚洲国产毛片av蜜桃av| 亚洲国产毛片av蜜桃av| 国产高清激情床上av| 美女高潮喷水抽搐中文字幕| 精品免费久久久久久久清纯| 久久这里只有精品19| 亚洲欧美日韩高清在线视频| 欧美乱码精品一区二区三区| 无限看片的www在线观看| 白带黄色成豆腐渣| 不卡一级毛片| 亚洲成人久久性| 国产视频一区二区在线看| 国语自产精品视频在线第100页| 天天一区二区日本电影三级| 波多野结衣高清无吗| 少妇被粗大的猛进出69影院| 精品国产一区二区三区四区第35| 日韩欧美一区视频在线观看| 国产私拍福利视频在线观看| 久热这里只有精品99| 免费高清在线观看日韩| 亚洲av熟女| 亚洲五月婷婷丁香| 国产精品亚洲av一区麻豆| 国产成人欧美在线观看| 欧美黄色淫秽网站| 精品高清国产在线一区| 午夜激情av网站| 搡老岳熟女国产| 18禁美女被吸乳视频| 成年免费大片在线观看| 中文字幕久久专区| 国产亚洲av高清不卡| 夜夜看夜夜爽夜夜摸| 亚洲国产高清在线一区二区三 | 悠悠久久av| 男人舔奶头视频| 无遮挡黄片免费观看| 在线观看一区二区三区| 美女高潮喷水抽搐中文字幕| 51午夜福利影视在线观看| 亚洲成av人片免费观看| 日本一区二区免费在线视频| 校园春色视频在线观看| 日日爽夜夜爽网站| 久久久久免费精品人妻一区二区 | 精品国产亚洲在线| 国内少妇人妻偷人精品xxx网站 | 亚洲黑人精品在线| 午夜福利视频1000在线观看| 欧美日韩福利视频一区二区| 真人一进一出gif抽搐免费| 在线观看日韩欧美| 久久久精品国产亚洲av高清涩受| 日韩一卡2卡3卡4卡2021年| 久久人人精品亚洲av| 国产v大片淫在线免费观看| cao死你这个sao货| 国产91精品成人一区二区三区| 亚洲电影在线观看av| 国产成人精品久久二区二区免费| 欧美中文日本在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 久9热在线精品视频| 99国产综合亚洲精品| 免费观看人在逋| 久久亚洲真实| 1024手机看黄色片| av片东京热男人的天堂| 成人亚洲精品av一区二区| av超薄肉色丝袜交足视频| 亚洲欧美一区二区三区黑人| 中亚洲国语对白在线视频| 成人国语在线视频| 男女那种视频在线观看| 香蕉久久夜色| 一级a爱视频在线免费观看| 91字幕亚洲| 99精品欧美一区二区三区四区| 国产成人精品久久二区二区91| 黄片大片在线免费观看| 国产真实乱freesex| 午夜激情福利司机影院| 精品日产1卡2卡| 国产在线精品亚洲第一网站| 91在线观看av| 国语自产精品视频在线第100页| 成人av一区二区三区在线看| 国产又爽黄色视频| 男女床上黄色一级片免费看| 亚洲欧美一区二区三区黑人| 一本一本综合久久| 欧美中文日本在线观看视频| 中文字幕av电影在线播放| 国产精品国产高清国产av| 一边摸一边做爽爽视频免费| 久久欧美精品欧美久久欧美| 久久狼人影院| 亚洲精品粉嫩美女一区| 日日干狠狠操夜夜爽| 亚洲成av人片免费观看| 女人被狂操c到高潮| 欧美大码av| 午夜视频精品福利| 国产在线观看jvid| 亚洲久久久国产精品| 日日干狠狠操夜夜爽| 嫁个100分男人电影在线观看| 狠狠狠狠99中文字幕| 宅男免费午夜| 欧美黑人精品巨大| av天堂在线播放| 波多野结衣高清无吗| 国产高清视频在线播放一区| 亚洲精品国产区一区二| 久久婷婷成人综合色麻豆| 成人特级黄色片久久久久久久| 中文亚洲av片在线观看爽| 国产精品久久久久久亚洲av鲁大| 久久久久久九九精品二区国产 | 亚洲七黄色美女视频| 一夜夜www| 亚洲七黄色美女视频| 国产伦人伦偷精品视频| 亚洲av电影在线进入| 国产午夜精品久久久久久| 亚洲精华国产精华精| 免费看日本二区| 可以在线观看毛片的网站| 亚洲五月色婷婷综合| 国产又爽黄色视频| 久久久国产精品麻豆| 欧美日韩一级在线毛片| 亚洲天堂国产精品一区在线| 国产精品国产高清国产av| 淫秽高清视频在线观看| 日本免费a在线| 国产精品美女特级片免费视频播放器 | 黑丝袜美女国产一区| 国产精品亚洲av一区麻豆| 亚洲男人的天堂狠狠| 人人妻人人看人人澡| 国产亚洲av高清不卡| 精品久久久久久,| 黑丝袜美女国产一区| 亚洲国产中文字幕在线视频| 欧美三级亚洲精品| 国产av一区二区精品久久| 性色av乱码一区二区三区2| 精品一区二区三区四区五区乱码| 成人欧美大片| 国产一区二区三区视频了| 在线观看免费日韩欧美大片| 国产欧美日韩一区二区精品| 日本在线视频免费播放| 日本熟妇午夜| 亚洲第一av免费看| 黄色视频,在线免费观看| 热99re8久久精品国产| 久久久久久久久免费视频了| 国产精品99久久99久久久不卡| 国产野战对白在线观看| 岛国视频午夜一区免费看| 欧美成人性av电影在线观看| 三级毛片av免费| 精品一区二区三区av网在线观看| 欧美激情久久久久久爽电影| www.自偷自拍.com| 岛国视频午夜一区免费看| 久久性视频一级片| 黄色片一级片一级黄色片| 最近最新中文字幕大全电影3 | 一二三四在线观看免费中文在| 91成人精品电影| 女性生殖器流出的白浆| 男人的好看免费观看在线视频 | 一进一出抽搐动态| 日本一本二区三区精品| 老司机在亚洲福利影院| www.自偷自拍.com| www.999成人在线观看| 男人舔女人下体高潮全视频| or卡值多少钱| 人人妻人人澡人人看| 日日爽夜夜爽网站| 亚洲全国av大片| 国产一区二区激情短视频| 亚洲人成伊人成综合网2020| 国产成人av激情在线播放| 在线观看www视频免费| 日韩欧美一区二区三区在线观看| 免费人成视频x8x8入口观看| 亚洲精品国产一区二区精华液| 色婷婷久久久亚洲欧美| 美女大奶头视频| 精品国产乱码久久久久久男人| 久久香蕉激情| 成人18禁高潮啪啪吃奶动态图| 国产精品99久久99久久久不卡| 亚洲 国产 在线| 99久久无色码亚洲精品果冻| 精品久久久久久久人妻蜜臀av| 他把我摸到了高潮在线观看| 高清在线国产一区| 精品乱码久久久久久99久播| 中文字幕久久专区| 亚洲精品粉嫩美女一区| 国产精品永久免费网站| 少妇被粗大的猛进出69影院| 观看免费一级毛片| 国产欧美日韩精品亚洲av| 我的亚洲天堂| 国产精品九九99| 久久 成人 亚洲| 欧美黑人欧美精品刺激| 国产99久久九九免费精品| 亚洲熟妇中文字幕五十中出| 免费一级毛片在线播放高清视频| 亚洲人成77777在线视频| 国产亚洲精品综合一区在线观看 | 亚洲国产欧美一区二区综合| 婷婷精品国产亚洲av| 国产精品 国内视频| 亚洲午夜精品一区,二区,三区| 狠狠狠狠99中文字幕| 91九色精品人成在线观看| 国产精品爽爽va在线观看网站 | 免费在线观看完整版高清| 国产又黄又爽又无遮挡在线| 美女高潮喷水抽搐中文字幕| 国产激情欧美一区二区| 午夜福利免费观看在线| 香蕉久久夜色| 亚洲aⅴ乱码一区二区在线播放 | 久热这里只有精品99| 人妻久久中文字幕网| 国产真人三级小视频在线观看| 精品日产1卡2卡| www日本黄色视频网| 欧美另类亚洲清纯唯美| 午夜福利一区二区在线看| 特大巨黑吊av在线直播 | 精品一区二区三区四区五区乱码| 亚洲成人免费电影在线观看| 极品教师在线免费播放| 日本三级黄在线观看| 最好的美女福利视频网| 99精品久久久久人妻精品| 亚洲精品一卡2卡三卡4卡5卡| 女性生殖器流出的白浆| 91大片在线观看| 国产真人三级小视频在线观看| 国产视频内射| 天天躁夜夜躁狠狠躁躁| 亚洲精华国产精华精| 精品国内亚洲2022精品成人| 国产一区二区在线av高清观看| 成人精品一区二区免费| 欧美性猛交╳xxx乱大交人| 又黄又粗又硬又大视频| 亚洲一码二码三码区别大吗| 亚洲精品一卡2卡三卡4卡5卡| 18禁裸乳无遮挡免费网站照片 | 视频区欧美日本亚洲| 亚洲人成网站高清观看| 久久热在线av| 亚洲精品中文字幕在线视频| 久久久久国内视频| 又黄又爽又免费观看的视频| 免费看美女性在线毛片视频| 精品久久久久久久人妻蜜臀av| 国产一卡二卡三卡精品| 国产成人啪精品午夜网站| av中文乱码字幕在线| 亚洲色图 男人天堂 中文字幕| 午夜激情av网站| 免费女性裸体啪啪无遮挡网站| 欧美最黄视频在线播放免费| 免费在线观看完整版高清| 午夜久久久在线观看| 久久人人精品亚洲av| 在线观看日韩欧美| 麻豆久久精品国产亚洲av| 精品久久久久久久末码| 亚洲色图av天堂| 黄频高清免费视频| 亚洲专区字幕在线| 亚洲九九香蕉| 国产亚洲精品av在线| 长腿黑丝高跟| 国产成人av激情在线播放| 他把我摸到了高潮在线观看| 久久伊人香网站| 国产精品久久久久久亚洲av鲁大| 日本撒尿小便嘘嘘汇集6| 色在线成人网| 天堂影院成人在线观看| 女性生殖器流出的白浆| 又黄又爽又免费观看的视频| 国产色视频综合| 男人舔女人的私密视频| 成人三级做爰电影| 国产精品免费一区二区三区在线| 看黄色毛片网站| 叶爱在线成人免费视频播放| 亚洲专区国产一区二区| 在线观看日韩欧美| 搡老岳熟女国产| 91大片在线观看| 久久久久久久午夜电影| 色老头精品视频在线观看| 国产成人影院久久av| 老熟妇仑乱视频hdxx| 最新在线观看一区二区三区| 一进一出好大好爽视频| 男男h啪啪无遮挡| 亚洲av熟女| 亚洲电影在线观看av| 精品无人区乱码1区二区| 一a级毛片在线观看| 久久热在线av| av在线天堂中文字幕| 亚洲色图av天堂| 麻豆国产av国片精品| 久久国产乱子伦精品免费另类| 亚洲第一电影网av| 美女高潮到喷水免费观看| 欧美性长视频在线观看| 给我免费播放毛片高清在线观看| 免费看a级黄色片| 成人18禁在线播放| 视频区欧美日本亚洲| 亚洲国产精品合色在线| 精品欧美国产一区二区三| av天堂在线播放| 日本在线视频免费播放| 久久久久久久午夜电影| 免费无遮挡裸体视频| 久9热在线精品视频| 日韩成人在线观看一区二区三区| 亚洲天堂国产精品一区在线| 国产一区二区三区在线臀色熟女| 欧美精品亚洲一区二区| av福利片在线| 国产一区在线观看成人免费| 黄色a级毛片大全视频| 亚洲性夜色夜夜综合| 在线观看66精品国产| 亚洲男人的天堂狠狠| 美女高潮喷水抽搐中文字幕| 亚洲专区字幕在线| 91国产中文字幕| 亚洲真实伦在线观看| 国内久久婷婷六月综合欲色啪| 国产黄a三级三级三级人| 在线十欧美十亚洲十日本专区| 一本久久中文字幕| 久久人人精品亚洲av| 成人18禁高潮啪啪吃奶动态图| 亚洲狠狠婷婷综合久久图片| 久久国产精品影院| 日韩一卡2卡3卡4卡2021年| 日韩欧美一区二区三区在线观看| 精品高清国产在线一区| 亚洲国产精品成人综合色| 999精品在线视频| 在线av久久热| 亚洲男人天堂网一区| 亚洲专区字幕在线| 午夜精品在线福利| 丁香欧美五月| 啦啦啦 在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 久久久久国内视频| 2021天堂中文幕一二区在线观 | 国产一区二区在线av高清观看| 女性被躁到高潮视频| 麻豆成人午夜福利视频| 啦啦啦免费观看视频1| 国产黄a三级三级三级人| 成人国产综合亚洲| 日本一区二区免费在线视频| 久久婷婷人人爽人人干人人爱| 精品高清国产在线一区| 1024视频免费在线观看| 久久欧美精品欧美久久欧美| 少妇的丰满在线观看| 国产91精品成人一区二区三区| 亚洲av片天天在线观看| 国产成人影院久久av| 91成人精品电影| 黄片播放在线免费| 两个人视频免费观看高清| 午夜两性在线视频| 国产成人欧美在线观看| 亚洲精品美女久久久久99蜜臀| 欧美日韩瑟瑟在线播放| 一级作爱视频免费观看| 欧美黑人精品巨大| 99久久99久久久精品蜜桃| 十八禁人妻一区二区| 亚洲美女黄片视频| 人人澡人人妻人| 欧美成人性av电影在线观看| 精品电影一区二区在线| 精品久久久久久久久久久久久 | 欧美最黄视频在线播放免费| 99久久无色码亚洲精品果冻| 波多野结衣高清无吗| 久久午夜综合久久蜜桃| 性色av乱码一区二区三区2| 12—13女人毛片做爰片一| 亚洲男人的天堂狠狠| 精品久久久久久久毛片微露脸| 亚洲成人免费电影在线观看| 狂野欧美激情性xxxx| 啦啦啦 在线观看视频| av免费在线观看网站| 亚洲成a人片在线一区二区| 日本精品一区二区三区蜜桃| 色老头精品视频在线观看| 久久久精品国产亚洲av高清涩受| 国产欧美日韩一区二区三| 好看av亚洲va欧美ⅴa在| tocl精华| 男人舔女人下体高潮全视频| 午夜日韩欧美国产| 国产色视频综合| avwww免费| 在线观看舔阴道视频| 男人操女人黄网站| 国产高清激情床上av| 久久久久免费精品人妻一区二区 | 变态另类成人亚洲欧美熟女| 亚洲免费av在线视频| 亚洲熟妇熟女久久| 又紧又爽又黄一区二区| 免费看日本二区| 琪琪午夜伦伦电影理论片6080| 久久香蕉精品热| 色综合欧美亚洲国产小说| 露出奶头的视频| 国产午夜福利久久久久久| 午夜久久久在线观看| 久久中文字幕一级| 欧美一区二区精品小视频在线| 天堂影院成人在线观看| а√天堂www在线а√下载|