• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    effect of Ar+,He+,and S+Irradiation on n-InP Single Crystal

    2014-07-19 11:17:08JingyuHuWaqasMahmoodQingZhao
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Jing-yu Hu,Waqas Mahmood,Qing Zhao

    School of Physics,Beijing Institute of Technology,Beijing 100081,China

    effect of Ar+,He+,and S+Irradiation on n-InP Single Crystal

    Jing-yu Hu,Waqas Mahmood,Qing Zhao?

    School of Physics,Beijing Institute of Technology,Beijing 100081,China

    The irradiation effects of Ar+,He+and S+with energy from 10 eV to 180 eV on n-InP(100) surface are analyzed by X-ray photoelectron spectroscopy and low energy electron diffraction. After irradiation on the n-InP surface,damage on the surface,displacement of the Fermi level and formation of sulfur species on S+exposed surface are found and studied.Successive annealing is done to suppress the surface states introduced by S+exposure.However,it is unsuccessful in removing the damage caused by noble ions.Besides,S+ions can efficiently repair the Ar+damaged surface,and f i nally form a f i ne 2×2 InP surface.

    Low energy ion bombardment,Annealing,Surface damage,Fermi level

    I.INTRODUCTION

    Since sulf i de passivation was f i rst introduced by Sandrof fet al.in 1987[1,2],in the dry etching and industrial processes,much attention has been paid to reducing native oxide layers and removing the ion irradiation damage from III-V semiconductors[3-6].It has also been reported that sulfur brings together atoms on the n-InP surface and the strong bond between S and In keeps bonding and the anti-bonding states away from the band gap[7,8].Several different methods have been employed for passivation of sulf i de,such as treatment with solutions[4-6,9-14]and gas phase[15-20].The process of dissolving III-V semiconductors using solutions is rather slow and terminates in forming a 1×1 surface[21].For the gas treatments,annealing is compulsory to retrieve the 1×1 surface[22].Sulf i de assists the formation of ordered structure,and experimental results also elucidated that polysulf i des render better passivation on III-V surfaces for both solution and gas treatments[21,23].This leads to an understanding that the surface might supply electrons to sulfur atoms that is partially supported by the high reactivity of n-type semiconductors as compared to p-type semiconductors [24].Thus,the surface can use additional available energy for passivation of sulfur.For p-InP surface,type inversion has also been reported[24,25].Recently,electron energy loss spectroscopy(EELS)has been used to investigate the interactions between the low energy Ar+(N+)ions and the InP compound[26].The InP surface is extremely sensitive to Ar+ions bombardment.If the surface is exposed in Ar+ions fluence for longer time, the chemical bond In-P will be breaken and the In metal will appear on the surface accompanied with the formation of structural physical defects.Usanmaz et al.[27]studied the changes in the electronic and structural properties appearing from S adsorption on the GaAs(001)surface by the ab initio calculations and observed that the Tsukamoto model is energetically most stable.

    High ions flux plasma with an average ion energy below 10 eV has been used[28].If we are able to properly understand the interaction mechanism and the extent of surface damage during ion irradiation of compound semiconductors,novel ion assisted processes can likely be developed to resolve some of the current problems related to surface damage of ion irradiation in device fabrication.To f i nd a method that fully controls the reaction products between ions and III-V semiconductors, in this work we irradiate a controlled low energy Ar+, He+,and S+ions beam onto a n-InP(100)surface,and study the interactions of ions with n-InP(100)surface in detail.We also compare different effects of inert and S+ions bombardment on InP surface.

    II.EXPERIMENTS

    Low energy ion beam system(LEIB)[29]has been used to expose ions on the samples.The ion beam system is directly connected to the ultra high vacuum (UHV)surface analysis apparatus.The sample travels through the vacuum chambers with the aid of transfer rods.The analysis equipment has two parts:the standard Kratos AXIS-HS XPS and the low energy electron diffraction(LEED)system.The center of the target retains ion current density of 0.1-1 A/cm2.The XPS system was equipped with a monochromatic X-ray source (Al Kα),and its energy calibration was referenced by Au4f7/2at 84.0 eV,Cu2p3/2at 932.7 eV,and Ag3d5/2at 368.3 eV peaks,respectively.The incident angle of X-ray source was 55?,and the angle between photoelectron detection and the sample surface was 90?.

    A single un-doped n-InP crystal is used in the experiment,and its observed bulk Fermi level position is at 1.26 eV.The surface of the sample is fi rst treated with UV/O3,then the process of removing oxides is completed in a less concentrated HF solution(1:30 HF:H2O).Further,it is dried using nitrogen,and quickly transported to the analysis chamber.This shipping is done in the surrounding of nitrogen atmosphere. Inside the UHV system,we perform several treatments and measurements on the sample.The sample is transferred to the LEIB system through the UHV passage for ion exposure.After receiving independent fl uence of Ar+,He+,and S+,it is returned to XPS chamber for further investigation.

    To investigate samples inside the spectrometer,we consider valence band(VB)edge of gold as a reference to locate other Fermi levels.The distance between the Fermi level of gold and the VB edge of semi-conductor fi nally locate the Fermi position of the samples.After determination of the Fermi level position,we apply the core levels of In3d5/2or P2p3/2as spectral references for locating the Fermi level shifts of other samples.In this work,In3d5/2of InP with high photoelectron emission is used to measure the surface band bending,and locate the Fermi level position.A sample with its Fermi level position at the VB maximum should have the In3d5/2at 444.9 eV for n-InP as our reference,and all Fermi level positions are referred to the VB edge of n-InP.

    III.RESULTS AND DISCUSSION

    A.effect of He+and Ar+

    The irradiation of He+and Ar+ions on n-InP(100) damages the sensitive surface,which is estimated by calculating the binding energy changes of In3d5/2.The result is similar to the case of InP(110)[30],where no additional chemical components are observed in the XPS spectra.Figure 1 displays the e ff ect of He+and Ar+ions irradiation on the n-InP(100)surface as a function of ion fl uence at variable energies.Considering Ar+ions as a reference,it is observed that for the same ion type,surface damage increases with increase of the fl uence.In addition,Ar+ions produce much heavier surface damage than He+ions when the same ion fl uence and energy are used.The 110 eV Ar+can lead the Fermi level to pin position with fulence of 1016ions/cm2while it needs higher dosage(around 3×1017ions/cm2) to reach the same level by 110 eV He+ions.

    Figure 1 clearly reveals the gradual defect formation induced by low energy ion bombardment for various inert ions and energies.The results illustrate that native defects themselves may also lead to band bending and Fermi level pinning,which is similar to several results in Refs.[19,20].

    FIG.1 Fermi level EFshifts of n-InP(100)induced by Ar+, and He+ion bombardments with different energies as a function of ion fluence.

    B.effect of S+

    The results of the surface electrical properties obtained from the irradiation of S+ions on n-InP surface are found to be extremely different from the bombardment of inert ions.In Fig.2,we display the binding energies of In3d5/2and Fermi level shifts,vs.ion fluence and annealing temperature respectively,obtained from the exposure of S+ions at energy values of 12,60, and 110 eV.The plot indicates that for the applied ion energies 12 and 110 eV,the band bending of n-InP increases,however it is slightly decreased at energy 60 eV. Interestingly,the least surface band bending on n-InP is observed not at 12 eV but at 60 eV,which is similar to the previous observation of p-InP[31].It can be inferred from the results that bombardment of ion beam follows two reaction paths:(i)the formation of In-S bonds,and(ii)resistance to physical damage.

    Experimentally,it is observed that even low dosage of S+ions(1016ions/cm2)results in the band bending of n-InP surface at both the energy values of 12 and 60 eV.However,with the increasing of S+ions, the surface band bending changes slightly for 60 eV, but it is found to be continuously increasing at 12 and 110 eV.The result at 60 eV conf i rms that S-In species resist physical damage to the surface,but for higher ion energy i.e.110 eV,S-In species can not effectively prevent the heavier damage.More damage at 12 eV than at 60 eV,may be due to the effect of high energy neutral species.When low ion energy 12 eV is used,the density of ion beam current is half less than that of 60 eV S+ions.In order to receive the same ion number as that at 60 eV,irradiation time of S+ions at 12 eV should be twice of that at 60 eV.This long exposure time increases the chances of neutral species to reach the surface.The chemical properties of n-InP and p-InP surfaces are the same,but their electronic properties are different.Sulfur is n-type doping as shown in Fig.3,and its diffusion in p-InP explains type inversion[31].

    FIG.2 Binding energy E of In3d5/2and Fermi level EFresponse of n-InP(100)induced by 12,60,and 110 eV S+as a function of(a)ion fluencies and(b)subsequent annealing temperatures,(c)S2p spectrum of n-InP induced by S+bombardment with 1.6×1016ions/cm2at 60 eV.

    However,for n-InP,to move the surface Fermi level near to the minimum of conduction band,donor states matching the initial dopant concentrations are specifically required when the surface Fermi level of n-InP has already been close to the minimum of conduction band.For this reason,only slight changes in the Fermi level have been seen after S+exposure on the n-InP surface.The S+irradiation of 8×1015ions/cm2modi fies the band bending of the n-InP surface slightly at ion energies 12 and 60 eV,but signi fi cant increase is observed at energy 110 eV.Raising ion fl uence up to 1.2×1016ions/cm2increases the band bending at 12 and 110 eV while it reduce the band bending at 60 eV.Irradiation at di ff erent ion energies forms In-S species,which limit physical surface damage,and exhibit a donor doping e ff ect for n-InP,therefore reduce the band bending.The band bending at 12 eV increased with the rising of ion fl uence since few In-S species have been created on the surfaces.On the other hand,at 110 eV,although strong In-S species have been created,and the surface band bending increases versus ion fl uence.In this case,higher ion energy causes greater physical damage,which cannot be preventable by In-S species.

    C.Comparison of He+,Ar+,and S+

    Noble gas ions(He+or Ar+)irradiation only caused physical damage on InP(110)that resulted in a shift of surface Fermi level without any chemical change [30,32].For He+and Ar+,with incident energy of 5-180 eV and fluence of 1012-1017ions/cm2,surface Fermi levels of both n-and p-InP(100)surfaces move towards to their pinning position.This kind of damage is hard to overcome,even through subsequent annealing process[30].However,the chemical reaction in S+ions exposure forms sulfur species(S-In)on InP surfaces that prevent further physical damage,and bring surface ordering in subsequent thermal annealing.During the ion showering,a few sulfur ions possibly reach subsurface layers and produce donor states.The exposure of InP(100)surface to S+ions with 1.5×1016ions/cm2fl uence at energy values of 10,20,60,70,and 100 eV results in the changes of surface chemical composition (not shown here).Figure 2(c)shows the S2p spectra with fl uence of 1.6×1016ions/cm2at 60 eV S+ion bombardment.

    FIG.3 Charge balance and donor states.

    The spectral data at different ion energy treatment show the formation of one type of sulfur specie in S2p region.For energy above 60 eV,formation of sulfur species is more efficient.For the same number of ions at 12 eV as that at 60 eV,few sulfur species are found when S+ions are used.This makes obvious that higher energetic S+ions favor creation of In-S species on InP(100) surface as compared to 12 eV ions.At 110 eV,S+exposure results in the broader S2p3/2peak due to higher intensity of S-In formed on the InP surface.However, simultaneously the 110 eV S+also induces heavier disordered surface,which is different from the 60 eV case. Table I lists the atomic ratios of S and P to In at different S+energy values.

    Ion bombardment assists the chemical reaction and forms more stable sulfur species(In-S)[22,33,34].According to our previous results of He+and Ar+ion bombardment,there is no chemical interaction between inertial ions and InP surface[30,32].Physical damage is produced during inertial ions bombardment,and Fermi level does not return to the original position after subsequent annealing.However,in the case of annealing InP with UV/O3and HF at 500?C,LEED pattern was not observed[19],because annealing of InP without S+exposure results in higher As or P loss on the surface. The In-S species on the InP surface not only stabilize the surface against As or P desorption,but also assist re-ordering.

    TABLE IThe composition of S+treated n-InP(100) sampleswithdifferentionenergiesandfluenceof 2.0×1016ions/cm2

    D.Behavior of Fermi level of n-InP with annealing

    When ions expose on n-InP samples,the surface band bending is found to increase with temperature at all energies.At 300?C,the band bending of samples exposed at 60 eV is smaller than at 110 eV as shown in Fig.2(b).This behavior is seen for all samples and attributes to sulfur doping or meta-stable bond that might have formed on the surface at low temperature. With an increase in energy,implantation of sulfur becomes deeper into the surface.Subsequent heating from 300?C to 450?C reduces the bending of the surface band for entire ion energies.Subsequent annealing at 300?C causes slight bending of the surface band for 60 eV ion-treated n-InP samples.After annealing at 450?C,it even exceeds the original surface Fermi level as shown in Fig.2,which means that part of original surface states are removed from the surface due to the annealing process.However,at 110 eV,with S+ion bombardment,where the physical damage is substantial,annealing at 450?C could not bring the surface Fermi level back to the original position.

    E.effect of Ar+and S+ions on the Fermi level of n-InP

    In addition,we have experimentally investigated the role of S+irradiation in bringing order on InP surface. The n-InP(100)is f i rst exposed to 180 eV Ar+ions at an incidence angle of 45?,and after that,to subsequent 60 eV S+ions with different dosages,and f i nally they are annealed at 250,300,and 400?C.Figure 4 presents the binding energy of In3d5/2and Fermi level movement under aforementioned conditions.Irradiation of 180 eV Ar+ions shifts the Fermi level to 1.04 eV and then,subsequent 60 eV S+ions exposure further decrease the Fermi level to 0.90 eV.With this treatment, Ar+and S+ions create defects at the surface of the Fermi level,and introduce a monolayer equivalent of S simultaneouly.Repeated annealing at temperatures 300 and 400?C,almost returned Fermi level to its original location and lastly,we obtain a 2×2 LEED pattern as presented in Fig.5.The pattern conf i rms that the presence of sulfur supports surface ordering and recovers the physical damage by ions.

    FIG.4Binding energy and Fermi level variation of n-InP(100)with(a)180 eV Ar+ions shower at 45?incidence,(b)60 eV S+shower,and(c)subsequent annealing at 250,300,and 400?C.

    FIG.5 2×2 LEED pattern formed by processes of 180 eV Ar+shower with 45?incidence,60 eV S+ion-treated n-InP(100),and subsequent annealing at 400?C for 20 min.

    A surface model of In-terminated regions with hydrogen atoms filling the dangling bonds,P-terminated and disordered regions was proposed for the UV/O3and HF treated InP(100)surface[22].When S+with enough energy strikes InP surface,weak H-In bond is replaced by strong S-In bond.Few S atoms replace P atoms, create donor states,and end up forming S-In tetrahedral while few of them reside in the subsurface region as interstitial atoms.For S+ion energy less than 20 eV, the bond between sulf i de and surface is not efficient. A dominant number of S+ions are backscattered from the surface.When the S+energy is high enough such as 110 eV,it produces more physical damage that is not easy to eradicate by annealing though In-S species are created.Subsequent annealing at 300?C embeds more sulfur atoms,and forms the S-In tetrahedral that further increases the Fermi level.If we compare their stabilities,the sulfur bridge at the top surface layer is more stable than the sulfur tetrahedron that bonds four In atoms in the subsurface region of InP.

    In the process of annealing at 400?C,sulfur atomsreach the surface to form sulfur bridge,and excess of sulfur atoms are desorbed from the surface that results in one monolayer of sulfur residing on the InP surface, which f i nally leads to a clear LEED pattern as shown in Fig.5.Hence,removal of donor states from subsurface region results in the reduction of Fermi level of n-InP. The existence of sulfur bridges at the surface promotes ordering reconstruction of surface,and repairs the damage.

    IV.CONCLUSION

    The effects of low energy ions(Ar+,He+,and S+) irradiation on n-InP surface are analyzed thoroughly by examining the chemical and surface changes.It is observed that the irradiation of both He+and Ar+by using the aforementioned conditions shifts the Fermi levels of n-InP surfaces.For the same exposure energy, as expected,Ar+ions cause more damage than He+. For the identical ion type,the exposure induce a surface defect density increasing with both ion energy and fluence.It is obvious that sulfur supports surface ordering. The high energy of S+ions causes more damage and forms S-In species.The formed S-In species help preventing the damage produced by S+ions together with ordering the surfaces of InP during subsequent thermal annealing.Besides,the Ar+damaged n-InP surface is exposed to 60 eV S+ion beam.Later,further annealing at 400?C enables the Fermi level to almost return to its original location.The return of Fermi level to its previous location ensures that S+ions with subsequent annealing removes n-InP surface damage and leads to 2×2 LEED pattern formations.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.11275024)and the Ministry of Science and Technology of China (No.2013YQ03059503 and No.2011AA120101).The authors would like to thank Prof.R.W.M.Kwok from the Chinese University of Hong Kong.

    [1]C.J.Sandrof f,R.N.Nottenburg,J.C.Bischof f,and R.Bhat,Appl.Phys.Lett.51,33(1987).

    [2]E.Yablonovitch,C.J.Sandrof f,R.Bhat,and T.Gmitter,Appl.Phys.Lett.51,439(1987).

    [3]V.L.Berkovits and D.Paget,Appl.Surf.Sci.65,607 (1993).

    [4]N.G.Wright,C.M.Johnson,and A.G.O’Neill,Sol. Sta.Elec.42,437(1998).

    [5]Y.Dong,X.M.Ding,X.Y.Hou,Y.Li,and X.B.Li, Appl.Phys.Lett.77,3839(2000).

    [6]R.K.Gebhardt,A.B.Preobrajenski,and T.Chasse, Phys.Rev.B 61,9997(2000).

    [7]V.N.Bessolov,Y.V.Zhilyaev,E.V.Konenkova,and M.V.Lebedev,Tech.Phys.43,983(1998).

    [8]V.N.Bessolov,M.V.Lebedev,E.B.Novikov,and B. V.Tsarenkov,J.Vac.Sci.Technol.B 11,10(1993).

    [9]N.Yokoi,H.Andoh,and M.Takai,Appl.Phys.Lett. 64,2578(1994).

    [10]Z.H.Lu,D.Landheer,J.M.Baribeay,L.J.Hung,and W.M.Lau,Appl.Phys.Lett.64,1702(1994).

    [11]H.Oigawa,J.F.Fan,Y.Nannichi,H.Sugahara,and M.Odhima,Jpn.J.Appl.Phys.30,L322(1991).

    [12]M.V.Lebedev and M.Aono,J.Appl.Phys.87,289 (2000).

    [13]S Morikita,T Motegi,and H.Ikoma,Jpn.J.Appl. Phys.38,L1512(1999).

    [14]V.N.Bessolov,M.V.Lebedev,and D.R.T.Zahn, Semiconductors 33,416(1999)

    [15]M.Cakmak and G.P.Srivastava,Phys.Rev.B 57, 4486(1998).

    [16]Z.Zou,X.M.Wei,Q.P.Liu,H.H.Huang,W.S.Sim, G.Q.Xu,and C.H.A.Huan,Chem.Phys.Lett.312, 149(1999).

    [17]M.Cakmak and G.P.Srivastava,Appl.Surf.Sci.123, 52(1998).

    [18]M.Shimomura,N.Sanada,S.Ichikawa,Y.Fukuda, M.Nagoshi,and P.J.Moller,J.Appl.Phys.83,3071 (1998).

    [19]B.K.L.So,R.W.M.Kwok,G.Jin,G.Y.Cao,G.K. C.Hui,L.Huang,W.M.Lau,and S.P.Wong,J.Vac. Sci.Technol.A 14,935(1996).

    [20]A.Kapila,X.Si,and V.Malhotra,Appl.Phys.Lett. 62,2259(1993).

    [21]H.Hirayama,Y.Matsumoto,H.Oigawa,and Y.Nannichi,Appl.Phys.Lett.54,2565(1989).

    [22]R.W.M.Kwok,G.Jin,B.K.L.So,K.C.Hui,L. Huang,W.M.Lau,C.C.Hsu,and D.Landheer,J. Vac.Sci.Technol.A 13,652(1995).

    [23]R.W.M.Kwok,L.J.Huang,W.M.Lau,M.Kasrai, X.Feng,K.Tan,S.Ingrey,and D.Landheer,J.Vac. Sci.Technol.A 12,2701(1994).

    [24]R.W.M.Kwok and W.M.Lau,J.Vac.Sci.Technol. A 10,2515(1992).

    [25]W.M.Lau,S.Jin,X.W.Wu,and S.Ingrey,J.Vac. Sci.Technol.A 9,994(1991).

    [26]N.Berrouachedi,M.Bouslama,A.Abdellaoui,M. Ghaffour,C.Jardin,K.Hamaida,Y.Monteil,Z.Lounis,and A.Ouerdane,Appl.Surf.Sci.256,21(2009).

    [27]D.Usanmaz,G.P.Srivastava,and M.Cakmak,J.Appl. Phys.108,063713(2010).

    [28]E.D.Lu,F.P.Zhang,S.H.Xu,X.J.Yu,P.S.Xu,Z. F.Han,F.Q.Xu,and X.Y.Zhang,Appl.Phys.Lett. 69,2282(1996).

    [29]W.M.Lau,X.Feng,S.Sant,I.Bello,K.K.Foo,and R. P.W.Lawson,Nucl.Instrum.Meth.B 59,316(1991).

    [30]Q.Zhao,Z.W.Deng,R.W.M.Kwok,and W.M.Lau, J.Vac.Sci.Technol.A 18,2271(2000).

    [31]Q.Zhao,G.J.Zhai,and R.W.M.Kwok,Appl.Surf. Sci.253,1356(2006).

    [32]Z.W.Deng,R.W.M.Kwok,W.M.Lau,and L.L. Cao,J.Appl.Phys.86,3676(1999).

    [33]G.W.Anderson,M.C.Hanf,P.R.Norton,Z.H.Lu, and M.J.Graham,Appl.Phys.Lett.65,171(1994).

    [34]M.Shimomura,K.Naka,N.Sanda,Y.Suzuki,Y. Fukuda,and P.J.Moller,J.Appl.Phys.79,4193 (1996).

    ceived on April 14,2013;Accepted on September 24,2013)

    ?Author to whom correspondence should be addressed.E-mail:qzhaoyuping@bit.edu.cn

    中文字幕av电影在线播放| a级片在线免费高清观看视频| 亚洲av国产av综合av卡| 亚洲七黄色美女视频| 久久女婷五月综合色啪小说| 9191精品国产免费久久| 国产精品99久久99久久久不卡| 国产精品免费视频内射| av在线老鸭窝| av有码第一页| 成年人黄色毛片网站| 又粗又硬又长又爽又黄的视频| 亚洲欧美日韩高清在线视频 | 成人亚洲精品一区在线观看| 日本a在线网址| 免费人妻精品一区二区三区视频| 一级毛片电影观看| 欧美精品亚洲一区二区| 国产免费又黄又爽又色| 欧美在线一区亚洲| 在线av久久热| 精品高清国产在线一区| 曰老女人黄片| 午夜福利视频在线观看免费| 精品一品国产午夜福利视频| 色婷婷久久久亚洲欧美| 黑人巨大精品欧美一区二区蜜桃| 成人18禁高潮啪啪吃奶动态图| www.av在线官网国产| 国产老妇伦熟女老妇高清| 又大又爽又粗| 蜜桃国产av成人99| 国产片内射在线| 国产亚洲精品久久久久5区| 黄色怎么调成土黄色| 亚洲精品日韩在线中文字幕| 成人亚洲欧美一区二区av| 精品国产一区二区三区四区第35| 国产精品久久久久久精品古装| 欧美人与性动交α欧美软件| 亚洲免费av在线视频| 在线看a的网站| 大香蕉久久网| 侵犯人妻中文字幕一二三四区| 成年女人毛片免费观看观看9 | 欧美 日韩 精品 国产| 91国产中文字幕| 亚洲中文av在线| 午夜影院在线不卡| 一级黄色大片毛片| 啦啦啦视频在线资源免费观看| 女警被强在线播放| 满18在线观看网站| 国产欧美日韩精品亚洲av| 国产日韩欧美亚洲二区| 午夜两性在线视频| 欧美精品啪啪一区二区三区 | 又粗又硬又长又爽又黄的视频| 久久久久久久精品精品| 天堂俺去俺来也www色官网| 少妇精品久久久久久久| 最近中文字幕2019免费版| 大香蕉久久成人网| 亚洲情色 制服丝袜| 9热在线视频观看99| 搡老岳熟女国产| 女人久久www免费人成看片| 亚洲av国产av综合av卡| 伦理电影免费视频| 女性被躁到高潮视频| 在线亚洲精品国产二区图片欧美| 亚洲久久久国产精品| 天天躁夜夜躁狠狠久久av| 一级毛片 在线播放| 一级毛片电影观看| 九色亚洲精品在线播放| 免费看不卡的av| 国产有黄有色有爽视频| 大型av网站在线播放| 国产免费现黄频在线看| av在线老鸭窝| 波多野结衣av一区二区av| 亚洲av电影在线观看一区二区三区| 成年美女黄网站色视频大全免费| 国产亚洲av高清不卡| 操美女的视频在线观看| 天天躁夜夜躁狠狠久久av| 久久精品国产亚洲av涩爱| 国产在线一区二区三区精| 秋霞在线观看毛片| 天堂中文最新版在线下载| 国产精品二区激情视频| 国产不卡av网站在线观看| 国产亚洲精品久久久久5区| 叶爱在线成人免费视频播放| 女人爽到高潮嗷嗷叫在线视频| 成人亚洲精品一区在线观看| av线在线观看网站| 99国产精品99久久久久| 黄色片一级片一级黄色片| 亚洲av欧美aⅴ国产| 99国产综合亚洲精品| 成人午夜精彩视频在线观看| 国产亚洲av片在线观看秒播厂| 国产精品久久久久久精品古装| 成年人午夜在线观看视频| 一级毛片我不卡| 好男人视频免费观看在线| 亚洲精品国产区一区二| 久久久久精品人妻al黑| 欧美人与性动交α欧美精品济南到| 久久影院123| 手机成人av网站| 国产亚洲av片在线观看秒播厂| 视频区欧美日本亚洲| 国产一区二区三区av在线| 欧美少妇被猛烈插入视频| 人妻人人澡人人爽人人| 中文字幕制服av| 韩国高清视频一区二区三区| 91老司机精品| 成年动漫av网址| 五月天丁香电影| 欧美精品av麻豆av| 黄色片一级片一级黄色片| 国产在线视频一区二区| 国产深夜福利视频在线观看| 9191精品国产免费久久| 两个人看的免费小视频| 久久这里只有精品19| 高清黄色对白视频在线免费看| 精品人妻在线不人妻| 丰满饥渴人妻一区二区三| 国产精品熟女久久久久浪| 国产在视频线精品| 最近手机中文字幕大全| 国产精品一区二区免费欧美 | 国产爽快片一区二区三区| 一区二区三区四区激情视频| 一级片'在线观看视频| 又大又黄又爽视频免费| 欧美精品人与动牲交sv欧美| 99精国产麻豆久久婷婷| 亚洲成av片中文字幕在线观看| 国产一卡二卡三卡精品| 免费在线观看完整版高清| 国产不卡av网站在线观看| 男女床上黄色一级片免费看| 女人久久www免费人成看片| 国产免费现黄频在线看| 成人亚洲精品一区在线观看| 国产亚洲精品久久久久5区| 亚洲黑人精品在线| 精品久久久久久电影网| 国产高清videossex| 麻豆乱淫一区二区| 赤兔流量卡办理| 国产精品 国内视频| 2018国产大陆天天弄谢| 美国免费a级毛片| 91字幕亚洲| 亚洲av电影在线进入| 99热网站在线观看| a级毛片黄视频| 人妻 亚洲 视频| 老鸭窝网址在线观看| 久久久国产一区二区| 老司机亚洲免费影院| 亚洲欧美色中文字幕在线| 性色av乱码一区二区三区2| 国产麻豆69| 欧美乱码精品一区二区三区| 午夜福利乱码中文字幕| 亚洲九九香蕉| 男女边吃奶边做爰视频| 欧美日韩黄片免| 欧美人与善性xxx| 国产熟女午夜一区二区三区| 午夜免费鲁丝| av线在线观看网站| 久久中文字幕一级| 国产视频首页在线观看| a 毛片基地| 欧美 日韩 精品 国产| 亚洲精品成人av观看孕妇| 人人妻,人人澡人人爽秒播 | 欧美精品啪啪一区二区三区 | 91精品三级在线观看| 大片免费播放器 马上看| 99热网站在线观看| 欧美亚洲 丝袜 人妻 在线| a级毛片在线看网站| 电影成人av| a级毛片在线看网站| 69精品国产乱码久久久| 免费久久久久久久精品成人欧美视频| 国产片内射在线| 啦啦啦在线免费观看视频4| 国产精品99久久99久久久不卡| 97在线人人人人妻| 国产野战对白在线观看| 欧美变态另类bdsm刘玥| 国产日韩欧美在线精品| 国产精品久久久人人做人人爽| 777久久人妻少妇嫩草av网站| 亚洲五月色婷婷综合| 侵犯人妻中文字幕一二三四区| 美女国产高潮福利片在线看| 一边摸一边做爽爽视频免费| 曰老女人黄片| 亚洲国产欧美日韩在线播放| 亚洲 国产 在线| 亚洲av成人不卡在线观看播放网 | a级毛片黄视频| 亚洲第一青青草原| 国产麻豆69| 在线 av 中文字幕| 午夜免费男女啪啪视频观看| 观看av在线不卡| 国产免费一区二区三区四区乱码| 欧美变态另类bdsm刘玥| 中文字幕人妻熟女乱码| 91精品国产国语对白视频| 亚洲成人免费av在线播放| 国产亚洲精品久久久久5区| www.精华液| 一级黄片播放器| 亚洲久久久国产精品| 欧美日韩一级在线毛片| 成年人午夜在线观看视频| 久久亚洲国产成人精品v| 两性夫妻黄色片| 又粗又硬又长又爽又黄的视频| 久久久久国产精品人妻一区二区| 久久鲁丝午夜福利片| 性少妇av在线| 国产视频一区二区在线看| 久久精品国产亚洲av涩爱| 色婷婷av一区二区三区视频| 黄网站色视频无遮挡免费观看| 性高湖久久久久久久久免费观看| 可以免费在线观看a视频的电影网站| 97人妻天天添夜夜摸| 久久av网站| 免费不卡黄色视频| 亚洲五月色婷婷综合| 美女高潮到喷水免费观看| 一级毛片 在线播放| 午夜激情av网站| avwww免费| 成人免费观看视频高清| 免费高清在线观看日韩| 久久精品久久久久久噜噜老黄| 多毛熟女@视频| 国产免费一区二区三区四区乱码| 久久久久网色| 美女视频免费永久观看网站| av在线老鸭窝| 成在线人永久免费视频| 嫁个100分男人电影在线观看 | 精品福利观看| 日韩制服丝袜自拍偷拍| 天天躁狠狠躁夜夜躁狠狠躁| 蜜桃在线观看..| 男的添女的下面高潮视频| 女警被强在线播放| 午夜老司机福利片| 久久久久久久久免费视频了| 麻豆乱淫一区二区| 高清视频免费观看一区二区| 性少妇av在线| 黄色 视频免费看| 深夜精品福利| 狂野欧美激情性xxxx| 国产亚洲av高清不卡| 99国产精品免费福利视频| 七月丁香在线播放| 午夜两性在线视频| 叶爱在线成人免费视频播放| www.熟女人妻精品国产| 亚洲av在线观看美女高潮| 亚洲av日韩在线播放| 中国国产av一级| 黑人巨大精品欧美一区二区蜜桃| 最新的欧美精品一区二区| 啦啦啦视频在线资源免费观看| 久久国产精品男人的天堂亚洲| 日本av免费视频播放| 高清欧美精品videossex| 国产精品国产av在线观看| 精品国产乱码久久久久久小说| 国产片特级美女逼逼视频| 99re6热这里在线精品视频| 老司机午夜十八禁免费视频| 天堂俺去俺来也www色官网| 香蕉丝袜av| 丰满迷人的少妇在线观看| 99久久人妻综合| 国产精品国产三级专区第一集| 99久久综合免费| 成年动漫av网址| 免费在线观看黄色视频的| 九色亚洲精品在线播放| videosex国产| 久久午夜综合久久蜜桃| 精品亚洲成国产av| 中文欧美无线码| 五月天丁香电影| 亚洲国产日韩一区二区| svipshipincom国产片| 天天躁夜夜躁狠狠躁躁| 汤姆久久久久久久影院中文字幕| 中文字幕精品免费在线观看视频| 国产一区二区三区综合在线观看| 中文精品一卡2卡3卡4更新| 午夜视频精品福利| 最新的欧美精品一区二区| 久久青草综合色| 极品少妇高潮喷水抽搐| 欧美人与性动交α欧美精品济南到| 国产精品秋霞免费鲁丝片| 成人影院久久| 中文字幕精品免费在线观看视频| 十八禁高潮呻吟视频| 人人妻人人爽人人添夜夜欢视频| 国产成人影院久久av| 国产国语露脸激情在线看| 熟女少妇亚洲综合色aaa.| 老司机亚洲免费影院| 国产日韩欧美亚洲二区| 老司机影院毛片| 国产精品成人在线| 一级片'在线观看视频| 午夜福利影视在线免费观看| 伊人久久大香线蕉亚洲五| 国产熟女欧美一区二区| 欧美另类一区| 嫩草影视91久久| 视频在线观看一区二区三区| 色播在线永久视频| 久久毛片免费看一区二区三区| 成年人黄色毛片网站| 人人妻人人添人人爽欧美一区卜| 好男人电影高清在线观看| 黄色一级大片看看| 最新的欧美精品一区二区| 成人影院久久| 国产精品熟女久久久久浪| 午夜精品国产一区二区电影| 欧美激情 高清一区二区三区| 国产成人精品久久久久久| 在线av久久热| 校园人妻丝袜中文字幕| 天天躁夜夜躁狠狠躁躁| 日韩熟女老妇一区二区性免费视频| 精品熟女少妇八av免费久了| 亚洲国产中文字幕在线视频| 亚洲熟女毛片儿| 国产一卡二卡三卡精品| 18在线观看网站| 我的亚洲天堂| 精品一区二区三卡| 精品国产乱码久久久久久小说| 99热全是精品| 国产免费福利视频在线观看| 国精品久久久久久国模美| 蜜桃在线观看..| 国产色视频综合| av不卡在线播放| 美女高潮到喷水免费观看| 黑人猛操日本美女一级片| 国产一区有黄有色的免费视频| 中文字幕人妻熟女乱码| 亚洲精品成人av观看孕妇| 男女免费视频国产| 久久精品国产综合久久久| 亚洲久久久国产精品| 国产精品欧美亚洲77777| 精品人妻1区二区| 午夜av观看不卡| 下体分泌物呈黄色| 免费观看人在逋| 99国产精品99久久久久| 岛国毛片在线播放| 脱女人内裤的视频| 精品少妇黑人巨大在线播放| 欧美精品人与动牲交sv欧美| 丰满迷人的少妇在线观看| 久久狼人影院| 精品国产乱码久久久久久小说| 国产亚洲一区二区精品| 国产精品国产三级专区第一集| 最近手机中文字幕大全| 美女脱内裤让男人舔精品视频| 国产免费视频播放在线视频| 欧美黑人欧美精品刺激| www.精华液| 青春草视频在线免费观看| 可以免费在线观看a视频的电影网站| 亚洲伊人色综图| 99精品久久久久人妻精品| 亚洲五月色婷婷综合| 成年美女黄网站色视频大全免费| 婷婷色综合www| 一区二区日韩欧美中文字幕| 观看av在线不卡| 欧美中文综合在线视频| 丰满饥渴人妻一区二区三| 老司机影院毛片| 午夜老司机福利片| 国产免费一区二区三区四区乱码| 午夜免费成人在线视频| 欧美日韩综合久久久久久| 99热国产这里只有精品6| 久久青草综合色| 久久狼人影院| 亚洲欧美成人综合另类久久久| 国产亚洲一区二区精品| 18在线观看网站| 精品福利观看| 国产女主播在线喷水免费视频网站| 高清欧美精品videossex| 亚洲人成77777在线视频| 亚洲精品av麻豆狂野| 亚洲精品美女久久av网站| 精品一区二区三区av网在线观看 | 在线观看免费日韩欧美大片| 久热爱精品视频在线9| 国产成人精品久久二区二区91| 无限看片的www在线观看| 精品国产一区二区三区久久久樱花| 亚洲国产欧美网| 国产在线免费精品| 国产精品一区二区免费欧美 | 乱人伦中国视频| 免费在线观看黄色视频的| 国产激情久久老熟女| 国产日韩欧美在线精品| 免费av中文字幕在线| 国产成人一区二区在线| 精品卡一卡二卡四卡免费| 国产熟女欧美一区二区| 9热在线视频观看99| 久久精品成人免费网站| 国产亚洲一区二区精品| 日韩伦理黄色片| videos熟女内射| 一边亲一边摸免费视频| 亚洲,欧美,日韩| 国产99久久九九免费精品| 国产在线免费精品| 99久久99久久久精品蜜桃| www.999成人在线观看| 一级毛片电影观看| 国产欧美日韩精品亚洲av| 91精品伊人久久大香线蕉| 国产精品av久久久久免费| 女性被躁到高潮视频| 这个男人来自地球电影免费观看| 三上悠亚av全集在线观看| 午夜老司机福利片| 男女无遮挡免费网站观看| 国产熟女午夜一区二区三区| 亚洲国产精品国产精品| 国产男人的电影天堂91| kizo精华| 久久国产亚洲av麻豆专区| 黄频高清免费视频| 亚洲中文字幕日韩| 日韩制服骚丝袜av| 久久狼人影院| 亚洲精品久久午夜乱码| 国产av精品麻豆| 在线 av 中文字幕| 国产一区二区三区av在线| 好男人电影高清在线观看| 狂野欧美激情性xxxx| 久久精品aⅴ一区二区三区四区| 欧美日韩视频高清一区二区三区二| 国产一卡二卡三卡精品| 国产精品 欧美亚洲| 精品视频人人做人人爽| 一级毛片 在线播放| 在线亚洲精品国产二区图片欧美| 性色av乱码一区二区三区2| 午夜福利视频精品| 蜜桃在线观看..| 国产成人欧美在线观看 | 久久精品国产综合久久久| 免费在线观看完整版高清| 搡老乐熟女国产| 精品人妻1区二区| 欧美日韩视频精品一区| 欧美精品啪啪一区二区三区 | www.自偷自拍.com| 久久九九热精品免费| 亚洲五月色婷婷综合| 亚洲欧美一区二区三区黑人| 亚洲,一卡二卡三卡| av在线老鸭窝| 日本av免费视频播放| 国产无遮挡羞羞视频在线观看| 日韩大码丰满熟妇| 激情视频va一区二区三区| 只有这里有精品99| 国产视频一区二区在线看| 男的添女的下面高潮视频| 亚洲欧美精品综合一区二区三区| 欧美在线一区亚洲| 日本av手机在线免费观看| 亚洲第一av免费看| 各种免费的搞黄视频| 天天影视国产精品| 熟女少妇亚洲综合色aaa.| 无遮挡黄片免费观看| 两人在一起打扑克的视频| 纯流量卡能插随身wifi吗| 欧美黄色淫秽网站| 久久久精品免费免费高清| 高清不卡的av网站| 久久99一区二区三区| 丝袜脚勾引网站| 亚洲熟女精品中文字幕| 免费少妇av软件| 久久ye,这里只有精品| 看十八女毛片水多多多| 免费日韩欧美在线观看| 国产精品 国内视频| 女人被躁到高潮嗷嗷叫费观| 成人国产av品久久久| 一本综合久久免费| 一级片免费观看大全| 91字幕亚洲| 一边亲一边摸免费视频| 国产在线视频一区二区| a级毛片黄视频| 欧美日韩一级在线毛片| 国产成人系列免费观看| 精品一区二区三区av网在线观看 | 国产成人啪精品午夜网站| 国产成人免费无遮挡视频| 男人添女人高潮全过程视频| 国产成人一区二区三区免费视频网站 | 777米奇影视久久| 日韩视频在线欧美| 国产黄色免费在线视频| 亚洲专区国产一区二区| 婷婷色麻豆天堂久久| 亚洲五月色婷婷综合| 国产精品成人在线| 美女视频免费永久观看网站| 麻豆国产av国片精品| 美女视频免费永久观看网站| 精品熟女少妇八av免费久了| 国产欧美日韩一区二区三区在线| 成人手机av| 99热国产这里只有精品6| 亚洲欧洲日产国产| 欧美变态另类bdsm刘玥| 久久午夜综合久久蜜桃| 亚洲成av片中文字幕在线观看| 亚洲精品久久午夜乱码| 黄片小视频在线播放| 国产99久久九九免费精品| 亚洲成av片中文字幕在线观看| 久久青草综合色| 免费久久久久久久精品成人欧美视频| 久久久久久亚洲精品国产蜜桃av| 久久人人爽人人片av| 热99久久久久精品小说推荐| 欧美少妇被猛烈插入视频| 精品人妻一区二区三区麻豆| 99久久精品国产亚洲精品| 蜜桃国产av成人99| 国产黄频视频在线观看| 亚洲欧美日韩另类电影网站| 热99久久久久精品小说推荐| 久久久久久久精品精品| 亚洲av日韩精品久久久久久密 | 纵有疾风起免费观看全集完整版| av不卡在线播放| 人成视频在线观看免费观看| 亚洲精品日本国产第一区| 色精品久久人妻99蜜桃| 精品少妇一区二区三区视频日本电影| 国产色视频综合| 悠悠久久av| av福利片在线| 乱人伦中国视频| 午夜老司机福利片| 无遮挡黄片免费观看| 一本色道久久久久久精品综合| 成年动漫av网址| 亚洲国产精品一区三区| 国产亚洲欧美在线一区二区| 一区二区三区四区激情视频| 看十八女毛片水多多多| 亚洲av片天天在线观看| 久久女婷五月综合色啪小说| 亚洲国产欧美网| 欧美亚洲日本最大视频资源| 90打野战视频偷拍视频| 91麻豆av在线| 婷婷色av中文字幕| 精品国产一区二区三区久久久樱花| 夜夜骑夜夜射夜夜干| 免费女性裸体啪啪无遮挡网站| a 毛片基地| 亚洲人成电影观看| 三上悠亚av全集在线观看| 日本色播在线视频| 久久人人97超碰香蕉20202| 大香蕉久久成人网| 少妇粗大呻吟视频| 国产成人一区二区三区免费视频网站 |