• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      污泥發(fā)酵液對(duì)A2O脫氮除磷和微生物的影響

      2014-07-18 11:51:50劉亞利袁一星詹技靈康曉榮董林沛
      關(guān)鍵詞:發(fā)酵液條帶硝化

      劉亞利,袁一星,李 欣,詹技靈,康曉榮,董林沛

      (1.哈爾濱工業(yè)大學(xué)市政環(huán)境工程學(xué)院,150090哈爾濱;2.大連邁克環(huán)境科技有限公司,遼寧大連116000)

      污泥發(fā)酵液對(duì)A2O脫氮除磷和微生物的影響

      劉亞利1,袁一星1,李 欣1,詹技靈2,康曉榮1,董林沛1

      (1.哈爾濱工業(yè)大學(xué)市政環(huán)境工程學(xué)院,150090哈爾濱;2.大連邁克環(huán)境科技有限公司,遼寧大連116000)

      為研究剩余污泥發(fā)酵液作碳源對(duì)微生物群落結(jié)構(gòu)的影響,將發(fā)酵液與市政污水按流量比1∶35回用于厭氧-缺氧-好氧反應(yīng)器,在室溫下運(yùn)行90 d.聚類分析表明,發(fā)酵液明顯改變了微生物群落結(jié)構(gòu),5~30 d和45~90 d的微生物屬于不同的聚集區(qū);微生物多樣性分析表明,發(fā)酵液使Shannon-Wiener指數(shù)從2.6升高到3.1,系統(tǒng)運(yùn)行穩(wěn)定性增強(qiáng);PCR-DGGE分析表明,發(fā)酵液對(duì)微生物群落具有一定的選擇性,氨氧化菌Nitrosomonas sp.、硝化菌Betaproteobacteria和Nitrospira sp.、反硝化菌Comamonas sp.和聚磷菌Gammaproteobacteria得到富集,TN和TP去除率從64.5%和52.4%提高到84.7%和94.3%.

      剩余污泥;脫氮除磷;碳源;生物群落;聚合酶鏈?zhǔn)椒磻?yīng)-變性梯度凝膠電泳技術(shù)

      最近的研究表明,剩余污泥厭氧發(fā)酵產(chǎn)生的揮發(fā)酸是脫氮除磷的良好碳源[1-2],且剩余污泥發(fā)酵液比乙酸鹽更適合作為脫氮除磷的碳源[3]. Gao等[4]發(fā)現(xiàn)將剩余污泥發(fā)酵液應(yīng)用于厭氧-缺氧-好氧(A2O)工藝后,TN和TP的去除率達(dá)80.1%和90.0%;Tong等[5]的研究表明,剩余污泥堿發(fā)酵液與市政污水按1∶35投入SBR反應(yīng)器后,總氮(TN)和磷酸鹽(PO43--P)的去除率分別由63.3%和44.0%提高到83.2%和92.9%.為進(jìn)一步研究污泥發(fā)酵液提高污水脫氮除磷效果的機(jī)理,Ji等[6]采用熒光原位雜交(fluorescence in situ hybridization,F(xiàn)ISH)技術(shù)研究污泥發(fā)酵液和乙酸鹽對(duì)SBR中脫氮除磷功能菌的影響,發(fā)現(xiàn)污泥發(fā)酵液能夠促進(jìn)短程硝化-反硝化和反硝化除磷反應(yīng)發(fā)生,節(jié)省碳源,提高合成廢水的脫氮除磷效果.Zhu等[7]通過FISH技術(shù)研究發(fā)現(xiàn):在厭氧-低溶解氧工藝中,剩余污泥堿發(fā)酵液能夠增加將氧化二氮(N2O)直接還原為氮?dú)猓∟2)的微生物量,減少N2O和一氧化氮(NO)產(chǎn)生,提高TP和TN去除效率,降低氧氣消耗.

      本實(shí)驗(yàn)從實(shí)際應(yīng)用的角度出發(fā),將剩余污泥發(fā)酵液作為內(nèi)碳源與市政污水按比例混合后,回用于A2O反應(yīng)器.考察投加發(fā)酵液對(duì)微生物群落結(jié)構(gòu)的影響,分析微生物群落結(jié)構(gòu)與工藝脫氮除磷效能之間的關(guān)系.同時(shí)采用PCR-DGGE技術(shù)分析投加發(fā)酵液前后脫氮除磷功能菌群的變化.

      1 實(shí) 驗(yàn)

      1.1 實(shí)驗(yàn)材料

      剩余活性污泥取自哈爾濱某污水廠二沉池,經(jīng)超聲(0.6 W/mL;5 min)和堿(pH=12)聯(lián)合預(yù)處理后厭氧發(fā)酵5 d,所得發(fā)酵液于10 000 r/min離心10 min,再通過鳥糞石法去除氮和磷[8].所得污泥發(fā)酵液的性質(zhì)如下:COD 8 120 mg/L;TN 256.3 mg/L;氨氮(-N)38.1 mg/L;總磷(TP)47.2 mg/L;28.7 mg/L;揮發(fā)酸(VFAs)5 061 mg/L;溶解性蛋白279 mg/L;溶解性多糖91 mg/L.其中VFAs中乙酸、丙酸所占的質(zhì)量分?jǐn)?shù)分別為38.2%和30.6%.

      1.2 實(shí)驗(yàn)裝置

      污水處理工藝流程如圖1所示.A2O反應(yīng)器的厭氧、缺氧和好氧池的水力停留時(shí)間分別為2,2和6 h.缺氧和好氧池的溶解氧分別控制在0.5~1.0和3.0~3.5 mg/L.混合液懸浮固體質(zhì)量濃度(MLSS)為(4 000±500)mg/L,污泥停留時(shí)間為15 d.反應(yīng)器在室溫下連續(xù)運(yùn)行90 d.從第20天開始將污泥發(fā)酵液與市政污水按1∶35[5]投加到反應(yīng)器中,投加前后進(jìn)水水質(zhì)見表1.

      圖1 A2O處理工藝流程

      表1 投加污泥發(fā)酵液前后進(jìn)水水質(zhì)

      1.3 檢測(cè)方法

      1.4 數(shù)據(jù)分析

      1.4.1 工藝運(yùn)行穩(wěn)定性分析

      采用出水COD、TN和TP的標(biāo)準(zhǔn)差(Ds)來衡量不同階段出水的波動(dòng),進(jìn)而對(duì)工藝運(yùn)行穩(wěn)定性進(jìn)行評(píng)價(jià).Ds的計(jì)算式為

      式中:Ds為COD、TN或TP標(biāo)準(zhǔn)差,mg/L;xi為第i個(gè)出水樣品的COD、TN或TP質(zhì)量濃度,mg/L;ˉx為出水COD、TN或TP質(zhì)量濃度平均值,mg/L;n為數(shù)據(jù)個(gè)數(shù).

      1.4.2 生物信息學(xué)分析

      微生物種群多樣性采用Shannon指數(shù)(Shannon-Wiener index,H)[12]表示,用來評(píng)價(jià)系統(tǒng)內(nèi)微生物種群的豐富程度及分配均勻性,即

      式中:Pi為條帶i所占比例;t為條帶數(shù).

      2 結(jié)果和討論

      2.1 工藝運(yùn)行效果分析

      投加發(fā)酵液前后,COD、TN和TP去除率隨時(shí)間的變化如圖2所示.與市政污水相比,投加發(fā)酵液使進(jìn)水COD升高了220.4 mg/L,但COD去除率仍由86.7%提高到89.2%.這是因?yàn)樵黾拥腃OD以VFAs、溶解性蛋白和多糖為主,能夠在A2O反應(yīng)器中得到完全降解.該結(jié)果與發(fā)酵液作為SBR反應(yīng)器碳源所得的結(jié)論一致[5].在進(jìn)水TN和TP質(zhì)量濃度略有升高的條件下,發(fā)酵液使TN和TP去除率由64.5%和52.4%提高到84.7%和94.3%.這是因?yàn)?發(fā)酵液中富含的VFAs為聚磷菌提供了最佳碳源[14];發(fā)酵液使碳氮比由4.1升高到9.0,削弱了反硝化菌和聚磷菌對(duì)有限碳源的競(jìng)爭(zhēng)[3].

      圖2 COD、TN和TP去除率隨時(shí)間的變化

      投加發(fā)酵液前后,反應(yīng)器出水COD、TN和TP的標(biāo)準(zhǔn)差如表2所示.發(fā)酵液使出水COD、TN和TP的標(biāo)準(zhǔn)差均呈現(xiàn)先升高后降低的趨勢(shì),表明工藝的運(yùn)行穩(wěn)定性先降低后提高.這是因?yàn)榘l(fā)酵液改變了進(jìn)水水質(zhì),進(jìn)而影響了微生物群落結(jié)構(gòu),經(jīng)過25 d的馴化期后,適應(yīng)新水質(zhì)的微生物群落結(jié)構(gòu)達(dá)到穩(wěn)定,工藝運(yùn)行穩(wěn)定性提高.

      表2 出水COD、TN和TP標(biāo)準(zhǔn)差隨發(fā)酵液的變化mg·L-1

      2.2 微生物相似性分析

      投加發(fā)酵液前后,反應(yīng)器內(nèi)活性污泥樣品的DGGE圖譜如圖3所示.可以看出,發(fā)酵液導(dǎo)致條帶數(shù)量和強(qiáng)度均發(fā)生了明顯改變.20~45 d時(shí)條帶數(shù)減少,45~90 d時(shí)條帶數(shù)增加.同時(shí),隨著發(fā)酵液的投加,條帶11,12,14,15,16,17,18和19明顯增強(qiáng);條帶4和8逐漸減弱,直至消失.

      圖3 PCR產(chǎn)物變性梯度凝膠電泳

      為進(jìn)一步研究微生物群落之間的關(guān)系,采用聚類分析對(duì)污泥樣品中的微生物相似性進(jìn)行分析.由圖4可見,不同進(jìn)水條件的微生物大致分為3類:接種污泥樣本(1 d)聚為一類;市政污水作為進(jìn)水時(shí)的污泥樣本(5~30 d)聚為一類;發(fā)酵液和市政污水混合液作為進(jìn)水時(shí)的污泥樣本(45~90 d)聚為一類.這說明進(jìn)水水質(zhì)對(duì)微生物群落具有一定的選擇性,進(jìn)水水質(zhì)發(fā)生改變,種群相似性明顯降低.

      圖4 污泥樣品的DGGE圖譜的聚類分析

      2.3 微生物多樣性分析

      投加發(fā)酵液前后,微生物Shannon-Wiener指數(shù)的變化如圖5所示.可以看出,投加發(fā)酵液后,Shannon-Wiener指數(shù)呈先降低后升高的趨勢(shì),這是進(jìn)水水質(zhì)對(duì)細(xì)菌種群篩選的結(jié)果.一方面,不能適應(yīng)水質(zhì)變化的種群被淘汰,Shannon-Wiener指數(shù)降低;另一方面,投加發(fā)酵液前未檢出的部分種群(<1%)逐漸適應(yīng)水質(zhì)變化,隨工藝運(yùn)行得到積累,Shannon-Wiener指數(shù)升高.

      圖5 Shannon-Wiener指數(shù)隨發(fā)酵液的變化

      結(jié)合圖2、表2和圖5發(fā)現(xiàn),微生物多樣性影響工藝的脫氮除磷效能和運(yùn)行穩(wěn)定性[14].與0~20 d相比,45~90 d時(shí)Shannon-Wiener指數(shù)從2.6升高至3.1,TN和TP去除率由64.5%和52.4%提高到84.7%和94.3%.同時(shí),45~90 d時(shí)Shannon-Wiener指數(shù)的變化幅度僅為0.06,TN和TP的標(biāo)準(zhǔn)差降至0.61和0.05,工藝運(yùn)行穩(wěn)定性提高.

      2.4 測(cè)序結(jié)果分析

      對(duì)19條主要條帶進(jìn)行提取、擴(kuò)增、克隆和測(cè)序,將所得的基因序列與NCBI中已鑒定同源性最接近的序列進(jìn)行比對(duì),其同源性達(dá)97%~100%,如表3所示.結(jié)合圖3和表3發(fā)現(xiàn),條帶8對(duì)應(yīng)的氨氧化菌Nitrosospira sp.不能適應(yīng)進(jìn)水水質(zhì)變化而被淘汰,而條帶15對(duì)應(yīng)的氨氧化菌Nitrosomonas sp.則隨污泥發(fā)酵液投加而增強(qiáng),這與前人的研究結(jié)果一致[6].據(jù)報(bào)道,當(dāng)污泥發(fā)酵液使SBR反應(yīng)器中腐殖酸達(dá)70.5 mg/g時(shí),會(huì)造成亞硝酸鹽積累,抑制硝化菌Nitrospira sp.生長(zhǎng)[6],而本實(shí)驗(yàn)中條帶12和17所對(duì)應(yīng)的硝化菌Betaproteobacteria和Nitrospira sp.逐漸增加,表明反應(yīng)器中未發(fā)生明顯的亞硝酸鹽積累.隨著進(jìn)水被轉(zhuǎn)化為硝酸鹽,條帶11所對(duì)應(yīng)的反硝化菌Comamonas sp.[15]得以生長(zhǎng),提高了TN的去除效率.投加發(fā)酵液后,條帶18所對(duì)應(yīng)的聚磷菌Gammaproteobacteria[16]發(fā)生積累,而條帶4所對(duì)應(yīng)的聚糖菌CandidatusCompetibacter phosphatis則逐漸消失,表明除磷效果增強(qiáng).這可能是因?yàn)檫M(jìn)水中含有乙酸和丙酸,且其比例為5∶4,更有利于促進(jìn)聚磷菌積累[17];另外,聚糖菌因缺少充足的亞硝酸鹽而失去與聚磷菌的競(jìng)爭(zhēng)力[18],與Ji等[6]的研究不同的是:條帶1所對(duì)應(yīng)的聚磷菌Candidatus Accumulibacter sp.在反應(yīng)器運(yùn)行穩(wěn)定時(shí)消失,這一方面是因?yàn)楸緦?shí)驗(yàn)進(jìn)水為市政污水而非合成廢水,水質(zhì)復(fù)雜、波動(dòng)大[19];另一方面是因?yàn)樵摷?xì)菌更易以亞硝酸鹽而非硝酸鹽作為電子受體進(jìn)行代謝[20].同時(shí),條帶16和19的相似菌Actinobacteria和Trichococcus sp.能夠在厭氧條件下分別將蛋白和多糖降解為乙酸和丙酸,有利于強(qiáng)化生物除磷過程[21].在本實(shí)驗(yàn)中,條帶14對(duì)應(yīng)的Sphingobacteriaceae隨發(fā)酵液的應(yīng)用而逐漸增強(qiáng).該細(xì)菌已被鑒定為生物強(qiáng)化除磷工藝(EBPR)中的反硝化聚磷菌[22],但其在本實(shí)驗(yàn)中的代謝機(jī)理和功能需要通過FISH等更精確的分子生物學(xué)手段來探索.

      表3 細(xì)菌克隆在NCBI庫最為相似的細(xì)菌種類

      3 結(jié) 論

      1)發(fā)酵液明顯改變了微生物群落結(jié)構(gòu),5~30 d和45~90 d的微生物屬于不同的類群.

      2)發(fā)酵液使Shannon-Wiener指數(shù)從2.6升至3.1,出水TN和TP的標(biāo)準(zhǔn)差降至0.61和0.05,工藝運(yùn)行穩(wěn)定性提高.

      3)發(fā)酵液對(duì)微生物群落具有一定的選擇性,氨氧化菌Nitrosomonassp.、硝化菌Betaproteobacteria和Nitrospira sp.、反硝化菌Comamonas sp.和聚磷菌Gamma proteobacteria得到富集,TN和TP去除率從64.5%和52.4%提高到84.7%和94.3%.

      參考文獻(xiàn)

      [1]COKGOR E U,OKTAY S,TAS D O,et al.Influence of pH and temperature on soluble substrate generation with primarysludgefermentation[J].Bioresource Technology,2009,100(1):380-386.

      [2]彭晶,郭澤沖,侯玲玲,等.熱堿預(yù)處理對(duì)剩余污泥發(fā)酵產(chǎn)酸效能提升的影響[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2012,44(8):43-47.

      [3]SOARE A,KAMPAS P,MAILLARD S,et al.Comparison between disintegrated and fermented sewage sludge for production of a carbon source suitable for biological nutrient removal[J].Journal of Hazardous Materials,2010,175(1/2/3):733-739.

      [4]GAO Yongqing,PENG Yongzhen,ZHANG Jingyu,et al.Biological sludge reduction and enhanced nutrient removal in a pilot-scale system with 2-step sludge alkaline fermentation and A2O process[J].Bioresource Technology,2011,102(5):4091-4097.

      [5]TONG Juan,CHEN Yinguang.Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquidtopromotebiologicalmunicipalwastewater treatment[J].Water Research,2009,43(12):2969-2976.

      [6]JI Zhouying,CHEN Yinguang.Using sludge fermentation liquidtoimprovewastewatershort-cutnitrificationdenitrification and denitrifying phosphorus removal via nitrite[J].Environmental Sscience&Ttechnology,2010,44(23):8957-8963.

      [7]ZHU Xiaoyu,CHEN Yinguang.Reduction of N2O and NO generation in anaerobic-aerobic(low dissolved oxygen)biological wastewater treatment Process by using sludge alkaline fermentation liquid[J].Environmental Science&Technology,2011,45(6):2137-2143.

      [8]佟娟.剩余污泥堿性發(fā)酵產(chǎn)生的短鏈脂肪酸作為生物脫氮除磷碳源的研究[D].上海:同濟(jì)大學(xué),2008.

      [9]魏復(fù)盛,國(guó)家環(huán)境保護(hù)總局,水和廢水監(jiān)測(cè)分析方法編委會(huì).水和廢水監(jiān)測(cè)分析方法[M].北京:中國(guó)環(huán)境科學(xué)出版社,2002.

      [10]LOWRY O H,ROSEBROUGH N J,F(xiàn)ARR A L,et al. Protein measurement with the Folin phenol reagent[J].J Bbiol Chem,1951,193(1):265-275.

      [11]HERBERT D,PHILIPPS P J,STRANGE R E. Carbohydrate analysis[J].Methods Enzymol B,1971,5:265-277.

      [12]WANG Aijie,SUN Dan,CAO Guangli,et al.Integrated hydrogen production process from cellulose by combining dark fermentation,microbial fuel cells,and a microbial electrolysis cell[J].Bioresource Technology,2011,102(5):4137-4143.

      [13]KANG Xiaorong,ZHANG Guangming,CHEN Lin,et al. EffectofinitialpHadjustmentonhydrolysisand acidification of sludge by ultrasonic pretreatment[J]. Industrial&Engineering Chemistry Research,2011,50(22):12372-12378.

      [14]OEHMEN A,LOPEZ V C M,CARVALHO G,et al. Modellingthepopulationdynamicsandmetabolic diversity of organisms relevant in anaerobic/anoxic/aerobicenhancedbiologicalphosphorusremoval processes[J].Water Research,2010,44(15):4473-4486.

      [15]ZHANG Bin,SUN Baosheng,JI Min,et al.Quantification and comparison of ammonia-oxidizing bacterial communities in MBRs treating various types of wastewater[J]. Bioresource Technology,2010,101(9):3054-3059.

      [16]LIU Xinchun,ZHANG Yu,YANG Min,et al.Analysis of bacterial community structures in two sewage treatment plants with differentsludgepropertiesandtreatment performance by nested PCR-DGGE method[J].Journal of Environmental Sciences,2007,19(1):60-66.

      [17]GUERRERO J,GUISASOLA A,BAEZA J A.The nature of the carbon source rules the competition between PAOanddenitrifiersinsystemsforsimultaneous biological nitrogen and phosphorus removal[J].Water Research,2011,45(16):4793-4802.

      [18]TAYA C,GARLAPATI V K,GUISASOLA A,et al. The selective role of nitrite in the PAO/GAO competition[J].Chemosphere,2013,93(4):612-618.

      [19]WONG M T,MINO T,SEVIOUR R,et al.In situ identificationandcharacterizationofthemicrobial community structure of full-scale enhanced biological phosphorous removalplantsinJapan[J].Water Research,2005,39(13):2901-2914.

      [20]GUISASOLA A,QURIE M,VARGAS M DEL M,et al. Failure of an enriched nitrite-DPAO population to use nitrateasanelectronacceptor[J].Process Biochemistry,2009,44(7):689-695.

      [21]WU Guangxue,SORENSEN K,RODGERS M,et al. Microbial community associated with glucose-induced enhanced biological phosphorus removal[J].Water Science&Technology,2009,60(8):2105-2113.

      [22]李偉光,田文德,康曉榮,等.強(qiáng)化生物除磷工藝微生物種群結(jié)構(gòu)分析[J].化工學(xué)報(bào),2011,62(12): 3532-3538.

      (編輯 劉 彤)

      The effect of sludge fermentation liquid on nutrient removal performances and microbial community structure in A2O process

      LIU Yali1,YUAN Yixing1,LI Xin1,ZHAN Jiling2,KANG Xiaorong1,DONG Linpei1
      (1.School of Municipal and Environmental Engineering,Harbin Institute of Technology,150090 Harbin,China;2.Dalian MEC Environmental Technology&Engineering Co.,Ltd,116000 Dalian,Liaoning,China)

      To analyze the effect of sludge fermentation liquid,using as internal carbon source,on microbial community structure in anaerobic-anoxic-aerobic process,three-month-long operational experiment was conducted at flow ratio of fermentation liquid and domestic wastewater 1∶35 at room temperature.The clustering analysis indicated that the microbial community structure was changed significantly by fermentation liquid,and the microbes of 5-30 d and 45-90 d had quite different homology.The microbial diversity analysis demonstrated that the Shannon-Wiener index increased from 2.6 to 3.1,resulting in the enhancement of operational stability.Meanwhile,fermentation liquid appeared to be selective for ammonia-oxidizing bacteria Nitrosomonas sp.,nitrifying bacteria Betaproteobacteria and Nitrospira sp.,denitrifying bacteria Comamonas sp.and phosphorus-accumulating bacteria Gammaproteobacteria,which led to the TN and TP removal efficiency improved from 64.5%and 52.4%to 84.7%and 94.3%,respectively.

      waste activated sludge;nutrient removal;carbon source;bacterial community;PCR-DGGE

      TU992.3

      A

      0367-6234(2014)10-0042-05

      2013-09-12.

      國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)資助項(xiàng)目(2012AA063503-02).

      劉亞利(1982—),女,博士研究生;

      袁一星(1957—),男,教授,博士生導(dǎo)師.

      袁一星,yyx1957@163.com;

      李 欣,lixinwindows@163.com.

      猜你喜歡
      發(fā)酵液條帶硝化
      連翹內(nèi)生真菌的分離鑒定及其發(fā)酵液抑菌活性和HPLC測(cè)定
      桑黃纖孔菌發(fā)酵液化學(xué)成分的研究
      中成藥(2018年1期)2018-02-02 07:20:03
      MBBR中進(jìn)水有機(jī)負(fù)荷對(duì)短程硝化反硝化的影響
      基于條帶模式GEOSAR-TOPS模式UAVSAR的雙基成像算法
      厭氧氨氧化與反硝化耦合脫氮除碳研究Ⅰ:
      基于 Savitzky-Golay 加權(quán)擬合的紅外圖像非均勻性條帶校正方法
      海水反硝化和厭氧氨氧化速率同步測(cè)定的15N示蹤法及其應(yīng)用
      一種基于MATLAB的聲吶條帶圖像自動(dòng)拼接算法
      海岸工程(2014年4期)2014-02-27 12:51:28
      HPLC與LC-MS/MS測(cè)定蛹蟲草發(fā)酵液中蟲草素的方法比較
      木瓜發(fā)酵液對(duì)小鼠四氯化碳誘發(fā)肝損傷的防護(hù)作用
      喀喇沁旗| 岳西县| 尉犁县| 吉林省| 瑞金市| 揭东县| 勃利县| 海安县| 东光县| 安西县| 黔江区| 涿州市| 西宁市| 呼伦贝尔市| 莆田市| 吉安县| 梨树县| 扬中市| 肇州县| 丹东市| 长武县| 永仁县| 尼玛县| 贵港市| 张家界市| 同德县| 元谋县| 宜都市| 松原市| 兰州市| 嘉祥县| 克山县| 汉中市| 聊城市| 邯郸市| 扶绥县| 洪泽县| 聂荣县| 大名县| 二连浩特市| 墨脱县|