• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Facile Route for Synthesis of LiFePO4/C Cathode Material with Nano-sized Primary Particles*

    2014-07-18 12:09:47XIAOZhengwei肖政偉HUGuorong胡國(guó)榮DUKe杜柯andPENGZhongdong彭忠東1FacultyofMetallurgicalandEnergyEngineeringKunmingUniversityofScienceandTechnologyKunming650093ChinaSchoolofMetallurgyandEnvironmentCentralSouthUniversityChangsha41008

    XIAO Zhengwei (肖政偉)**, HU Guorong (胡國(guó)榮), DU Ke (杜柯)and PENG Zhongdong (彭忠東)1Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, ChinaSchool of Metallurgy and Environment, Central South University, Changsha 410083, China

    A Facile Route for Synthesis of LiFePO4/C Cathode Material with Nano-sized Primary Particles*

    XIAO Zhengwei (肖政偉)1,**, HU Guorong (胡國(guó)榮)2, DU Ke (杜柯)2and PENG Zhongdong (彭忠東)21Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China2School of Metallurgy and Environment, Central South University, Changsha 410083, China

    A facile and practical route was introduced to prepare LiFePO4/C cathode material with nano-sized primary particles and excellent electrochemical performance. LiH2PO4was synthesized by using H3PO4and LiOH as raw materials. Then, as-prepared LiH2PO4, reduced iron powder and α-D-glucose were ball-milled, dried and sintered to prepare LiFePO4/C. X-ray diffractometry was used to characterize LiH2PO4, ball-milled product and LiFePO4/C. Differential scanning calorimeter-thermo gravimetric analysis was applied to investigate possible reactions in sintering and find suitable temperature for LiFePO4formation. Scanning electron microscopy was employed for the morphology of LiFePO4/C. As-prepared LiH2PO4is characterized to be in P21cn(33) space group, which reacts with reduced iron powder to form Li3PO4, Fe3(PO4)2and H2in ball-milling and sintering. The appropriate temperature for LiFePO4/C synthesis is 541.3-976.7 °C. LiFePO4/C prepared at 700 °C presents nano-sized primary particles forming aggregates. Charge-discharge examination indicates that as-prepared LiFePO4/C displays appreciable discharge capacities of 145 and 131 mA·h·g?1at 0.1 and 1 C respectively and excellent discharge capacity retention.

    lithium ion cell, reduced iron powder, ball-milling, LiFePO4/C, nano-sized primary particle

    1 INTRODUCTION

    Owing to exhausting of fossil fuels and increasingly severe greenhouse gases pollution, the development of electric vehicles (EVs) has long been an intense issue since it appeared in 1899 [1]. There are several candidates of rechargeable system for EVs batteries, such as Pb acid, Ni Cd, NiMH [2], but with respect to specific power (W·kg?1) and specific energy (W·h·kg?1), these technologies are outmatched by Li-ion battery technology. Since its commercialization by Sony in the early 1990s, this advanced system has become the prior consideration for vehicles.

    In view of the electrochemical properties of cathode materials for lithium ion cells, among LiCoO2and its derivatives, LiMn2O4and LiFePO4, LiFePO4owns the best holistic evaluation for EVs application: medium voltage, cheap raw materials, environmental friendliness, high temperature stability and safety, and appreciable theoretical capacity of 170 mA·h·g?1, which is comparable to the actual capacity of commercialized and widely used LiCoO2[3-6]. As regard to the application to EVs, LiMn2O4has the “seemingly” insurmountable problem of electrochemical instability at elevated temperatures [7].

    However, LiFePO4has the disadvantage of very low electronic conductivity, 10?9-10?10S·cm?1. Many studies have been carried out to improve its electronic conductivity and electrochemical performance. Conductive carbon coating/mixing [8], metal coating/mixing [9], aliovalent ion doping [10] and nano-sizing LiFePO4particles [11] have been introduced and proved to be effective. Among these improved methods, the effectiveness of carbon coating/mixing to obtain cathode material LiFePO4/C composite with excellent electrochemical performance has been confirmed by many research groups. Aliovalent ion doping remains to be controversial in that: (1) the theoretical calculation indicates that doping is not energetically favorable [12], (2) the formation of conductive phases between active particles may account for the improved electronic conductivity of “doped LiFePO4” [13].

    LiFePO4has been commercialized, and A123 Systems is one of the most famous and best suppliers of this cathode material. A123 Systems is noted for its LiFePO4product of well-separated nano-sized LiFePO4particles, which can provide very short routes for Li+intrusion/extrusion in electrochemical processes and effect excellent rate capability as a cathode material in lithium ion cells. However, its shortcoming is obvious: nano-sized particles need much more binder for cathode fabrication, greatly reducing the volumetric energy density of cathode. Therefore, it will be meaningful to synthesize LiFePO4aggregates with nano-sized primary particles to keep the advantage of short routes for Li+intrusion/extrusion in electrochemical process and reduce the amount of binder used in cathode fabrication.

    Nao-sized LiFePO4synthesis often needs sophisticated techniques and harsh conditions in liquid or sol-gel [14, 15]. In this work, we choose an easy and simple method to introduce carbon to synthesizeLiFePO4/C composite cathode material for lithium ion cells. LiH2PO4is prepared by making use of H3PO4and LiOH. Then, LiH2PO4, reduced iron powder and α-D-glucose (C6H12O6·H2O) are ball-milled and sintered to prepare LiFePO4/C. The as-prepared composite cathode material is characterized for its characteristics and charge-discharge performance.

    2 EXPERIMENTAL

    At room temperature, 1.5 mol·L?1LiOH aqueous solution was slowly added into 85% (by mass) H3PO4aqueous solution under vigorous agitation, with the molar ratio of 1︰1. The product solution was left to stand for hours until its pH value became constant. The solution was then heated on stirring to vaporize and white solid LiH2PO4was derived.

    LiH2PO4and reduced iron powder with molar ratio of 1︰1 and a certain amount of α-D-glucose (C6H12O6·H2O) were mixed and ball-milled at a speed of 400-500 r·min?1for 5 h with pure ethanol as grinding medium. The obtained slurry was dried at 100 °C to remove volatile constituents to get dried lump, which was sintered in an argon atmosphere at 700 °C for 15 h to obtain LiFePO4/C.

    The dried lump was examined with differential scanning calorimeter-thermo gravimetric analysis (DSC-TGA) on SDTQ 600 using V 8.0 Build 95 software to investigate the reactions of constituents to form LiFePO4, with heating rate of 10 K·min?1and argon flow rate of 100 ml·min?1. As-prepared LiH2PO4, dried lump and synthesized LiFePO4/C were characterized by X-ray diffractometry (XRD) with Philips X-pert powder diffractometer using Cu Kα radiation. The morphology of LiFePO4/C was characterized by scanning electron microscopy (SEM) on JSM-6360LV (JEOL).

    LiFePO4/C, poly(vinylidene fluoride) (PVDF) binder and acetylene black with mass ratio of 75︰10︰15 were mixed and ground with the addition of suitable amount of N-methyl pyrrolidinone (NMP) solvent. The slurry was spread uniformly over an aluminum foil current collector and was dried at 120 °C under vacuum. The slurry with a mass ratio 2︰1 for acetylene black︰PVDF binder (with NMP as the solvent) was uniformly coated onto the dried electrode, which was also dried at 120 °C under vacuum. Circular cathode sheets were punched with an area of 0.785 cm2for each. For coin cell fabrication, the electrolyte was 1 mol·L?1LiPF6in a mixture of ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate with volume ratio of 1︰1︰1. Metallic lithium wafer was used as the counter electrode, and Celgard 2400 polypropylene microporous membrane as separator. Coin cell 2025 with the prepared cathode electrode was assembled in an argon-filled glovebox free from oxygen and water vapor. At room temperature, the rate capability (1C=170 mA·h·g?1) for LiFePO4/C cathode material was galvanostatically examined in the voltage window of 2.5-4.1 V on Land BTI-40. The specific capacity of the cathode in this work referred to that of LiFePO4/C loaded.

    3 RESULTS AND DISCUSSION

    Figure 1 XRD pattern for as-prepared LiH2PO4

    Figure 1 gives the XRD result for as-prepared LiH2PO4. The characteristic peaks for the compound are sharp and perfect, indicating a high degree of crystallinity. The pattern agrees well with that of LiH2PO4indexed in P21cn(33) space group [International Centre for Diffraction Data/Joint Committee on Powder Diffraction Standards (ICDD/JCPDS) 21-0498] and no impurity phase is found, indicating a high purity product. Therefore, the method employed is a practicable way of soft chemistry synthesis for LiH2PO4of high purity and crystallinity.

    Figure 2 shows the XRD pattern for the dried lump, obtained by ball-milling the mixture of LiH2PO4, reduced iron powder and α-D-glucose, revealing the presence of crystallized Li3PO4and iron residue in the mixture. Therefore, LiH2PO4and reduced iron powder have reacted in the ball-milling process, but the reaction is not complete. From the color of blueness, it can be deduced that Fe3(PO4)2forms in the process. Nocharacteristic peaks of LiH2PO4are observed, suggesting its consumption by chemical reactions and decrease in crystallinity in the ball-milling. Since bubbling was observed in the ball-milling process, the principal reaction in this step is

    Figure 2 XRD pattern for dried lump from ball-milled mixture of LiH2PO4, reduced iron powder and α-D-glucose

    Therefore, the main constituents of the dried lump are residual LiH2PO4and Fe, products Li3PO4and Fe3(PO4)2.

    Figure 3 shows DSC-TGA curves of the ball-milled mixture, with three thermal peaks. The first one at 107.7 °C corresponds to a heavy mass loss on TGA curve, which can be attributed to the loss of crystalliferous water and decomposition of the mechanically activated α-D-glucose, further reaction of residual LiH2PO4and reduced iron powder to form Li3PO4and Fe3(PO4)2, and liberation of H2. Some studies have reported the application of the mixture of an inert gas (Ar or N2) and H2for synthesizing LiFePO4cathode material with excellent electrochemical performance [16, 17]. In this work, the release of H2in the sintering is favorable to the formation of LiFePO4, providing a strong reductive atmosphere for ferrous iron. The mass of the sample stays unchanged after 383.3 °C, which is the evidence for

    Figure 3 DSC-TGA for the dried lump of ball-milled mixture of LiH2PO4, reduced iron powder and α-D-glucose

    The last peak of DSC curve at 976.7 °C reflects the decomposition of LiFePO4with the loss of Li at high temperatures. Therefore, at a temperature between 541.3 and 976.7 °C, LiFePO4can be synthesized via the approach adopted in this work. It is worth mentioning that LiFePO4can not be successfully prepared when LiH2PO4, reduced iron powder and α-D-glucose are simply mixed and ground but not ball-milled before sintering in argon.

    Figure 4 gives the XRD pattern for LiFePO4/C synthesized at 700 °C. The diffraction result is indexed in the orthorhombic space group Pnma. The peaks on the diffraction line are sharp and perfect, suggesting a high degree of crystallinity for as-prepared LiFePO4/C. The pattern agrees well with that for triphylite (JCPDS NO. 40-1499), and no impurity phases consisting of lithium, iron, or phosphorous can be detected, indicating that the iron residue in the dried lump is completely consumed in the sintering process. No diffraction peaks for crystallized carbon are revealed in Fig. 4, indicating the amorphous form of the conductive reagent resulting from anaerobic pyrolysis of α-D-glucose.

    Figure 5 shows the SEM morphology of as-prepared LiFePO4/C. Nano-sized primary particles with narrow size distribution agglomerate to aggregates in micrometers. The formation of aggregates is favorable to cathode fabrication because nano-sized particles cause wetting problems and need much more PVDF binder, which will greatly reduce the volumetric energy density of the cathode. In the ball-milling step, LiH2PO4and reduced iron powder reacted in such a way that the latter is dissolved and consumed gradually. The primary particle size of the product, dried lump, can reach nano-scale after the milling the completion of chemical reactions accompanied by mass loss. The second thermal peak is at 433.9 °C, without mass loss in the corresponding part of TGA curve. The thermal effect can be ascribed to the substantial formation of LiFePO4until 541.3 °C:process, without serious agglomeration in milling. Nano-sized particles of ball-milled product are beneficial to the formation of LiFePO4in the following sintering, in which the presence of carbon from decomposition of α-D-glucose also prohibits the growth of LiFePO4particles [18]. As shown in Fig. 5, pores distribute between nano-sized LiFePO4/C primary particles. These pores can be well wetted by electrolyte and provide more sites for electrochemical reactions which only occur at those points where the active material, conductive diluent and electrolyte meet [7]. Meanwhile, the nano-size of LiFePO4primary particles provides very short routes for Li+intrusion/ extrusion in electrochemical processes [19]. Moreover, the diffusivity of Li+is inversely proportional to the square of particle size of LiFePO4[20]. Therefore, nano-sized primary particles of as-prepared LiFePO4/C in this work help Li+ions migrate and diffuse in LiFePO4crystals. It can be predicted that as-synthesized LiFePO4/C cathode material may exhibit very good electrochemical performance.

    Figure 4 XRD pattern of LiFePO4/C synthesized at 700 °C

    Figure 5 SEM image for LiFePO4/C synthesized at 700 °C

    Figure 6 Typical charge-discharge profiles for as-prepared LiFePO4/C at 0.1 and 1 C

    Figure 6 shows the typical charge-discharge profiles for as-prepared LiFePO4/C at 0.1 and 1 C. The 0.1 C charge-discharge curves for the cathode electrode present a flat plateau at around 3.45 V, the voltage at which both the lithium intrusion and extrusion at room temperature proceed in a two-phase reaction [21] between LiFePO4and FePO4crystallizing in space group Pnma. The as-prepared LiFePO4/C displays discharge capacities of 145 and 131 mA·h·g?1at 0.1 and 1 C, respectively, which are comparable to those reported in literature. It is noted that at 0.1 C the discharge curve for LiFePO4/C exhibits a higher voltage plateau than that at 1 C. In addition, the higher the rate is, the bigger the gap is between charge-discharge plateau voltages, but the charge-discharge plateau voltages at 0.1 C are much better kept at around 3.45 V than those at 1 C. These results suggest that higher rates can swiftly increase the polarization during the charge-discharge process.

    The olivine structure is thought to be the intrinsic reason for the low electronic conductivity of the compound. This group is exemplified by LiFePO4which has a hexagonally-close-packed oxygen array, with the octahedra sharing edges (LiO6) or corners (FeO6). The poor electronic conductivity of pristine LiFePO4is imputed to the absence of continuous edge-shared FeO6network [22]. Carbon coating/mixing treatment on pure LiFePO4particle can greatly improve its electronic conductivity and then rate capability in electrochemical process. In this work, the nano-sized primary particles also contribute to the improvement in electrochemical capability. The very short Li+migration routes in the primary particles facilitate the diffusion of Li+ions, which has been proved to beanother factor to limit the rate performance of LiFePO4[23]. Magasinski et al. introduced C-Si granules with nano-sized primary particles which exhibit excellent electrochemical performance when used as anode in lithium ion cells [24].

    Figure 7 shows the rate capability and capacity retention for LiFePO4/C in the first 50 cycles of charge-discharge process. At 0.1 and 1 C, the capacity retention is well maintained. Even at 1 C, LiFePO4/C displays a discharge capacity of 131 mA·h·g?1, which is comparable to that reported [25]. The excellent capacity retention can be attributed to carbon coating/ mixing and as-prepared LiFePO4/C cathode material itself, whose primary particles with uniform size alleviate the sluggish migration and diffusion of Li+[26]. Moreover, nano-sized primary particles are more endurable to the strain in expansion and contraction of LiFePO4unit cell during Li+intrusion and extrusion [19], leading to good cycling ability.

    Figure 7 Rate capability and capacity retention for as-prepared LiFePO4/C

    Further work will be done to improve the rate capacity of LiFePO4/C prepared via the procedure in this work by optimizing the experimental conditions, ball-milling speed and duration, choice of conductive carbon precursor, synthesis temperature and time, and so on. Even the reduced iron powder can be tailored to be as fine as possible which will need an inert atmosphere in ball-milling and subsequent steps for LiFePO4/C synthesis. At the same time, in the aggregates each nano-sized primary LiFePO4particle should be well coated by conductive carbon whose content in LiFePO4/C may be optimized.

    4 CONCLUSIONS

    LiFePO4/C cathode material with nano-sized primary particles was successfully synthesized by using as-prepared LiH2PO4, reduced iron powder and α-D-glucose, which were ball-milled, dried and sintered. In the sintering, H2release is favorable to the formation of LiFePO4. Nano-sized primary particles provide very short routes for Li+migration and diffusion in electrochemical processes. As-prepared LiFePO4/C

    exhibits appreciable discharge capacities of 145 and 131 mA·h·g?1at 0.1 and 1 C respectively and excellent capacity retention at each of the tested rates. The facile route is a feasible approach for preparation of LiFePO4/C cathode material with nano-sized primary particles. Further work for the improvement on the electrochemical performance of LiFePO4/C synthesized by the method will be carried out.

    REFERENCES

    1 Armand, M., Tarascon, J.M., “Building better batteries”, Nature, 451 (7), 652-657 (2008).

    2 Ovshinsky, S.R., Fetcenko, M.A., Ross, J., “A nickel metal hydride battery for electric vehicles”, Science, 260 (5105), 176-181 (1993).

    3 Yu, W.L., Zhao, Y.P., Rao, Q.L., “Rapid and continuous production of LiFePO4/C nano-particles in super heated water”, Chin. J. Chem. Eng., 17 (1), 171-174 (2009).

    4 Yang, K.D., Tan, F.X., Wang, F., Long, Y.F., Wen, Y.X., “Response surface optimization for process parameters of LiFePO4/C preparation by carbothermal reduction technology”, Chin. J. Chem. Eng., 20 (4), 793-802 (2012).

    5 Xiao, Z.W., Hu, G.R., Du K., Peng, Z.D., Deng, X.R., “High density LiFePO4/C composite cathode material for lithium ion batteries”, Chin. J. Nonferr. Metal., 17 (12), 2040-2045 (2007). (in Chinese)

    6 Zhang, W.X., Zhao, F., Wang, Q., Yang, Z.H., “LiFePO4synthesized by hydrothermal method from Li3PO4and its modification”, CIESC. J., 61 (10), 2719-2725 (2010). (in Chinese)

    7 Whittingham, M.S., “Lithium batteries and cathode materials”, Chem. Rev., 104 (10), 4271-4301 (2004).

    8 Yoon, M.S., Islam, M., Park, Y.M., Ur, S.C., “Effect of synthesizing method on the properties of LiFePO4/C composite for rechargeable lithium-ion batteries”, Electron. Mater. Lett., 9 (2), 187-193 (2013).

    9 Park, K.S., Song, J.T., Chung, H.T., Kim, S.J., Lee, C.H., Kang, K.T., Kim, H.G., “Surface modification by silver coating for improving electrochemical properties of LiFePO4”, Solid State Commun., 129 (5), 311-314 (2004).

    10 Chung, S.Y., Bloking, J., Chiang, Y.M., “Electronically conductive phosphor-olivines as lithium storage electrode”, Nat. Mater., 1 (2), 123-128 (2002).

    11 Jeong, E.D., Kim, H.J., Ahn, C.W., Ha, M.G., Hong, T.E., Kim, H.G., Jin, J.S., Bae, J.S., Hong, K.S., Kim, Y.S., Kim, H.J., Doh, C.H., Yang, H.S., “Synthesis and electrochemical studies of nano-scale carbon-coated LiFePO4electrodes for Li-ion batteries”, J. Nanosci. Nanotechnol., 9 (7), 4467-4471 (2009).

    12 Fisher, C.A.J., Prieto, V.M.H., Islam, M.S., “Lithium battery materials LiMPO4(M=Mn, Fe, Co, and Ni): Insights into defect association, transport mechanisms, and doping behavior”, Chem. Mater., 20 (18), 5907-5915 (2008).

    13 Herle, P.S., Ellis B., Coombs, N., Nazar, L.F., “Nano-network electronic conduction in iron and nickel olivine phosphates”, Nat. Mater., 3 (3), 147-152 (2004).

    14 Sides, C.R., Croce, F., Young, V.Y., Martin, C.R., Scrosati, B., “A high-rate, nanocomposite LiFePO4/carbon cathode”, Electrochem. Solid-State Lett., 8 (9), A484-A487 (2005).

    15 Arumugam, D., Kalaignan, G.P., Manisankar, P., “Synthesis and electrochemical characterizations of nano-crystalline LiFePO4and Mg-doped LiFePO4cathode materials for rechargeable lithium-ion batteries”, J. Solid State Electrochem., 13 (2), 301-307 (2009).

    16 Rho, Y.H., Nazar, L.F., Perry, L., Ryan, D., “Surface chemistry ofLiFePO4studied by Mossbauer and X-ray photoelectron spectroscopy and its effect on electrochemical properties”, J. Electrochem. Soc., 154 (4), A283-A289 (2007).

    17 Shi, Y., Chou, S.L., Wang, J.Z., Wexler, D., Li, H.J., Liu, H.K., Wu, Y.P., “Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion betteries with enhanced rate capacity”, J. Mater. Chem., 22 (32), 16465-16470 (2012).

    18 Hsu, K.F., Tsay, S.Y., Hwang, B.J., “Synthesis and characterization of nano-sized LiFePO4cathode materials prepared by a citric acid-based sol-gel route”, J. Mater. Chem., 14 (17), 2690-2695 (2004).

    19 Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.M., Schalkwijk, W.V.,“Nanostructured materials for advanced energy conversion and storage devices”, Nat. Mater., 4 (5), 366-377 (2005).

    20 Ma, J.X., Wang, C.S., Wroblewski, S., “Kinetic characteristics of mixed conductive electrodes for lithium ion batteries”, J. Power Sources, 164 (2), 849-856 (2007).

    21 Hu, G.R., Xiao, Z.W., Du, K., Peng, Z.D., Deng, X.R., “Preparation of LiFePO4for lithium ion battery using Fe2P2O7as precursor”, J. Cent. South Univ., 15 (4), 531-534 (2008).

    22 Thackeray, M., “An unexpected conductor”, Nat. Mater., 1 (2), 81-82 (2002).

    23 Churikov, A.V., Ivanishchev, A.V., Ivanishcheva, I.A., Sycheva, V.O., Khasanova, N.R., Antipov, E.V., “Determination of lithium diffusion coefficient in LiFePO4electrode by galvanostatic and potentiostatic intermittent titration techniques”, Electrochim. Acta, 55 (8), 2939-2950 (2010).

    24 Magasinski, A., Dixon, P., Hertzberg, B., Kvit, A., Ayala, J., Yushin, G., “High-performance lithium-ion anodes using a hierarchical bottom-up approach”, Nat. Mater., 9 (4), 353-358 (2010).

    25 Xu, Z.H., Xu, L., Lai, Q.Y., Ji, X.Y., “Microemulsion synthesis of LiFePO4/C and its electrochemical properties as cathode materials for lithium-ion cells”, Mater. Chem. Phys., 105 (1), 80-85 (2007).

    26 Wang, C.S., Hong, J., “Ionic/electronic conducting characteristics of LiFePO4cathode materials”, Electrochem. Solid-State Lett., 10 (3), A65-A69 (2007).

    2013-03-22, accepted 2013-07-07.

    * Supported partially by the Natural Science Foundation of Yunnan Province (2010ZC051) and Analysis and Testing Foundation (2009-041) and Starting Research Fund (14118245) from Kunming University of Science and Technology.

    ** To whom correspondence should be addressed. E-mail: csuxiao@163.com

    一级a爱片免费观看的视频| 最后的刺客免费高清国语| 2021天堂中文幕一二区在线观| 不卡视频在线观看欧美| 精品国内亚洲2022精品成人| 99久久成人亚洲精品观看| 亚洲国产色片| 深爱激情五月婷婷| 亚洲av.av天堂| 亚洲va日本ⅴa欧美va伊人久久| 哪里可以看免费的av片| 色综合色国产| 99riav亚洲国产免费| 国产精品久久久久久精品电影| 麻豆成人av在线观看| 一级av片app| 亚洲熟妇熟女久久| 日韩国内少妇激情av| 精品午夜福利视频在线观看一区| 在线观看美女被高潮喷水网站| 日本黄大片高清| 狂野欧美白嫩少妇大欣赏| 人人妻,人人澡人人爽秒播| 成人精品一区二区免费| 一级黄片播放器| 深夜a级毛片| 乱码一卡2卡4卡精品| 精品久久国产蜜桃| 白带黄色成豆腐渣| 久久久久国内视频| 亚洲精品一卡2卡三卡4卡5卡| 一夜夜www| 人人妻,人人澡人人爽秒播| x7x7x7水蜜桃| 美女黄网站色视频| 欧美绝顶高潮抽搐喷水| 亚洲成人久久爱视频| 一级a爱片免费观看的视频| 十八禁国产超污无遮挡网站| a级毛片免费高清观看在线播放| 91久久精品电影网| 一本一本综合久久| 欧美日韩瑟瑟在线播放| 中亚洲国语对白在线视频| 日日啪夜夜撸| 欧美黑人巨大hd| 两个人视频免费观看高清| 亚洲精华国产精华精| 欧美精品啪啪一区二区三区| 国内精品久久久久久久电影| 久久精品综合一区二区三区| 一进一出抽搐gif免费好疼| 亚洲性久久影院| 国产大屁股一区二区在线视频| 亚洲欧美日韩高清专用| 色噜噜av男人的天堂激情| 一区福利在线观看| 日韩欧美一区二区三区在线观看| 精品人妻视频免费看| 精品人妻偷拍中文字幕| 欧美激情国产日韩精品一区| 欧美中文日本在线观看视频| 天美传媒精品一区二区| 国内揄拍国产精品人妻在线| 动漫黄色视频在线观看| 精品不卡国产一区二区三区| 女同久久另类99精品国产91| 亚洲最大成人中文| 可以在线观看的亚洲视频| 中文字幕熟女人妻在线| 色av中文字幕| 床上黄色一级片| 亚洲欧美日韩无卡精品| 成人毛片a级毛片在线播放| 香蕉av资源在线| 联通29元200g的流量卡| 女人被狂操c到高潮| 九九热线精品视视频播放| 精品人妻视频免费看| 国产午夜福利久久久久久| 特级一级黄色大片| 啦啦啦啦在线视频资源| 国产美女午夜福利| 国产亚洲av嫩草精品影院| 亚洲五月天丁香| 一区二区三区四区激情视频 | 乱系列少妇在线播放| 在线免费十八禁| 久久久久久久午夜电影| 少妇被粗大猛烈的视频| 日本免费一区二区三区高清不卡| 国产极品精品免费视频能看的| 人人妻人人看人人澡| 国产激情偷乱视频一区二区| 九九爱精品视频在线观看| 别揉我奶头 嗯啊视频| 国产精品永久免费网站| 最近最新免费中文字幕在线| av视频在线观看入口| 亚洲性夜色夜夜综合| 亚州av有码| 美女高潮喷水抽搐中文字幕| 国产高潮美女av| 免费观看在线日韩| 亚洲 国产 在线| 我的老师免费观看完整版| 熟女人妻精品中文字幕| 男人舔奶头视频| 婷婷亚洲欧美| 日韩欧美在线二视频| 亚洲乱码一区二区免费版| 成人国产一区最新在线观看| 国产精品一区二区三区四区免费观看 | 小说图片视频综合网站| 熟妇人妻久久中文字幕3abv| 国产高清三级在线| 男插女下体视频免费在线播放| 日本精品一区二区三区蜜桃| 日韩欧美三级三区| 亚洲欧美日韩东京热| 99热精品在线国产| 老司机午夜福利在线观看视频| 夜夜爽天天搞| 国产一级毛片七仙女欲春2| 一本一本综合久久| 观看美女的网站| 日韩精品青青久久久久久| 91狼人影院| 午夜久久久久精精品| 好男人在线观看高清免费视频| 少妇裸体淫交视频免费看高清| 黄片wwwwww| 国产高清激情床上av| 无遮挡黄片免费观看| 亚洲av中文字字幕乱码综合| 国产探花在线观看一区二区| 精品人妻一区二区三区麻豆 | 精品久久久久久久久av| 18禁在线播放成人免费| 一夜夜www| 久久久久久大精品| 久久这里只有精品中国| 国产免费av片在线观看野外av| 精品午夜福利在线看| 露出奶头的视频| 色综合亚洲欧美另类图片| 婷婷精品国产亚洲av在线| 一区二区三区激情视频| 一级黄片播放器| 亚洲五月天丁香| 亚洲最大成人手机在线| 久久久久性生活片| 美女高潮的动态| 1024手机看黄色片| 性插视频无遮挡在线免费观看| 琪琪午夜伦伦电影理论片6080| 亚洲av美国av| 国产国拍精品亚洲av在线观看| 偷拍熟女少妇极品色| 最近最新免费中文字幕在线| 欧美xxxx黑人xx丫x性爽| 两个人视频免费观看高清| 成人午夜高清在线视频| 日本一二三区视频观看| 99热精品在线国产| 国产精品电影一区二区三区| 看十八女毛片水多多多| 成人国产一区最新在线观看| 成年女人永久免费观看视频| 91久久精品国产一区二区成人| 国产精品久久视频播放| 91麻豆av在线| av在线老鸭窝| 欧美人与善性xxx| 国产探花在线观看一区二区| 精品一区二区三区视频在线观看免费| 婷婷色综合大香蕉| 欧美性猛交╳xxx乱大交人| 日韩 亚洲 欧美在线| 欧美一级a爱片免费观看看| 国产精品人妻久久久久久| 成人永久免费在线观看视频| 欧美日韩国产亚洲二区| 欧美日韩综合久久久久久 | 亚洲国产高清在线一区二区三| 日韩人妻高清精品专区| 老熟妇仑乱视频hdxx| 久久婷婷人人爽人人干人人爱| 国产一区二区三区在线臀色熟女| 欧美成人a在线观看| 久久九九热精品免费| 精品日产1卡2卡| 欧美一级a爱片免费观看看| 中国美白少妇内射xxxbb| 欧美最新免费一区二区三区| 日韩人妻高清精品专区| 亚州av有码| 免费人成视频x8x8入口观看| 国产人妻一区二区三区在| 欧洲精品卡2卡3卡4卡5卡区| 欧美潮喷喷水| 伊人久久精品亚洲午夜| 欧美日韩黄片免| 亚洲欧美日韩无卡精品| 欧美黑人欧美精品刺激| 免费看美女性在线毛片视频| 俺也久久电影网| 欧美中文日本在线观看视频| 国产探花在线观看一区二区| 国产白丝娇喘喷水9色精品| ponron亚洲| 丰满的人妻完整版| 成人特级av手机在线观看| 成人午夜高清在线视频| 亚洲成人久久爱视频| 国产又黄又爽又无遮挡在线| 麻豆一二三区av精品| 日本黄色视频三级网站网址| 午夜影院日韩av| 国产精品三级大全| 女人十人毛片免费观看3o分钟| 桃色一区二区三区在线观看| 在线播放国产精品三级| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人久久性| 午夜福利欧美成人| 国产一区二区亚洲精品在线观看| 亚洲av第一区精品v没综合| 亚洲精品久久国产高清桃花| 一进一出抽搐动态| av在线老鸭窝| 国产精品1区2区在线观看.| 一进一出抽搐gif免费好疼| 日日啪夜夜撸| 国产男人的电影天堂91| 露出奶头的视频| 欧美色视频一区免费| 亚洲精品456在线播放app | 婷婷精品国产亚洲av在线| 色综合亚洲欧美另类图片| 婷婷色综合大香蕉| 丰满的人妻完整版| 听说在线观看完整版免费高清| 在线观看美女被高潮喷水网站| 亚洲性夜色夜夜综合| 嫩草影院新地址| 中国美女看黄片| 国产成人av教育| 欧美三级亚洲精品| 精品人妻偷拍中文字幕| 男女下面进入的视频免费午夜| 欧美在线一区亚洲| 久久精品国产亚洲av天美| 小蜜桃在线观看免费完整版高清| 久久精品国产鲁丝片午夜精品 | 亚洲精品一卡2卡三卡4卡5卡| 男人舔奶头视频| 亚州av有码| 色精品久久人妻99蜜桃| 91麻豆av在线| 国产在线男女| 亚洲国产高清在线一区二区三| 91av网一区二区| 久久精品国产清高在天天线| 国内毛片毛片毛片毛片毛片| 午夜福利视频1000在线观看| 欧美3d第一页| 窝窝影院91人妻| 成人特级黄色片久久久久久久| 久久亚洲精品不卡| 两个人视频免费观看高清| 午夜激情福利司机影院| 欧美丝袜亚洲另类 | 成年女人看的毛片在线观看| 亚洲精品在线观看二区| 久久这里只有精品中国| 亚洲aⅴ乱码一区二区在线播放| 亚洲人与动物交配视频| 淫妇啪啪啪对白视频| 又紧又爽又黄一区二区| 3wmmmm亚洲av在线观看| 天美传媒精品一区二区| 久久久久性生活片| 免费av观看视频| 波多野结衣高清无吗| 超碰av人人做人人爽久久| 真人一进一出gif抽搐免费| 成人鲁丝片一二三区免费| 波多野结衣巨乳人妻| 亚洲中文字幕日韩| 国产伦精品一区二区三区视频9| 亚洲av第一区精品v没综合| 亚洲欧美清纯卡通| 麻豆av噜噜一区二区三区| 日韩一本色道免费dvd| 亚洲人成网站在线播放欧美日韩| 国产女主播在线喷水免费视频网站 | 日韩欧美在线乱码| 两性午夜刺激爽爽歪歪视频在线观看| av天堂中文字幕网| 22中文网久久字幕| 久久99热这里只有精品18| 噜噜噜噜噜久久久久久91| www.www免费av| 亚洲成a人片在线一区二区| 可以在线观看毛片的网站| 小说图片视频综合网站| 久久99热这里只有精品18| 99久久无色码亚洲精品果冻| 干丝袜人妻中文字幕| 国产欧美日韩精品一区二区| 亚洲电影在线观看av| 我的女老师完整版在线观看| 欧美一区二区亚洲| 日韩高清综合在线| 成年女人毛片免费观看观看9| 看黄色毛片网站| 亚洲av五月六月丁香网| 又紧又爽又黄一区二区| 老熟妇仑乱视频hdxx| 国产 一区精品| 丰满乱子伦码专区| 天天躁日日操中文字幕| 在线观看午夜福利视频| 成人二区视频| 亚洲人成网站在线播| 国产伦精品一区二区三区四那| 老熟妇乱子伦视频在线观看| 日韩中文字幕欧美一区二区| 波多野结衣高清无吗| 男女做爰动态图高潮gif福利片| 一夜夜www| 三级毛片av免费| 亚洲在线自拍视频| 精品一区二区三区视频在线观看免费| 日韩欧美精品v在线| 88av欧美| 亚洲七黄色美女视频| 在现免费观看毛片| 真实男女啪啪啪动态图| 国产白丝娇喘喷水9色精品| 国产三级在线视频| 日韩欧美三级三区| 欧美精品国产亚洲| 久久6这里有精品| 男女视频在线观看网站免费| 麻豆国产av国片精品| 韩国av在线不卡| 午夜久久久久精精品| 少妇熟女aⅴ在线视频| 他把我摸到了高潮在线观看| 亚洲av熟女| 高清日韩中文字幕在线| 露出奶头的视频| 97人妻精品一区二区三区麻豆| 无遮挡黄片免费观看| 久久久成人免费电影| 久久人人爽人人爽人人片va| 在现免费观看毛片| av在线老鸭窝| 成人国产综合亚洲| 国产爱豆传媒在线观看| 国产精品无大码| 国产国拍精品亚洲av在线观看| 亚洲av熟女| 麻豆精品久久久久久蜜桃| 久久久久久久久久久丰满 | 中国美白少妇内射xxxbb| 国产男靠女视频免费网站| 色综合站精品国产| 麻豆国产av国片精品| 精品久久久久久久久久免费视频| 欧美精品啪啪一区二区三区| 久久久久久九九精品二区国产| 国产高清激情床上av| 天美传媒精品一区二区| 中出人妻视频一区二区| 国产乱人伦免费视频| 日韩欧美一区二区三区在线观看| 久久亚洲真实| 国产综合懂色| 亚洲第一区二区三区不卡| 国产精品av视频在线免费观看| 舔av片在线| 欧美性感艳星| 国产美女午夜福利| 国产精品野战在线观看| 久久精品91蜜桃| 亚洲自偷自拍三级| 最近最新免费中文字幕在线| 色av中文字幕| 在线天堂最新版资源| 国产一区二区在线av高清观看| 午夜激情欧美在线| 亚洲在线观看片| 12—13女人毛片做爰片一| 18禁在线播放成人免费| 亚洲图色成人| ponron亚洲| 丝袜美腿在线中文| 国内精品久久久久精免费| 人妻夜夜爽99麻豆av| 精品久久国产蜜桃| 国产视频内射| 亚洲国产高清在线一区二区三| 欧美性猛交黑人性爽| 麻豆精品久久久久久蜜桃| 国产探花极品一区二区| 日日撸夜夜添| 国内精品久久久久久久电影| 不卡视频在线观看欧美| 变态另类丝袜制服| 少妇人妻精品综合一区二区 | 色综合婷婷激情| 国产精品无大码| 最近最新免费中文字幕在线| 天堂网av新在线| 成人av一区二区三区在线看| a级毛片免费高清观看在线播放| 日韩 亚洲 欧美在线| 色5月婷婷丁香| 午夜福利高清视频| 亚洲av美国av| 最后的刺客免费高清国语| 尤物成人国产欧美一区二区三区| 国产一区二区三区视频了| 欧美一区二区国产精品久久精品| 午夜激情福利司机影院| 麻豆一二三区av精品| 久久久精品大字幕| 欧美日韩瑟瑟在线播放| 国产爱豆传媒在线观看| 午夜亚洲福利在线播放| 又爽又黄无遮挡网站| 搡老熟女国产l中国老女人| 日韩精品青青久久久久久| .国产精品久久| 人人妻,人人澡人人爽秒播| 亚洲熟妇中文字幕五十中出| 国产精品美女特级片免费视频播放器| 午夜精品一区二区三区免费看| 黄色欧美视频在线观看| 人人妻人人澡欧美一区二区| 天天躁日日操中文字幕| 天堂av国产一区二区熟女人妻| 亚洲欧美日韩无卡精品| 久久国内精品自在自线图片| av在线亚洲专区| 亚洲一级一片aⅴ在线观看| 在线看三级毛片| 熟女电影av网| 日日干狠狠操夜夜爽| a级一级毛片免费在线观看| 一级a爱片免费观看的视频| 在线免费观看不下载黄p国产 | 精品乱码久久久久久99久播| 69av精品久久久久久| 久久久久久久亚洲中文字幕| 在线观看av片永久免费下载| 亚洲精品粉嫩美女一区| 久久精品国产亚洲av天美| 黄色一级大片看看| 精华霜和精华液先用哪个| 国产一区二区激情短视频| 久久99热6这里只有精品| 久久热精品热| 亚洲美女黄片视频| 最近最新免费中文字幕在线| 亚洲性久久影院| 精品久久久久久久久av| 少妇猛男粗大的猛烈进出视频 | 精品久久久久久久末码| 欧美高清成人免费视频www| 高清日韩中文字幕在线| 久久久国产成人精品二区| 午夜福利在线观看免费完整高清在 | 亚洲18禁久久av| 蜜桃久久精品国产亚洲av| 午夜影院日韩av| 日韩亚洲欧美综合| 欧美+日韩+精品| 久久婷婷人人爽人人干人人爱| 国产真实乱freesex| 日本熟妇午夜| 亚洲国产欧美人成| 精品国内亚洲2022精品成人| 搡女人真爽免费视频火全软件 | 亚洲人成网站在线播放欧美日韩| 国产高清视频在线观看网站| 亚洲久久久久久中文字幕| 亚洲美女黄片视频| 国产日本99.免费观看| 22中文网久久字幕| 乱系列少妇在线播放| 精品一区二区三区人妻视频| 性色avwww在线观看| 白带黄色成豆腐渣| 狠狠狠狠99中文字幕| 搡老熟女国产l中国老女人| 九九热线精品视视频播放| 窝窝影院91人妻| 久久久久久伊人网av| 亚洲第一电影网av| 成人三级黄色视频| 午夜激情欧美在线| 一区二区三区高清视频在线| 给我免费播放毛片高清在线观看| 免费av不卡在线播放| or卡值多少钱| 真人做人爱边吃奶动态| 国产黄a三级三级三级人| 成人美女网站在线观看视频| 露出奶头的视频| 免费无遮挡裸体视频| 国产淫片久久久久久久久| 少妇人妻一区二区三区视频| 日本一本二区三区精品| 国产精品女同一区二区软件 | 男人和女人高潮做爰伦理| 人人妻人人澡欧美一区二区| av黄色大香蕉| 狂野欧美激情性xxxx在线观看| 精品福利观看| bbb黄色大片| 最新中文字幕久久久久| 99精品在免费线老司机午夜| 女人十人毛片免费观看3o分钟| 亚洲一区二区三区色噜噜| 性欧美人与动物交配| 97超视频在线观看视频| 亚洲,欧美,日韩| 午夜福利视频1000在线观看| 国产三级在线视频| 国产aⅴ精品一区二区三区波| 久久久久久大精品| 成人国产综合亚洲| 国产精品美女特级片免费视频播放器| 一区福利在线观看| 午夜视频国产福利| 亚洲精品影视一区二区三区av| 亚洲专区中文字幕在线| 日本三级黄在线观看| 琪琪午夜伦伦电影理论片6080| 国产白丝娇喘喷水9色精品| 国产精品美女特级片免费视频播放器| 午夜a级毛片| 天堂av国产一区二区熟女人妻| 免费人成视频x8x8入口观看| 精品人妻偷拍中文字幕| 日本三级黄在线观看| 亚洲精品国产成人久久av| 亚洲经典国产精华液单| 欧美xxxx性猛交bbbb| 日本 av在线| 啦啦啦观看免费观看视频高清| 日本免费a在线| 99视频精品全部免费 在线| xxxwww97欧美| 国产免费av片在线观看野外av| 国产精品人妻久久久久久| 精品久久久久久久末码| 日本五十路高清| 十八禁国产超污无遮挡网站| 日本免费a在线| 三级国产精品欧美在线观看| 精品日产1卡2卡| 长腿黑丝高跟| 国产乱人伦免费视频| 中文字幕精品亚洲无线码一区| 婷婷六月久久综合丁香| 国产精品人妻久久久久久| 中亚洲国语对白在线视频| 亚洲av中文av极速乱 | 九色成人免费人妻av| 亚洲最大成人中文| 人妻少妇偷人精品九色| 婷婷六月久久综合丁香| 日韩在线高清观看一区二区三区 | 亚洲欧美日韩东京热| 别揉我奶头~嗯~啊~动态视频| 精品国产三级普通话版| 国产精品人妻久久久久久| 男插女下体视频免费在线播放| 亚洲精品日韩av片在线观看| 99精品在免费线老司机午夜| 天天躁日日操中文字幕| 久久欧美精品欧美久久欧美| 又黄又爽又刺激的免费视频.| 日日干狠狠操夜夜爽| 日韩人妻高清精品专区| 亚洲人成网站在线播| 久久精品综合一区二区三区| 欧美区成人在线视频| 欧美中文日本在线观看视频| 变态另类丝袜制服| 变态另类成人亚洲欧美熟女| xxxwww97欧美| 免费不卡的大黄色大毛片视频在线观看 | 欧洲精品卡2卡3卡4卡5卡区| 男女下面进入的视频免费午夜| 真实男女啪啪啪动态图| 欧美日韩中文字幕国产精品一区二区三区| 欧美人与善性xxx| 午夜老司机福利剧场| 久久热精品热| 如何舔出高潮| 深夜精品福利| 亚洲无线观看免费| 中亚洲国语对白在线视频| 不卡一级毛片| 免费看av在线观看网站| 久久久久久久久大av| a级一级毛片免费在线观看| 免费大片18禁| 免费av不卡在线播放|