• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Filtering Surface Water with a Polyurethane-based Hollow Fiber Membrane: Effects of Operating Pressure on Membrane Fouling*

    2014-07-18 12:09:47ZHAOXuehui趙學輝ZHANGHongwei張宏偉andWANGJie王捷KeyLaboratoryofHollowFiberMembraneMaterialsandMembraneProcessMinistryofEducationTianjinPolytechnicUniversityTianjin300387China
    關鍵詞:張宏偉

    ZHAO Xuehui (趙學輝), ZHANG Hongwei (張宏偉)** and WANG Jie (王捷)Key Laboratory of Hollow Fiber Membrane Materials and Membrane Process, Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China

    Filtering Surface Water with a Polyurethane-based Hollow Fiber Membrane: Effects of Operating Pressure on Membrane Fouling*

    ZHAO Xuehui (趙學輝), ZHANG Hongwei (張宏偉)** and WANG Jie (王捷)
    Key Laboratory of Hollow Fiber Membrane Materials and Membrane Process, Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China

    Membrane fouling seriously restricts applications of membrane technology. A novel strategy was applied in this study to retard membrane fouling by changing operating pressure with the pressure responsibility membrane. A polyurethane-based hollow fiber membrane was used to treat surface water for evaluating the effect of operating pressure on membrane fouling. Some bench-scale tests in dead-end mode were carried out. In the experiments without backwashing, as operating pressure increased, severe membrane fouling occurred on membrane surface, while the permeate quality was improved obviously, which is considered to be due to shrinkage deformation. The total resistance, irreversible resistance and reversible resistance under different backwash pressures were determined in filtration/backwashing test. With the increase of backwash pressure, the total resistance decreased, and more importantly, the irreversible resistance also decreased, which implies that small particles deposited inside membrane pores and cake layers on membrane surface are effectively removed. Similar results could be obtained in mass balance tests. The results of the present study indicate that the application of pressure responsibility membrane in surface water treatment may be an effective strategy for reducing membrane fouling.

    membrane fouling, surface water treatment, pressure responsibility

    1 INTRODUCTION

    Membrane technology, as an effective method to remove particles, colloidal species, bacteria and virus in surface and ground water, has received considerable attentions. The critical problem in its successful application for drinking water treatment is membrane fouling [1, 2], which negatively affects productivity, product quality and process costs. In general, membrane fouling is classified into two kinds: reversible fouling and irreversible fouling. Reversible fouling can be removed by periodic backwashing, while irreversible fouling evolves even with periodical backwashing. It is reported that the causes of irreversible fouling are surface fouling by formation of gel layers on the membrane surface and pore fouling by partial blocking of the membrane due to small particles and adsorption of molecules on the pore surface [3]. Therefore, reducing or controlling the matter deposited on membrane surface and adsorbed on pore surface is very important for solving the membrane fouling problem. Dong et al. [4] and Katsuki et al. [5] reported that acidic condition could decrease contaminant size and enhance the adsorption onto membrane, resulting in significant irreversible fouling. Katsoufidou et al. [6], Hao et al. [7], and Paulavanden et al. [8] also indicated that controlling the concentration of metal ions such as Ca2+and Fe3+was important for mitigating irreversible fouling. Furthermore, some researchers [9-12] indicated that pretreatment methods, including coagulation, adsorption and pre-oxidation, could partially remove suspended solids, colloidal particles and natural organic matters and effectively alleviate the membrane fouling. However, all these methods need chemical reagents, which greatly increase the operating cost.

    The properties of smart membrane can be changed according to external environmental stimulation [13], such as temperature, pH, substance concentration, operating pressure, etc. Polyurethane-based hollow fiber membrane is a smart membrane, whose pores can be changed with operating pressure, named pressure responsibility membrane. The pressure responsibility of membrane means that the pores on membrane surface can be changed with operation pressure in a separation system. Therefore, pressure responsibility membrane can separate different substances by varying operating pressure towards its varying pore size. Meanwhile, when a membrane is fouled during working, the foulant can be easily eliminated by enlarging its pore size. Liang et al. [14] and Hu et al. [15] prepared polyurethane-based hollow fiber membranes, whose pore sizes on membrane surface can be adjusted by changing operating pressure. Liu et al. [16] and Liu et al. [17] investigated the effects of post-treatment on morphology and performance of polyurethane-based hollow fiber membrane. Most of the previous researches about pressure responsibility membrane have focused on the membrane structure and property, while its application to alleviating membrane fouling in drinking water treatment is rarely reported.

    The purpose of this study is to investigate the mechanism how the pressure responsibility membrane effectively alleviates the membrane fouling. The emphasis is on the effect of operating pressure on the evolution of membrane fouling and on the removal of contaminant deposition on the membrane surface. For this purpose, a polyurethane-based hollow fibre membrane with the property of pressure responsibility istested with surface water in a lab-scale apparatus.

    2 THEORETICAL MODEL

    2.1 Membrane filtration resistance model

    Generally, the membrane permeability is associated with three resistances: membrane hydraulic resistance (Rm), reversible resistance (Rc) and irreversible resistance (Rn). The resistance in series model is employed to describe the filtration resistance (Rt),

    Rccan be obtained by the resistance difference between the end of filtration and the initial filtration in next cycle. Rnis obtained by the difference in the initial resistance between adjacent filtration cycles. Rc/Rmand Rn/Rmcan be expressed as

    where Jeis the end flux of filtration and Jiis the initial filtration flux in next cycle.

    2.2 Mass balance model

    In this study, UV254is used to indicate organic foulant. Remize et al. [18] reported that mass balance method could precisely estimate backwash efficiency, which is used to evaluate the backwash efficiency under different backwash pressures. According to the rule of mass conservation, we have

    where Vwis raw water volume, Vris residual water volume, Vpis permeate volume, Vbis backwash drain water volume, Ubis the UV254concentration of backwash drain water, Upis the UV254concentration of permeate, Uris the UV254concentration of residual water, Uwis the UV254concentration of raw water, and W stands for the amount of foulant accumulated on membrane surface after filtration.

    3 MATERIALS AND METHODS

    3.1 Materials

    3.1.1 Feed water

    The source water used in this work was the surface water taken from a drinking water treatment plant, the characteristic parameters of the surface water were as follows: pH=7.2-7.9, turbidity=1.45-3.23 NTU, UV254=0.148-0.226 mg·L?1, and temperature= 13-24 °C.

    3.1.2 Membrane

    The polyurethane-based hollow fiber membrane with the property of pressure responsibility was used. The fiber has an internal diameter of 0.8 mm, an outer diameter of 1.8 mm, and a length of 10 cm. Fig. 1 shows the morphology of the membrane. The crosssection morphology exhibits a sponge-like structure. Outer and inner surfaces of the membrane present significantly different morphology. The scanning electron microscope (SEM) image of inner surface reveals a relatively high porosity and big pores, while no obvious pore is found on the outer surface with the magnification of 1000.

    3.2 Methods

    3.2.1 Filtration experiment

    The filtration experiment was performed in our laboratory and the schematic diagram of experimental apparatus is presented in Fig. 2. Nitrogen gas was used to provide required operating pressure. All experiments were carried out in the dead-end mode. Before each experiment, the apparatus was thoroughly washed with distilled water. Prior to filtration, new fiber was immersed in distilled water at least for 24 h to remove coating and wetting agents from the membrane and then the clean water flux (J0) was measured in each experiment. During the filtration, permeate was collected by measuring the content in the cylinder and the filtration time was recorded by stopwatch. The filtration experiment mainly includes following aspects.

    (1) To investigate the pressure responsibility of polyurethane-based hollow fiber membrane, pure waterflux (J0) was measured at different pressures with outside-in and inside-out mode.

    (2) Filtration experiments without backwashing were performed in the bench-scale apparatus. The surface water was forced to permeate from the outside to inside of the membrane for 60 min at the filtration pressures of 0.03, 0.04, 0.05 and 0.06 MPa. After filtration, the turbidity and UV254of permeate ware measured. The ratio of fluxes J/J0, measured every 10 min for filtration (J), was used for comparison.

    (3) Filtration/backwashing experiments were performed in the same apparatus. Each experiment was operated at a constant pressure of 0.03 MPa with outside-in mode. Each experiment consisted of four cycles of filtration, with each cycle for 30 min and followed by backwashing for 1 min. The flux recovery was investigated under backwashing pressure of 0.04, 0.05, 0.06 and 0.07 MPa. The ratio of fluxes (J/J0) was measured at an interval of 10 min.

    (4) The mass balance experiment was carried out at a fixed filtration pressure of 0.03 MPa with dead-end mode, each for 60 min. The surface water passed through the membrane from its outside surface to inside surface and the permeate was collected for analysis. After the filtration, one hydraulic backwash was carried out and the backwash pressure was set at 0.03, 0.04, 0.05 and 0.06 MPa. The backwash drain water was also collected for analysis.

    3.2.2 Analytical methods

    A Quanta 200 scanning electron microscope (FEI, Netherlands) was used to investigate the surface and cross-section morphology of the membrane. A CCD camera (MLM3XMP-CCD, Dongguan, China) was used to take photos for the membrane. UV absorbance at 254 nm of the samples was measured by a spectrophotometer (UV-2450, Shimadzu, Japan). Turbidity was determined using a turbidimeter (2100N, Hach, America).

    Figure 1 The morphology of polyurethane-based hollow fiber membrane(a) partial enlargement of cross section, ×400; (b) outer surface, ×1000; (c) inner surface, ×1000

    Figure 2 Schematics of the experimental set-up1—nitrogen gas; 2—regulation valve; 3—pressure gauge; 4—intake valve; 5—feed water valve; 6—backwash valve; 7—membrane module; 8—backwash water drain valve; 9—permeate valve; 10, 11—measuring cylinder; 12—feed water tank; 13—backwash water tank

    4 RESULTS AND DISCUSSION

    4.1 Membrane pressure responsibility

    In order to examine the pressure responsibility of the polyurethane-based hollow fiber membrane, the pure water flux (J0) was measured under different pressures with outside-in and inside-out modes separately. The pure water flux of membrane is usually described by Hagen-Poiseuille equation [19] and is a linear relationship with trans-membrane pressure (TMP).

    where ε is the surface porosity, d is the diameter of pore, η is the viscosity, τ is the tortuosity of pore, L is the membrane thickness, and ΔP is the trans-membrane pressure.

    Figure 3 shows the pure water flux as a function of TMP. With the inside-out mode, the flux increases with TMP, increasing slowly in a low pressure range from 0 to 0.035 MPa and then dramatically at pressures higher than 0.035 MPa. This behavior could be explained as follows. At low operating pressures, pore diameter (d) and wall thickness (L) of membrane are almost constant. According to Eqs. (10) and (11), the flux is related to TMP only and increases slowly. At higher operating pressures, expansive deformation [Fig. 4 (b1)] occurs on membrane surface, increasingthe pore size and thinness of membrane wall. Accordingly, the flux increases in addition to that resulted from TMP. Thus the polyurethane-based hollow fiber membrane presents pressure responsibility at higher pressure. In the outside-in mode, the membrane flux increases initially and then decreases as operating pressure increases. An inflection point appears (0.054 MPa), which could be explained by contraction deformation [Fig. 4 (b0)] on the polyurethane-based hollow fiber membrane surface at higher operating pressure. This deformation could result in the shrinkage of pore and the decrease of lumen, increasing membrane resistance (Rm). According to Eq. (2), when the effect of membrane resistance (Rm) on pure flux (J0) is larger than the effect of operating pressure, the flux will decrease as operation pressure increases. Moreover, with different porosity on outside and inside surfaces of the membrane, the pure water fluxes are different.

    Compared to traditional membrane filtration, an evident difference is that the pressure responsibility membrane produces expansive deformation in a hydraulic backwash. Fig. 5 shows the working schematic diagram of pressure responsibility membrane. The hydraulic backwash results in expansive deformation, increasing pore size on membrane surface, so that the deposition in membrane pores and pore-blocking by small particles could be removed to a great degree. As a consequence, the application of pressure responsibility membrane is an effective strategy to reduce membrane fouling.

    Figure 3 Variations of pure water flux with TMP

    Figure 4 Deformation of pressure responsibility membrane (a0) raw membrane; (b0) contraction deformation (0.04 MPa); (a1) raw membrane; (b1) expansive deformation (0.05 MPa)

    Figure 5 The working schematic diagram of pressure responsibility membrane

    4.2 Effect of operating pressure on membrane fouling

    In order to investigate the effects of operatingpressure on membrane fouling, some bench-scale tests without backwashing in dead-end mode were performed. The relative permeability (J/J0) is used as the indicator of membrane fouling. Fig. 6 shows the decrease of relative permeability during the outside-in filtration of surface water under different operating pressures. The relative permeability attenuated quickly at the beginning of filtration and reached 0.62, 0.43, 0.3 and 0.19 after 10 min under operating pressures of 0.03, 0.04, 0.05 and 0.06 MPa, respectively. With 60 min filtration, the membrane flux under 0.03 MPa lost about 60% of the initial permeability, while more than 85% of the initial permeability was lost at other operating pressures. Thus the increase of operating pressure accelerates membrane fouling. Fig. 7 represents the variation of permeate quality under different operating pressures. The effect is significant. The turbidity and UV254under 0.03 MPa were 0.35 NTU and 0.039 mg·L?1, respectively, but decreased to 0.20 NTU and 0.021 mg·L?1under 0.06 MPa, indicating that the increase of operating pressure improves the permeate quality. These results could be attributed to the contraction deformation [Fig. 4 (b0)], with better rejection of foulant on membrane surface.

    Figure 6 Variation of J/J0at different operating pressures filtration pressure/MPa: ■ 0.03; ● 0.04; ◆ 0.05; ★ 0.06

    Figure 7 Variations of permeate turbidity and UV254at different operating pressures

    4.3 Effect of backwash pressure on membrane foulings

    To understand the mechanism of mitigating membrane fouling for pressure responsibility membrane, dead-end filtration of surface water using the polyurethane-based hollow fiber membrane was carried out with periodic backwashing. Fig. 8 shows the variation of total resistance as a function of time under different backwash pressures, with outside-in mode performed at 0.03 MPa and the backwash pressure ranged from 0.04 MPa to 0.07 MPa. As expected, the total resistance Rt/Rmdecreased rapidly with the increase of backwash pressure. The value of Rt/Rmwas about 2.0 with the filtration of 30 min and decreased to 1.65, 1.55, 1.3 and 1.2 after backwashing at 0.04, 0.05, 0.06 and 0.07 MPa, respectively. After 150 min filtration, the total resistance increment at backwash pressure of 0.07 MPa was less than that at other backwash pressures. These results suggest that increase of backwash pressure could reduce membrane fouling.

    Figure 8 Variations of total filtration resistance at different backwash pressures (operating pressure: 0.03 MPa)

    Usually, irreversible fouling is considered as the main cause for the deterioration of membrane performance. How to control the evolution of irreversible fouling is a key for maintaining desired membrane performance. It is reported that the removal of small size substance deposited in membrane pores and cake layer formed on membrane surface is very important for controlling irreversible fouling. Fig. 9 shows the effects of backwash pressure on irreversible resistance. The value of Rn/Rmat backwash pressure of 0.04, 0.05, 0.06 and 0.07 MPa increased from 0.65, 0.55, 0.32 and 0.21 at 30 min of filtration time to 0.85, 0.75, 0.54 and 0.40 at 120 min of filtration time. The irreversible fouling reduces as backwash pressure increases. The variation of reversible resistance under different backwash pressures is presented in Fig. 10. The Rc/Rmpercentage of total resistance at backwash pressure of 0.07 MPa is distinctly higher than that at other backwash pressures. As the backwash pressure increases, the expansive deformation [Fig. 4 (b1)] occurs, which results in the crack and loose of dense cake layer and the increase of pore size on membrane surface, which is the reason that irreversible resistance decreases and reversible resistance increases with the increase of backwash pressure. Therefore, the irreversible fouling on membrane surface could be partly transformed into reversible fouling and removed with pressure responsibility membrane by increasing backwash pressure.

    Figure 9 Variations of irreversible resistance at different backwash pressures (operating pressure: 0.03 MPa) backwash pressure/MPa: ■ 0.04; ● 0.05; ▲ 0.06; ★ 0.07

    Figure 10 Variations of reversible resistance at different backwash pressures (operating pressure: 0.03 MPa) backwash pressure/MPa: ■ 0.04; ● 0.05; ▲ 0.06; ★ 0.07

    4.4 Backwash efficiency by the mass balance method

    Figure 11 presents the backwash efficiency under different backwash pressures. The amount of foulant deposition on membrane surface decreased almost 50% as backwash pressure increased from 0.03 MPa to 0.06 MPa. More foulant on membrane surface could be removed efficiently with the increase of backwash pressure, which is consistent with the result in the filtration/backwashing test.

    Figure 11 Variations of backwash efficiency at different backwash pressures

    5 CONCLUSIONS

    In the bench-scale tests using a polyurethane-based hollow fiber membrane to filter surface water to investigate the effect of operating pressure on the membrane fouling, it is revealed that the operating pressure has an important influence on the evolution of membrane fouling in different filtration modes. The experimental results without backwashing and with outside-in mode indicate that increment of operating pressure accelerates membrane fouling, while significantly improves the permeate quality, which could be attributed to contraction deformation and enhancement of rejection of foulant on the membrane surface. The total resistance, irreversible resistance and reversible resistance determined in the filtration/backwashing test suggest that as backwash pressure increases, the total resistance and especially irreversible resistance decrease, implying that the foulant deposited on membrane surface and in membrane pores could be swept away effectively. The determination of backwash efficiency also proves that increment of backwash pressure is benefit to removal of foulant. This is considered to be due to expansive deformation, enlarging the pore and loosening the cake on membrane surface. Therefore, the present study provides a simple and effective approach to mitigate membrane fouling.

    NOMENCLATURE

    REFERENCES

    1 Amy, G., “Fundamental understanding of organic matter fouling of membranes”, Desalination, 23,144-511 (2008).

    2 Gao, W., Liang, H., Ma, J., “Membrane fouling control in ultrafiltration technology for drinking water production: A review”, Desalination, 272, 1-8 (2011).

    3 Katsoufidou, K., Yiantsios, S.G., Karabelas, A.J., “Experimental study of ultrafiltration membrane fouling by sodium alginate and flux recovery by backwashing”, J. Membr. Sci., 300, 137-146 (2007).

    4 Dong, B.Z., Chen, Y., Gao, N.Y., Fan, J.C., “Effect of pH on UF membrane fouling”, Desalination, 195, 201-208 (2006).

    5 Katsuki, K., Tomohiro, M., Hiroshi, Y., Yoshimasa, W., “Irreversible membrane fouling in microfiltration membranes filtering coagulated surface water”, J. Membr. Sci., 320, 356-362 (2008).

    6 Katsoufidou, K., Yiantsios, S.G., Karabelas, A.J., “A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modeling”, J. Membr. Sci., 266, 40-50 (2005).

    7 Yan, H., Akihito, M., Tatsuo, M., “Effect of metal ions on humic acid fouling of hollow fiber ultrafiltration membrane”, J. Membr. Sci., 376, 247-253 (2011).

    8 Paulavanden, B., Arie, Z., Geo, S., “Effect of free calcium concentration and ionic strength on alginate fouling in cross-flow membrane filtration”, J. Membr. Sci., 345, 207-216 (2009).

    9 Wolfgang, N., Steffen, V., Mathias, E., Martin, J., “Lab and pilot scale investigation on membrane fouling during the ultrafiltration of surface water”, Desalination, 250, 968-972 (2010).

    10 Chihpin, H., Jr-Lin, L., Wen-Shan, L., “Effect of coagulation mechanism on membrane permeability in coagulation-assisted microfiltration for spent filter backwash water recycling”, Colloids and Surfaces A: Physicochemical and Engineering Aspect, 378, 72-78 (2011).

    11 Xu, W.Y., Gao, B.Y., Mao, R.R., “Influence of floc size and structure on membrane fouling in coagulation-ultrafiltration hybrid process-the role of Al13 species”, J. Hazard. Mater., 93, 249-256 (2011).

    12 Gao, W., Liang, H., Ma, J., Han, M., Chen, Z.L., Han, Z.S., Li, G.B.,“Membrane fouling control in ultrafiltration technology for drinking water production: A review”, Desalination, 272, 1-8 (2011).

    13 Chu, L.Y., Xie, R., Ju, X.J., “Stimuli-responsive membranes: smart tools for controllable mass-transfer and separation processes”, Chin. J. Chem. Eng., 19, 891-903 (2011).

    14 Liang, H.X., Xiao, C.F., Hu, X.Y., “Pressure-responsibility of melt-spinning polyurethane based hollow fiber membranes”, Polym. Mater. Sci. Eng., 12, 130-133 (2008).

    15 Hu, X.Y., Xiao, C.F., An, S.L., “Structure and properties of polyurethane/polyvinylidene difluoride blending hollow fiber”, Journal of Donghua University, 5, 76-79 (2006).

    16 Liu, M.T., Xiao, C.F., Hu, X.Y., “Optimization of polyurethane-based hollow fiber membranes morphology and performance by post-treatment methods”, Desalination, 275, 133-140 (2011).

    17 Liu, H.L., Xiao, C.F., Hu, X.Y., Liu, M.T., “Post-treatment effect on morphology and performance of polyurethane-based hollow fiber membranes through melt-spinning method”, J. Membr. Sci., 427, 326-335 (2013).

    18 Remize, P.J., Guigui, C., Cabassud, C., “Evaluation of backwash efficiency, definition of remaining fouling and characterization of its contribution in irreversible fouling: Case of drinking water production by air-assisted ultra-filtration”, J. Membr. Sci., 355,104-111 (2010).

    19 Zhao, C.S., Zhou, X.S., Yue, Y.L., “Determination of pore size and pore size distribution on the surface of hollow-fiber membranes: a review of methods”, Desalination, 129, 107-123 (2000).

    2013-03-18, accepted 2013-09-27.

    * Supported by the National Natural Science Foundation of China (51078264, 51108314, 51108315, 51138008).

    ** To whom correspondence should be addressed. E-mail: zhanghw@tjpu.edu.cn

    猜你喜歡
    張宏偉
    Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
    倒立哥,換個角度看世界
    金秋(2021年12期)2021-10-06 04:07:30
    SHARP BOUNDS FOR TOADER-TYPE MEANS IN TERMS OF TWO-PARAMETER MEANS?
    育學子之德行 潤桃李共芬芳
    交通肇事案,收留親戚惹禍
    莫愁(2018年16期)2018-11-14 06:15:41
    交通肇事案,收留親戚惹禍
    張宏偉 危難時刻顯身手
    忘不了,“流浪愛情狂人”千轉百回
    幸福(2016年16期)2016-07-25 12:03:10
    忘不了,“流浪愛情狂人”千轉百回
    遇上一個輸不起的創(chuàng)業(yè)者
    国产麻豆成人av免费视频| 91字幕亚洲| 久久99热这里只有精品18| 亚洲国产欧美人成| 99在线视频只有这里精品首页| 欧美国产日韩亚洲一区| 久久久久免费精品人妻一区二区| 又粗又爽又猛毛片免费看| 波多野结衣高清作品| 欧美zozozo另类| 最新在线观看一区二区三区| 亚洲午夜理论影院| 村上凉子中文字幕在线| or卡值多少钱| 成年免费大片在线观看| 91九色精品人成在线观看| 久久久久久人人人人人| 久久久国产精品麻豆| 精品欧美国产一区二区三| 在线看三级毛片| 中文字幕精品亚洲无线码一区| 亚洲国产色片| 国产亚洲精品久久久com| 99久久无色码亚洲精品果冻| 色吧在线观看| 五月玫瑰六月丁香| 久久久久九九精品影院| 久久热在线av| 精品一区二区三区视频在线观看免费| 国产精品一区二区三区四区久久| 欧美日韩一级在线毛片| 国产探花在线观看一区二区| 又粗又爽又猛毛片免费看| 女生性感内裤真人,穿戴方法视频| 两性夫妻黄色片| 最近最新中文字幕大全电影3| 亚洲欧美精品综合一区二区三区| 欧美午夜高清在线| 久久性视频一级片| 中文字幕久久专区| 国产三级中文精品| 午夜亚洲福利在线播放| 99热这里只有精品一区 | 此物有八面人人有两片| 亚洲熟妇中文字幕五十中出| 最近视频中文字幕2019在线8| 男女床上黄色一级片免费看| 美女大奶头视频| 欧美一区二区精品小视频在线| 一区二区三区高清视频在线| 亚洲狠狠婷婷综合久久图片| 老司机午夜福利在线观看视频| 9191精品国产免费久久| 亚洲自拍偷在线| 黄色视频,在线免费观看| 99久久精品国产亚洲精品| 亚洲av成人一区二区三| 97碰自拍视频| 淫秽高清视频在线观看| 成年免费大片在线观看| 亚洲av五月六月丁香网| 欧美黄色片欧美黄色片| 国产成人aa在线观看| 99精品在免费线老司机午夜| 国产乱人视频| 黄色视频,在线免费观看| 97超级碰碰碰精品色视频在线观看| 9191精品国产免费久久| avwww免费| av视频在线观看入口| 91麻豆av在线| 精品日产1卡2卡| 国产精品av视频在线免费观看| 亚洲乱码一区二区免费版| 国产主播在线观看一区二区| 国产一区二区在线av高清观看| a在线观看视频网站| 麻豆国产av国片精品| 午夜激情福利司机影院| 国产精品永久免费网站| 搡老岳熟女国产| 此物有八面人人有两片| 国产高潮美女av| 日本黄色视频三级网站网址| 一级毛片女人18水好多| 亚洲中文日韩欧美视频| 在线十欧美十亚洲十日本专区| 色在线成人网| cao死你这个sao货| 欧美色视频一区免费| 看免费av毛片| 亚洲美女黄片视频| 日韩高清综合在线| 国产探花在线观看一区二区| 亚洲成人精品中文字幕电影| cao死你这个sao货| 国产精品电影一区二区三区| 日本与韩国留学比较| 观看美女的网站| 人妻久久中文字幕网| 亚洲午夜精品一区,二区,三区| 久久精品国产亚洲av香蕉五月| 一边摸一边抽搐一进一小说| 中文字幕av在线有码专区| 婷婷精品国产亚洲av在线| 极品教师在线免费播放| 精品日产1卡2卡| 在线观看66精品国产| 美女黄网站色视频| 很黄的视频免费| 国产熟女xx| 成人三级黄色视频| av视频在线观看入口| 国产av一区在线观看免费| 在线观看免费视频日本深夜| 欧美性猛交黑人性爽| 久久久久性生活片| 亚洲va日本ⅴa欧美va伊人久久| 日韩成人在线观看一区二区三区| 亚洲精品久久国产高清桃花| 看黄色毛片网站| 大型黄色视频在线免费观看| 亚洲黑人精品在线| 国产伦精品一区二区三区四那| 国产精品久久久久久亚洲av鲁大| a级毛片在线看网站| 亚洲av成人精品一区久久| 国产精品综合久久久久久久免费| 久久久久久久精品吃奶| 99热精品在线国产| 少妇丰满av| 男插女下体视频免费在线播放| 啦啦啦观看免费观看视频高清| 神马国产精品三级电影在线观看| 麻豆av在线久日| 免费观看精品视频网站| 波多野结衣高清无吗| 亚洲av第一区精品v没综合| 精品久久久久久久久久久久久| 成年女人看的毛片在线观看| 观看美女的网站| 日本在线视频免费播放| 午夜福利在线在线| 中国美女看黄片| 色av中文字幕| 一级毛片女人18水好多| 最新美女视频免费是黄的| 亚洲欧美日韩高清在线视频| 亚洲国产日韩欧美精品在线观看 | 十八禁人妻一区二区| 免费在线观看亚洲国产| 伦理电影免费视频| 人人妻人人看人人澡| 午夜两性在线视频| 一a级毛片在线观看| 天天添夜夜摸| 久久久色成人| 国产成人啪精品午夜网站| 欧美乱色亚洲激情| 欧美一区二区精品小视频在线| 国产精品久久久久久精品电影| 搡老妇女老女人老熟妇| av片东京热男人的天堂| 人人妻人人看人人澡| 精品一区二区三区视频在线观看免费| а√天堂www在线а√下载| 国内精品久久久久久久电影| 99国产精品一区二区三区| 少妇人妻一区二区三区视频| 久久久国产成人免费| 国产精品亚洲美女久久久| 国内揄拍国产精品人妻在线| av女优亚洲男人天堂 | 久久久国产精品麻豆| 亚洲七黄色美女视频| 日本 欧美在线| 麻豆国产av国片精品| 国产精品亚洲av一区麻豆| 99久久成人亚洲精品观看| 中文字幕久久专区| 99久久久亚洲精品蜜臀av| 欧美日韩乱码在线| 成人欧美大片| 久久精品国产亚洲av香蕉五月| 在线观看日韩欧美| 白带黄色成豆腐渣| 极品教师在线免费播放| 国产探花在线观看一区二区| 久久婷婷人人爽人人干人人爱| 精品一区二区三区视频在线 | 村上凉子中文字幕在线| 午夜精品久久久久久毛片777| 特级一级黄色大片| 美女高潮喷水抽搐中文字幕| 91麻豆av在线| 神马国产精品三级电影在线观看| 久久性视频一级片| 老司机深夜福利视频在线观看| 1024香蕉在线观看| 中出人妻视频一区二区| 欧美三级亚洲精品| 国产成人精品久久二区二区91| 久久久精品大字幕| 久久精品国产亚洲av香蕉五月| 一进一出抽搐动态| 亚洲av五月六月丁香网| 国产精品av久久久久免费| 久久午夜综合久久蜜桃| 午夜福利欧美成人| 欧美日韩福利视频一区二区| 久久人妻av系列| 伦理电影免费视频| 亚洲av片天天在线观看| 人妻夜夜爽99麻豆av| 最好的美女福利视频网| 国产成人系列免费观看| 国产av不卡久久| 亚洲人成伊人成综合网2020| 变态另类成人亚洲欧美熟女| 黄色视频,在线免费观看| 中文在线观看免费www的网站| 亚洲真实伦在线观看| 成人无遮挡网站| 亚洲国产日韩欧美精品在线观看 | 两个人视频免费观看高清| xxxwww97欧美| 不卡一级毛片| 精品久久久久久久末码| 免费看光身美女| 亚洲熟妇中文字幕五十中出| 国产人伦9x9x在线观看| 五月伊人婷婷丁香| 成年免费大片在线观看| 国产乱人视频| 最近在线观看免费完整版| 岛国在线观看网站| 99国产综合亚洲精品| 久久人妻av系列| 亚洲国产精品999在线| 国产欧美日韩一区二区精品| 亚洲国产精品合色在线| 亚洲精品一区av在线观看| 亚洲天堂国产精品一区在线| 国内久久婷婷六月综合欲色啪| 超碰成人久久| 1024香蕉在线观看| 18禁裸乳无遮挡免费网站照片| 一卡2卡三卡四卡精品乱码亚洲| 亚洲最大成人中文| av国产免费在线观看| 免费观看人在逋| 欧美3d第一页| 国产精品乱码一区二三区的特点| 女人高潮潮喷娇喘18禁视频| 最近视频中文字幕2019在线8| 在线看三级毛片| 99国产精品一区二区三区| 国产成人系列免费观看| 亚洲欧美一区二区三区黑人| 成年女人毛片免费观看观看9| 不卡av一区二区三区| 亚洲片人在线观看| 又爽又黄无遮挡网站| 国产精品综合久久久久久久免费| 男人和女人高潮做爰伦理| 手机成人av网站| 噜噜噜噜噜久久久久久91| 九色国产91popny在线| 99re在线观看精品视频| 欧美中文日本在线观看视频| 免费看a级黄色片| 99在线视频只有这里精品首页| 国产精品98久久久久久宅男小说| 69av精品久久久久久| 麻豆一二三区av精品| 日韩欧美一区二区三区在线观看| 成人三级做爰电影| 亚洲av成人不卡在线观看播放网| 久久久国产成人免费| av天堂中文字幕网| 国产成人精品无人区| 9191精品国产免费久久| 亚洲精品在线观看二区| 一级毛片精品| 国产乱人伦免费视频| avwww免费| 51午夜福利影视在线观看| 三级毛片av免费| 国产人伦9x9x在线观看| 精品久久久久久久人妻蜜臀av| 亚洲一区二区三区色噜噜| 天天添夜夜摸| 欧美高清成人免费视频www| 亚洲国产欧洲综合997久久,| 真实男女啪啪啪动态图| 精品国产美女av久久久久小说| 亚洲第一欧美日韩一区二区三区| 亚洲乱码一区二区免费版| 在线观看免费午夜福利视频| 日本黄色视频三级网站网址| 一本久久中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 免费大片18禁| netflix在线观看网站| 19禁男女啪啪无遮挡网站| 日本一本二区三区精品| 美女黄网站色视频| 久久国产精品人妻蜜桃| 免费av毛片视频| 一卡2卡三卡四卡精品乱码亚洲| 村上凉子中文字幕在线| av片东京热男人的天堂| 午夜影院日韩av| 国产成人一区二区三区免费视频网站| 国内少妇人妻偷人精品xxx网站 | 国产亚洲精品久久久久久毛片| 亚洲七黄色美女视频| 久久久久免费精品人妻一区二区| 成在线人永久免费视频| 久久精品国产综合久久久| 国产亚洲欧美在线一区二区| 波多野结衣巨乳人妻| 中文字幕人妻丝袜一区二区| 91老司机精品| avwww免费| 一个人观看的视频www高清免费观看 | 久久中文字幕人妻熟女| 中国美女看黄片| 两人在一起打扑克的视频| 国产精品99久久久久久久久| 少妇丰满av| 久9热在线精品视频| 成人永久免费在线观看视频| 国产伦精品一区二区三区视频9 | 在线观看美女被高潮喷水网站 | 午夜a级毛片| 久久久国产成人免费| 不卡av一区二区三区| 日本精品一区二区三区蜜桃| 狂野欧美激情性xxxx| 国产黄片美女视频| www.999成人在线观看| 免费在线观看成人毛片| av天堂在线播放| 精品无人区乱码1区二区| 18禁观看日本| aaaaa片日本免费| 久久欧美精品欧美久久欧美| av片东京热男人的天堂| 在线视频色国产色| 午夜福利成人在线免费观看| 男人舔女人下体高潮全视频| 色尼玛亚洲综合影院| 久久精品aⅴ一区二区三区四区| 欧美一级毛片孕妇| 久久亚洲精品不卡| 别揉我奶头~嗯~啊~动态视频| 9191精品国产免费久久| 一区二区三区高清视频在线| 国内毛片毛片毛片毛片毛片| 久久草成人影院| 亚洲专区国产一区二区| 国产精品,欧美在线| 中亚洲国语对白在线视频| 日本三级黄在线观看| 伊人久久大香线蕉亚洲五| 午夜福利视频1000在线观看| 我的老师免费观看完整版| 亚洲成av人片免费观看| 老熟妇仑乱视频hdxx| 国产淫片久久久久久久久 | 九色国产91popny在线| 国产精品免费一区二区三区在线| 99热这里只有是精品50| 亚洲精品美女久久av网站| 免费在线观看日本一区| 视频区欧美日本亚洲| 天堂av国产一区二区熟女人妻| 国产精品日韩av在线免费观看| 天堂动漫精品| 一级毛片女人18水好多| 哪里可以看免费的av片| 国产成人精品久久二区二区免费| 我要搜黄色片| 日韩国内少妇激情av| 狠狠狠狠99中文字幕| 日韩精品中文字幕看吧| 亚洲精品久久国产高清桃花| 不卡一级毛片| 狂野欧美白嫩少妇大欣赏| 波多野结衣高清无吗| 日本撒尿小便嘘嘘汇集6| 日本与韩国留学比较| 国产成人欧美在线观看| 日本 av在线| 亚洲精品乱码久久久v下载方式 | 一本一本综合久久| 国产乱人视频| 性欧美人与动物交配| 欧美在线黄色| av黄色大香蕉| 哪里可以看免费的av片| 9191精品国产免费久久| 最近最新中文字幕大全免费视频| 又紧又爽又黄一区二区| 亚洲色图 男人天堂 中文字幕| 国产高清视频在线播放一区| 可以在线观看的亚洲视频| 国产三级中文精品| 中出人妻视频一区二区| 在线永久观看黄色视频| 啦啦啦观看免费观看视频高清| 女生性感内裤真人,穿戴方法视频| 一区二区三区国产精品乱码| 国内毛片毛片毛片毛片毛片| 免费无遮挡裸体视频| 一边摸一边抽搐一进一小说| 1000部很黄的大片| 久久久久性生活片| 一a级毛片在线观看| 亚洲欧洲精品一区二区精品久久久| 1024香蕉在线观看| 可以在线观看毛片的网站| a级毛片a级免费在线| 又黄又粗又硬又大视频| a级毛片a级免费在线| 亚洲av成人精品一区久久| 丰满人妻一区二区三区视频av | 久久草成人影院| 日韩 欧美 亚洲 中文字幕| 成人18禁在线播放| 一二三四社区在线视频社区8| 波多野结衣巨乳人妻| 俄罗斯特黄特色一大片| 国语自产精品视频在线第100页| 久久久久九九精品影院| 好男人电影高清在线观看| 夜夜夜夜夜久久久久| 亚洲成人中文字幕在线播放| 中文在线观看免费www的网站| 国产欧美日韩精品亚洲av| 少妇丰满av| e午夜精品久久久久久久| 在线a可以看的网站| 在线观看美女被高潮喷水网站 | 国产高清视频在线播放一区| 黄频高清免费视频| 男女那种视频在线观看| 精品久久久久久,| 精品一区二区三区四区五区乱码| 美女午夜性视频免费| 天堂影院成人在线观看| 国产精品日韩av在线免费观看| 成人永久免费在线观看视频| 18美女黄网站色大片免费观看| 国内精品美女久久久久久| 18禁黄网站禁片午夜丰满| 欧美日本亚洲视频在线播放| 欧美另类亚洲清纯唯美| 男女床上黄色一级片免费看| 在线观看舔阴道视频| 日韩av在线大香蕉| 亚洲中文字幕一区二区三区有码在线看 | 亚洲av五月六月丁香网| 一本一本综合久久| 亚洲乱码一区二区免费版| 日韩欧美在线二视频| 亚洲精品色激情综合| 久久久精品大字幕| 免费看美女性在线毛片视频| 在线观看免费视频日本深夜| 一进一出抽搐动态| 国产不卡一卡二| 国产在线精品亚洲第一网站| 欧美性猛交╳xxx乱大交人| 亚洲色图av天堂| 两性夫妻黄色片| 欧美又色又爽又黄视频| 国产激情久久老熟女| 天堂动漫精品| 特级一级黄色大片| 午夜福利视频1000在线观看| 日本五十路高清| 色av中文字幕| 久久精品影院6| 国产成+人综合+亚洲专区| 夜夜爽天天搞| 悠悠久久av| 美女高潮的动态| 一进一出好大好爽视频| 中文字幕高清在线视频| 久久久久久久精品吃奶| 两个人的视频大全免费| 国产v大片淫在线免费观看| 亚洲,欧美精品.| 黑人操中国人逼视频| 久久亚洲真实| 日韩欧美 国产精品| 亚洲人成伊人成综合网2020| 亚洲精品在线观看二区| 别揉我奶头~嗯~啊~动态视频| 又紧又爽又黄一区二区| 91在线精品国自产拍蜜月 | 精品一区二区三区av网在线观看| 色噜噜av男人的天堂激情| 国产精品久久电影中文字幕| 哪里可以看免费的av片| 亚洲国产精品合色在线| 亚洲国产色片| 亚洲国产看品久久| 啦啦啦韩国在线观看视频| 免费大片18禁| 久久精品91蜜桃| 两人在一起打扑克的视频| 香蕉av资源在线| 亚洲成av人片在线播放无| 亚洲五月天丁香| 18禁观看日本| svipshipincom国产片| 成年女人永久免费观看视频| 激情在线观看视频在线高清| 在线观看免费午夜福利视频| 久久精品夜夜夜夜夜久久蜜豆| 日日夜夜操网爽| 亚洲欧美一区二区三区黑人| 色哟哟哟哟哟哟| 久久久久国产一级毛片高清牌| 亚洲18禁久久av| 搞女人的毛片| 精品欧美国产一区二区三| 美女大奶头视频| 国内精品久久久久精免费| 亚洲av第一区精品v没综合| 国内精品美女久久久久久| 久久草成人影院| 免费高清视频大片| 人人妻人人看人人澡| 精品久久久久久久毛片微露脸| 亚洲av片天天在线观看| 我要搜黄色片| 999久久久精品免费观看国产| 少妇的丰满在线观看| 99热只有精品国产| 99国产精品一区二区三区| 一本一本综合久久| 国产真人三级小视频在线观看| 怎么达到女性高潮| cao死你这个sao货| 伊人久久大香线蕉亚洲五| 亚洲第一电影网av| 国产精品精品国产色婷婷| 亚洲av五月六月丁香网| 日韩高清综合在线| 国产亚洲av高清不卡| 在线观看午夜福利视频| 日本成人三级电影网站| 男女视频在线观看网站免费| 亚洲最大成人中文| 国产成人精品久久二区二区91| 免费看光身美女| 中文字幕熟女人妻在线| 丁香六月欧美| 亚洲精品美女久久av网站| 真人做人爱边吃奶动态| 露出奶头的视频| 国产伦在线观看视频一区| 国产成人精品久久二区二区91| 婷婷精品国产亚洲av| 俺也久久电影网| 日韩欧美 国产精品| 很黄的视频免费| 搡老岳熟女国产| 日韩欧美在线二视频| 欧美黑人欧美精品刺激| 真人做人爱边吃奶动态| 观看美女的网站| 亚洲精品一卡2卡三卡4卡5卡| 两性夫妻黄色片| 国产精品久久久久久亚洲av鲁大| 老司机午夜福利在线观看视频| 婷婷六月久久综合丁香| 亚洲在线自拍视频| 国产亚洲欧美在线一区二区| 国产免费男女视频| 久久精品91无色码中文字幕| 国产极品精品免费视频能看的| 18禁黄网站禁片午夜丰满| 在线视频色国产色| 国产高清视频在线播放一区| 国产精华一区二区三区| av天堂在线播放| 欧美一级a爱片免费观看看| 亚洲aⅴ乱码一区二区在线播放| 18禁观看日本| 观看免费一级毛片| 亚洲欧美日韩卡通动漫| 午夜福利在线在线| 午夜精品一区二区三区免费看| 99久久无色码亚洲精品果冻| 亚洲精品一区av在线观看| 日韩大尺度精品在线看网址| 日本 欧美在线| 亚洲成人精品中文字幕电影| 国产欧美日韩精品一区二区| 国产成人影院久久av| 美女午夜性视频免费| 亚洲av成人一区二区三| 一本一本综合久久| 婷婷六月久久综合丁香| 又黄又粗又硬又大视频| 国产麻豆成人av免费视频| 欧美黄色片欧美黄色片| 欧美不卡视频在线免费观看| 夜夜夜夜夜久久久久| 亚洲精品国产精品久久久不卡|