• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    One Step Preparation of Sulfonated Solid Catalyst and Its Effect in Esterification Reaction*

    2014-07-18 11:56:14康世民,常杰,范娟
    關(guān)鍵詞:世民

    One Step Preparation of Sulfonated Solid Catalyst and Its Effect in Esterification Reaction*

    KANG Shimin (康世民), CHANG Jie (常杰)**and FAN Juan (范娟)
    The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

    A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions: 200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonated catalyst (SC) had aromatic structure, composed of carbon enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. The SO3H, COOH, OH groups amounted to 0.74 mmol·g?1, 0.78 mmol·g?1, 2.18 mmol·g?1, respectively. The fresh SC showed much higher catalytic activity than that of the traditional solid acid catalysts (strong-acid 732 cation exchange resin, hydrogen type zeolite socony mobile-five (HZSM-5), sulfated zirconia) in esterification of oleic acid. SC was deactivated during the reactions, through the mechanisms of leaching of sulfonated species and formation of sulfonate esters. Two regeneration methods were developed, and the catalytic activity can be mostly regenerated by regeneration Method 1 and be fully regenerated by regeneration Method 2, respectively.

    red liquor solids, sulfonated solid catalyst, carbonization, esterification

    1 INTRODUCTION

    Carbon-based sulfonated catalyst is becoming a research hotspot recently, which is widely used in biodiesel production [1-4], hydrolysis of cellulose [5], and some other organic synthesis [6, 7]. There are two ways for the synthesis of carbon-based sulfonated catalyst: (1) hydroxyethylsulfonic acid [6], p-toluenesulfonic acid [7] etc. were adapted as the sulfonating agents in hydrothermal conditions, using furaldehyde, glucose etc. as carbon sources; (2) sulfonation of carbon-based precursor with concentrated sulfuric acid (H2SO4), while the precursor was often obtained by carbonization of biomass at high temperatures [3, 4, 8]. However, these sulfonation agents are usually expensive, while the carbonization of biomass for precursor preparation resulted in additional cost. Besides, a few studies on directly incomplete carbonization of low molecular mass compounds (e.g. naphthalene, C10H8) by concentrated H2SO4were reported, but it was found that the sulfonated species on these catalysts were totally lost in the reuse [9]. One possible reason of this instability was due to the low molecular mass of the raw materials, the products of which may be partly dissolved in organic solvents even after carbonization.

    Red liquor solid (RLS) is a papermaking byproduct, which is often considered as a low value added material, and the main organic constituent in red liquor is lignosulfonate, a phenolic macromolecular polymer. Besides, biodiesel has received a great deal of attention as an alternative candidate for conventional fossil fuel, and catalytic esterification synthesis of biodiesel by solid acid (e.g. ion exchange resin, molecular sieve, sulfated zirconia) was widely studied [2, 3, 8, 10-14]. Oleic acid is a free fatty acid, and catalytic esterification of oleic acid can be a model process for biodiesel production. The object of this work was to synthesize sulfonated catalyst from macromolecule RLS by one step: the RLS was directly carbonized and sulfonated by concentrated H2SO4, without a carbon-based precursor preparation process at high temperatures. Catalytic effect of the RLS derived sulfonated catalyst for esterification of oleic acid was tested.

    2 EXPERIMENTAL

    2.1 Materials

    The RLS was dried powders of the red liquor, with magnesium lignosulfonate as the main organic constituent. Methyl oleate (standard reagent, purity of 99%) and oleic acid (purity of 85%) were obtained from Aladdin-Reagent Co., Ltd., Shanghai, China. Concentrated H2SO4(95%-98%, by mass) was obtained from Kaixin Chemical Reagent Co., Ltd. from the market. HZSM-5 molecular sieve was obtained from Tianjin Kaimeisite Technology Co. Strong-acid 732 resin was obtained from Shanghai Lingfeng Chemical Reagent Co., which was a strong acidic styrene type cation exchange resin with a diameter of 0.4-0.6 mm. Sulfated zirconia was synthesized according to Yee et al. [12].

    2.2 Catalyst preparation

    Concentrated H2SO4(100 ml) and 5 g of RLSwere mixed into a 250 ml round-bottomed flask into an oil bath with temperature of 200 °C. The sulfonating reaction was continued for 12 h with a certain mixing speed. After the reaction, the concentrated H2SO4solution was diluted and filtered. The H2SO4recovered after filtration of the solid can be reused for repeated sulfonation. Black precipitate was collected and washed with hot deionized water (~80 °C) until impurities such as sulfate ions were no longer detected in the washing water. The black precipitate was then dried at 75 °C to form the sulfonated catalyst (SC) (about 1.4 g).

    2.3 Characterization

    The obtained sulfonated carbon catalyst was characterized by X-ray diffraction (XRD) (D8 Advance, Bruker), thermogravimetry (TG) and derivative thermogravimetry (DTG) (TGAQ 5000, TA Instruments Co., USA), Fourier transform infrared spectroscopy (FTIR) (Nexus 670, Nicolet), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) (S-3700N, Hitachi, Japan), X-ray photoelectron spectroscopy (XPS) (Kratos AXis Ultra, Shimadzu, Japan), Brunauer-Emmett-Teller (BET) surface area (ASAP 2020 V3.03 H, Micromeritics), and elemental analyzer (elementar Vario EL III, Germany).

    The total SO3H + COOH and SO3H + COOH + OH contents were estimated from the exchange of Na+in aqueous NaCl and NaOH solutions, respectively. The densities of SO3H groups were estimated based on the sulfur content determined from sample compositions obtained by elemental analysis and XPS analysis [5].

    2.4 Catalytic activity test

    Methyl oleate production was performed in a stirred 25 ml round-bottomed flask at 65 °C for 4 h. 0.05 g of solid acid catalyst was added to 1 g of oleic acid and 8 ml of methanol. The yield of methyl oleate was analyzed by the external method through gas chromatography [Shimadzu QP 2010 Plus equipped, with Rxi-5ms column (30 m×0.25 mm×0.25 μm)]. The temperature of the injector was set at 270 °C, the oven temperature was started at 200 °C for 2 min, heated at a rate of 10 °C·min?1to 275 °C, and then held for 5 min. A standard curve was obtained by correlating the peak area with the concentration of a series of methyl oleate solutions, and then the content of methyl oleate after reaction was calculated according to the peak area and the standard curve.

    2.5 Catalyst regeneration

    Regeneration Method 1: the 3rd time reused catalyst was dipped into 10% H2SO4solution for about 10 h (including sonic oscillation for 1 h) and washed with pure water. Subsequently, the catalyst was dried and resupplied for the next experimental run. The regenerated catalyst was labeled as regenerated SC-1.

    Regeneration Method 2: the 3rd time reused catalyst was regenerated according to Refs. [15, 16]. Briefly, it was dipped into 150 °C concentrated H2SO4for 12 h, and then it was washed and, dried, and resupplied for the next experimental run. This regenerated catalyst was labeled as regenerated SC-2.

    3 RESULTS AND DISCUSSION

    3.1 Characterization of catalyst

    The SC exists as solid particles, and the surface topography is shown by SEM spectra image in Fig. 1. The XRD pattern (Fig. 2) shows a broad diffraction peak in a 2θ range of 20°-30°, and the wide-angle pattern matches well with that previously report for non-graphitic carbon [5]. This indicates that the RLS can not be completely graphitized by concentrated H2SO4carbonization at such a low temperature (200 °C). FT-IR spectrum (Fig. 3) shows that the SC owns the aromatic structure (1610, 1420 cm?1), OH group (3410 cm?1), SO3H group (1170, 1040 cm?1) and C O group (1713 cm?1). Compared with the FT-IR spectrum of SC and RLS, the SO3H group on the SC can be derived from

    Figure 1 SEM spectra of SC

    Figure 2 XRD pattern of SC

    Figure 3 FT-IR spectrum of SC and RLS

    both the RLS and concentrated H2SO4, while the C O group is probably produced by concentrated H2SO4oxidation of OH and CH groups. From the TG and derivative thermogravimetry (DTG) curves (Fig. 4), the sample mass decreased with increasing temperature, and the mass loss before 200 °C is moderate, which maybe caused by the loss of water adsorbed on the SC. As shown in Fig. 5, the results of XPS analysis show the sulphur (S) exists in the forms of SO3H groups and other groups, and the S 2p region in XPS spectrum indicates that about 68% S exists in the form of SO3H group (168 eV). There are two binding energy peaks for the carbon: the peak at 285 eV corresponds to the elemental carbon, which is the substrate of the catalyst; while the small peak at 289 eV corresponds to COOH groups (Fig. 5). Elemental analysis (Table 1), ash test (Table 1), XPS analysis, and cation-exchange experiments (Table 2) reveal that the sample composition is (CH0.68O0.65S0.026)An(A is ash, with a mass content of 0.74%), and the amounts of SO3H, COOH, and phenolic OH groups bonded to the carbon skeleton are 0.74 mmol·g?1, 0.78 mmol·g?1, 2.18 mmol·g?1, respectively.

    Figure 4 TG and DTG curves of SC

    The element content on and near the surface of fresh SC was detected by EDS analysis (Table 3). Compared with the elemental analysis data in Table 1,the results show that the S, O contents on and near the surface are higher than the contents on the whole fresh SC, while the C content on and near the surface is lower than that on the whole fresh SC. These results indicate that the fresh SC is made up of C enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. According to the above discussion, a schematic structure of SC is proposed as shown in Fig. 6.

    Table 1 Ash content and elementary analysis by elemental analyzer

    Table 2 Cation-exchange values and specific surface area

    3.2 Catalytic activity

    Figure 5 The XPS spectrum of SC

    Table 3 Surface elementary analysis of SCs (fresh, 3rd time reused, and regenerated) by EDS

    Figure 6 The proposed schematic structure of SC

    The catalytic effects for methyl oleate production are shown in Fig. 7. The yield of the control experiments is lower than 1%, while the yield with fresh SC addition reaches about 85%. And the fresh SC shows much higher yield than that of all the other traditional solid acid catalysts (sulfated zirconia, 732 cation exchange resin, and HZSM-5 molecular sieve). Compared with Table 2 and Fig. 7, there seems no relations between catalytic activity and BET specific surface area, cation-exchange capacity for different catalysts. The possible reasons of the strong SC catalytic activity are discussed: (1) The SC possesses three different

    acidic functional groups (OH, COOH, SO3H), there may be synergic action among the three acidic functional groups though the SO3H group is often considered as the major catalytic active sites, while those traditional solid acid catalysts usually contain single acidic functional groups; (2) there was a large content of OH group (2.18 mmol·L?1) in the SC, which can incorporate both the two polar reactants (methanol and oleic acid) to the catalyst surface, and then acceleratethe esterification reaction.

    Figure 7 The yield of methyl oleate produced with or without catalysts

    Figure 8 The proposed sulfonated catalyst deactivation and regeneration mechanism, and the deactivation mechanism were a revision according to Fraile et al. [17]

    However, the SC catalytic activity decreases with more recycles (Fig. 7), which is coincided with the results of catalysts produced by two procedures (high temperature carbonization, and then sulfonation) reported by Chen and Fang [3], Rao et al. [14], and Fraile et al [17]. The SO3H and the COOH contents decreased from 1.52 to 0.65 mmol·g?1after the 3rd time reuse (Table 2). The reuse experiments caused deactivation should be related to the leaching of SO3H groups from polycyclic aromatic hydrocarbons and/or formation of sulfonate esters according to the former reports [3, 14, 17]. The S content on and near the 3rd time reused SC surface (3.25%, by mass) was 11.6% lower than that on the fresh SC (3.68%, by mass), however, the catalytic activity was almost deactivated after the 3rd time reuse, that indicated the small portion leaching of S was not the main deactivation reasons. These results also indicate that the carbon based sulfonated catalysts produced by direct sulfonation and carbonization from macromolecule polymer may own better stabilities than that from low molecular mass compounds, as compared with the results reported by Hara et al [9].

    In regeneration Method 1, 10% H2SO4was used to regenerate the catalyst from the 3rd time reuse. After the catalyst regeneration with 10% H2SO4, the SO3H and COOH contents are back to 1.05 mmol·g?1(Table 2), and more than half of the catalytic activity is recovered, and the catalytic activity is much better than that of 732 cation exchange resin (Fig. 7). On the other hand, the S content on and near the 3rd time reused SC surface after regeneration is only slightly changed (from 3.25% to 3.28%, by mass Table 3). However, few papers on the carbon based sulfonated catalyst regeneration mechanism in this area were reported in the past works. In this paper, the possible SC deactivation and regeneration mechanism are proposed as shown in Fig. 8. Considering the change of cationexchange values (the SO3H and COOH contents) and S contents among different samples (the fresh SC, the 3rd time reused SC, and regenerated SC-1), the main deactivation of the SC should be the formation of sulfonate esters and carbonic esters, similar to the resultsthat reported by Fraile et al [17]. The probable reason for the regeneration results is that the sulfonate methyl esters and carboxylic acid methyl esters on the SC were hydrolyzed, and the SO3H and COOH groups were regained by 10% H2SO4regeneration, as H2SO4is a well know ester hydrolysis catalyst. This deactivation and regeneration mechanism suggests that the carbon based sulfonated catalysts can be deactivated in alcohol involved reactions, e.g. esterification, and these kinds of deactivated catalysts can be simply regenerated by dilute acid treatment.

    However, the regeneration Method 1 was not effective enough though most of the catalytic activity can be recovered, so regeneration Method 2 was developed. As shown in Fig. 7, compared with the fresh SC, the regenerated SC-2 showed almost the same catalytic activity. Compared with regeneration Method 1, the regeneration Method 2 showed efficient recovery of catalytic activity but had complicated process conditions. Since the SC is produced from a low-cost raw material with a simple procedure, and can be regeneratable, it can probably compete with commercial catalysts (such as strong-acid 732 cation exchange resin) for the esterification of fatty acids into biodiesel. Further improvement on catalytic stability and simplify of regeneration Method 2 are required before this SC can be considered on an industrial scale.

    4 CONCLUSIONS

    A carbon based sulfonated catalyst containing SO3H, COOH, OH groups was produced by one step from low value-added RLS in a moderate condition, with a composition of (CH0.68O0.65S0.026)An. Catalytic activity for methyl oleate production was tested, and the fresh catalyst showed higher catalytic activity in esterification of oleic acid compared to traditional solid acid catalysts. The catalyst deactivated gradually after recycles usage, and the catalytic activity of the reused catalyst can be mostly regained by regeneration Method 1 and fully regained by regeneration Method 2, respectively. The deactivation and regeneration mechanisms of catalyst were proposed. Considering the somewhat low leaking degree of the S species from RLS derived sulfonated catalyst, further work on catalyst produced by direct sulfonation and carbonization of some other macromolecular polymers seems promising.

    REFERENCES

    1 Toda, M., Takagaki, A., Okamura, M., Kondo, J.N., Hayashi, S., Domen, K., Hara, M., “Biodiesel made with sugar catalyst”, Nature, 480, 178 (2005).

    2 Lou, W.Y., Zong, M.H., Duan, Z.Q., “Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts”, Bioresour. Technol., 99 (18), 8752-8758 (2008).

    3 Chen, G., Fang, B., “Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production”, Bioresour. Technol., 102 (3), 2635-2640 (2011).

    4 Shu, Q., Gao, J., Liao, Y., Wang, J., “Reaction kinetics of biodiesel synthesis from waste oil using a carbon-based solid acid catalyst”, Chin. J. Chem. Eng., 19 (1), 163-168 (2011).

    5 Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., Hara, M., “Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups”, J. Am. Chem. Soc., 130 (38), 12787-12793 (2008).

    6 Liang, X., Zeng, M., Qi, C., “One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization”, Carbon, 48 (6), 1844-1848 (2010).

    7 Zhang, W., Tao, H., Zhang, B., Ren, J., Lu, G., Wang, Y., “One-pot synthesis of carbonaceous monolith with surface sulfonic groups and its carbonization/activation”, Carbon, 49 (6), 1811-1820 (2011).

    8 Shu, Q., Nawaz, Z., Liao, Y., Zhang, Q., Wang, D., Wang, J., “Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: Reaction and separation”, Bioresour. Technol., 101 (3), 5374-5384 (2010).

    9 Hara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J.N., Hayashi, S., Domen, K., “A carbon material as a strong protonic acid”, Angew Chem. Int. Ed., 43 (22), 2955-2958 (2004).

    10 Gan, M., Pan, D., Ma, L., Yue, E., Hong, J. “The kinetics of the esterification of free fatty acids in waste cooking oil using Fe2(SO4)3/C Catalyst”, Chin. J. Chem. Eng., 17 (1), 83-87 (2009)

    11 Li, J., Fu, Y.J., Qu, X.J., Wang, W., Luo, M., Zhao, C.J., Zu, Y.G.,“Biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge) seed oil using ion exchange resin as heterogeneous catalyst”, Bioresour. Technol., 108, 112-118 (2012).

    12 Yee, K.F., Lee, K.T., Ceccato, R., Abdullah, A.Z., “Production of biodiesel from Jatropha curcas L. oil catalyzed by SO42- /ZrO2 catalyst: Effect of interaction between process variables”, Bioresour. Technol., 102 (5), 4285-4289 (2011).

    13 Shibasaki-Kitakawa, N., Honda, H., Kuribayashi, H., Toda, T., Fukumura, T., Yonemoto, T., “Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst”, Bioresour. Technol., 98 (2), 416-421 (2007).

    14 Rao, B.V.S.K., Mouli, K.C., Rambabu, N., Dalai, A.K., Prasad, R.B.N., “Carbon-based solid acid catalyst from de-oiled canola meal for biodiesel production”, Catal. Commun., 14 (1), 20-26 (2011).

    15 Yang, X., Wan, J., “Preparation of carbon- based solid acid catalyst and its catalytic performance”, Modern Chemical Industry, 31 (10), 34-37 (2011). (in Chinese)

    16 Zhao, Y., Wan, J., “Hydrolysis saccharification of OCC by a sulfonated carbon solid-acid catalyst”, Modern Chemical Industry, 30 (9), 40-44 (2010). (in Chinese)

    17 Fraile, J.M., García-Bordejé, E., Roldán, L., “Deactivation of sulfonated hydrothermal carbons in the presence of alcohols: Evidences for sulfonic esters formation”, J. Catal., 289, 73-79 (2012).

    2012-11-27, accepted 2013-04-17.

    * Supported by the State Key Development Program for Basic Research of China (2013CB228104, 2010CB732205), Ph. D Programs Foundation of Ministry of Education of China (20120172110011), and the National High Technology Research and Development Program of China (2012AA051801).

    ** To whom correspondence should be addressed. E-mail: changjie@scut.edu.cn

    猜你喜歡
    世民
    “石頭表哥”尹世民
    8年前的“小姨托孤”,如今有了最暖的結(jié)局
    A multilayer network diffusion-based model for reviewer recommendation
    濺蝕過程中紅壤團聚體周轉(zhuǎn)路徑的定量表征
    黃科院田世民、呂錫芝、張雷入選水利青年拔尖人才
    人民黃河(2022年4期)2022-04-07 09:03:16
    理發(fā)師
    科教新報(2021年21期)2021-07-21 15:38:12
    清華大學(xué)有所神秘學(xué)院
    科教新報(2020年23期)2020-07-21 22:49:18
    清華大學(xué)有所神秘學(xué)院
    科教新報(2020年22期)2020-06-11 08:48:29
    最后的麥子
    小說月刊(2016年5期)2016-05-06 16:42:27
    倫敦塔世民酒店 不走尋常路
    酒店精品(2016年4期)2016-04-29 00:44:03
    夜夜爽天天搞| 国产麻豆成人av免费视频| 97超级碰碰碰精品色视频在线观看| 丝袜喷水一区| 你懂的网址亚洲精品在线观看 | 成人av一区二区三区在线看| 菩萨蛮人人尽说江南好唐韦庄 | 色在线成人网| 麻豆国产97在线/欧美| 国产成人a∨麻豆精品| 免费在线观看成人毛片| 少妇猛男粗大的猛烈进出视频 | 欧美区成人在线视频| 一个人免费在线观看电影| 午夜福利在线在线| 国产伦精品一区二区三区视频9| 日本免费a在线| 51国产日韩欧美| 人妻丰满熟妇av一区二区三区| 免费无遮挡裸体视频| 美女免费视频网站| 日日干狠狠操夜夜爽| 可以在线观看的亚洲视频| 丝袜喷水一区| 麻豆久久精品国产亚洲av| 国产不卡一卡二| 日韩成人av中文字幕在线观看 | 最好的美女福利视频网| 深爱激情五月婷婷| 蜜桃亚洲精品一区二区三区| 少妇高潮的动态图| 日韩欧美一区二区三区在线观看| 日韩欧美精品免费久久| 欧洲精品卡2卡3卡4卡5卡区| 熟女电影av网| 香蕉av资源在线| 亚洲五月天丁香| 精品午夜福利视频在线观看一区| 网址你懂的国产日韩在线| 国产不卡一卡二| 女人十人毛片免费观看3o分钟| 女人被狂操c到高潮| 国产午夜精品论理片| av天堂在线播放| 久久久久久大精品| 久久久国产成人精品二区| 久久久久免费精品人妻一区二区| 日本色播在线视频| а√天堂www在线а√下载| 国产单亲对白刺激| 婷婷精品国产亚洲av| avwww免费| 69av精品久久久久久| 99久国产av精品| 熟妇人妻久久中文字幕3abv| 在线观看一区二区三区| 国产成人a∨麻豆精品| 欧洲精品卡2卡3卡4卡5卡区| 亚洲经典国产精华液单| 亚洲av免费在线观看| 一边摸一边抽搐一进一小说| 国产 一区 欧美 日韩| 日本成人三级电影网站| 99热网站在线观看| 好男人在线观看高清免费视频| 在线播放国产精品三级| 99视频精品全部免费 在线| 亚洲美女视频黄频| 国产黄a三级三级三级人| 亚洲自拍偷在线| 精品不卡国产一区二区三区| 精品少妇黑人巨大在线播放 | 久久精品久久久久久噜噜老黄 | 久久精品国产清高在天天线| 成人av在线播放网站| 成人一区二区视频在线观看| 2021天堂中文幕一二区在线观| 亚洲无线在线观看| 麻豆乱淫一区二区| 久久久久国内视频| 国产在线精品亚洲第一网站| 成人二区视频| 欧美3d第一页| 国产中年淑女户外野战色| 欧美中文日本在线观看视频| 欧美中文日本在线观看视频| 亚洲av不卡在线观看| 尤物成人国产欧美一区二区三区| 国产乱人偷精品视频| 国产成人a区在线观看| 国产精品人妻久久久久久| 日韩成人伦理影院| 婷婷亚洲欧美| 插逼视频在线观看| 91午夜精品亚洲一区二区三区| avwww免费| 麻豆国产97在线/欧美| 好男人在线观看高清免费视频| 一级毛片aaaaaa免费看小| 大型黄色视频在线免费观看| 偷拍熟女少妇极品色| 免费看日本二区| 国产高清不卡午夜福利| 欧美日韩精品成人综合77777| 校园人妻丝袜中文字幕| 一本精品99久久精品77| 老熟妇仑乱视频hdxx| 国产精品爽爽va在线观看网站| 免费在线观看成人毛片| 日本熟妇午夜| 国产高清视频在线观看网站| 麻豆av噜噜一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 色吧在线观看| 欧美色视频一区免费| 国产伦精品一区二区三区四那| 欧美一区二区精品小视频在线| 有码 亚洲区| 桃色一区二区三区在线观看| 人人妻人人澡人人爽人人夜夜 | 久久中文看片网| 中国美白少妇内射xxxbb| 一夜夜www| 女生性感内裤真人,穿戴方法视频| 天堂动漫精品| 日本五十路高清| 日本五十路高清| АⅤ资源中文在线天堂| 国产单亲对白刺激| 国产极品精品免费视频能看的| 亚洲精品粉嫩美女一区| 老司机福利观看| 黄色配什么色好看| 亚洲av成人av| 成熟少妇高潮喷水视频| 成人毛片a级毛片在线播放| 成人漫画全彩无遮挡| 成熟少妇高潮喷水视频| 插逼视频在线观看| 免费观看人在逋| 亚洲美女搞黄在线观看 | 69av精品久久久久久| 日本三级黄在线观看| 久久精品91蜜桃| 哪里可以看免费的av片| 三级毛片av免费| 日韩成人伦理影院| 国产精品免费一区二区三区在线| 干丝袜人妻中文字幕| 婷婷精品国产亚洲av| 日日撸夜夜添| 91av网一区二区| 国产精品日韩av在线免费观看| 日韩 亚洲 欧美在线| 色5月婷婷丁香| 婷婷色综合大香蕉| 欧美xxxx黑人xx丫x性爽| 啦啦啦韩国在线观看视频| 亚洲美女黄片视频| 午夜福利视频1000在线观看| 国产伦一二天堂av在线观看| 亚洲自偷自拍三级| 亚洲精品456在线播放app| 国产高清不卡午夜福利| 久久久久久国产a免费观看| 免费看日本二区| 国产熟女欧美一区二区| 亚洲av第一区精品v没综合| 老女人水多毛片| 国产乱人视频| 性色avwww在线观看| 波多野结衣巨乳人妻| eeuss影院久久| 禁无遮挡网站| 伊人久久精品亚洲午夜| 麻豆国产97在线/欧美| 特大巨黑吊av在线直播| 99久久久亚洲精品蜜臀av| 18禁在线播放成人免费| 精品国内亚洲2022精品成人| 在线观看一区二区三区| 99热全是精品| 三级经典国产精品| 亚洲精品一区av在线观看| 免费电影在线观看免费观看| 国产中年淑女户外野战色| 看十八女毛片水多多多| 听说在线观看完整版免费高清| 别揉我奶头 嗯啊视频| 久久久久久九九精品二区国产| 国产一区二区激情短视频| 亚洲av熟女| 久久久久久大精品| 露出奶头的视频| 亚洲aⅴ乱码一区二区在线播放| 黄色视频,在线免费观看| 毛片一级片免费看久久久久| 久久国内精品自在自线图片| 亚洲人成网站在线观看播放| 97超视频在线观看视频| 又爽又黄无遮挡网站| 国产视频一区二区在线看| 欧美性猛交黑人性爽| 成年av动漫网址| 国产女主播在线喷水免费视频网站 | 少妇被粗大猛烈的视频| 乱系列少妇在线播放| 欧美不卡视频在线免费观看| 黄色视频,在线免费观看| 天堂影院成人在线观看| 亚洲精品日韩av片在线观看| 国产精品一区www在线观看| 又黄又爽又免费观看的视频| 中国国产av一级| 直男gayav资源| 欧美+亚洲+日韩+国产| 久久天躁狠狠躁夜夜2o2o| 小蜜桃在线观看免费完整版高清| 草草在线视频免费看| 能在线免费观看的黄片| 国产视频一区二区在线看| 欧美性猛交╳xxx乱大交人| 天堂影院成人在线观看| 国产 一区精品| 亚洲四区av| 免费看光身美女| 国产亚洲91精品色在线| aaaaa片日本免费| 中文字幕av在线有码专区| 日本 av在线| 亚洲七黄色美女视频| 日本在线视频免费播放| 婷婷色综合大香蕉| 麻豆精品久久久久久蜜桃| 亚洲中文字幕日韩| 69av精品久久久久久| 精品久久久久久久人妻蜜臀av| 婷婷六月久久综合丁香| 又爽又黄无遮挡网站| 午夜激情福利司机影院| 色5月婷婷丁香| 91麻豆精品激情在线观看国产| 国产视频内射| 22中文网久久字幕| 亚洲av免费高清在线观看| 黄色配什么色好看| 国产精品爽爽va在线观看网站| 国产又黄又爽又无遮挡在线| 一区福利在线观看| 一级黄片播放器| 亚洲国产高清在线一区二区三| 日韩成人av中文字幕在线观看 | 美女xxoo啪啪120秒动态图| 国产大屁股一区二区在线视频| 国产男靠女视频免费网站| 春色校园在线视频观看| 免费看光身美女| 丰满乱子伦码专区| av在线老鸭窝| 一a级毛片在线观看| 国产精品久久视频播放| 国产在视频线在精品| 成人美女网站在线观看视频| 免费看光身美女| 村上凉子中文字幕在线| 亚洲综合色惰| 日韩三级伦理在线观看| 日日干狠狠操夜夜爽| 99热全是精品| 亚洲av中文字字幕乱码综合| 国产毛片a区久久久久| 日本免费一区二区三区高清不卡| 免费不卡的大黄色大毛片视频在线观看 | 日韩成人伦理影院| 少妇的逼水好多| 亚洲精品日韩在线中文字幕 | 我的老师免费观看完整版| 99热只有精品国产| 欧美性猛交黑人性爽| 国产欧美日韩一区二区精品| 亚洲欧美日韩高清在线视频| 麻豆久久精品国产亚洲av| 欧美成人a在线观看| 国产亚洲精品av在线| АⅤ资源中文在线天堂| 成人美女网站在线观看视频| 99久久中文字幕三级久久日本| 成人二区视频| 午夜福利18| 国产黄色视频一区二区在线观看 | 亚洲经典国产精华液单| 一级毛片久久久久久久久女| 亚洲人成网站高清观看| 亚洲最大成人中文| 国产av一区在线观看免费| 99热6这里只有精品| 国产精华一区二区三区| 蜜桃久久精品国产亚洲av| 国产女主播在线喷水免费视频网站 | 日本三级黄在线观看| 欧美三级亚洲精品| 一进一出好大好爽视频| 九九热线精品视视频播放| 国产视频内射| 亚洲三级黄色毛片| 国产精品久久久久久亚洲av鲁大| 丰满的人妻完整版| 久久天躁狠狠躁夜夜2o2o| 久久精品国产亚洲av天美| 变态另类成人亚洲欧美熟女| 波多野结衣高清作品| 最近2019中文字幕mv第一页| 国产aⅴ精品一区二区三区波| 又粗又爽又猛毛片免费看| a级毛片免费高清观看在线播放| 麻豆国产av国片精品| 伦精品一区二区三区| 国产精品国产三级国产av玫瑰| 美女 人体艺术 gogo| 成年版毛片免费区| 美女xxoo啪啪120秒动态图| 久久久久久久久久久丰满| 国产三级中文精品| av在线播放精品| 天堂网av新在线| 亚洲精品在线观看二区| 日韩欧美精品免费久久| 小蜜桃在线观看免费完整版高清| 久久久成人免费电影| 国产亚洲欧美98| 成人特级黄色片久久久久久久| 欧美日韩乱码在线| 欧美一级a爱片免费观看看| 神马国产精品三级电影在线观看| 天天躁日日操中文字幕| 赤兔流量卡办理| 亚州av有码| 美女高潮的动态| 成年女人看的毛片在线观看| 国产成年人精品一区二区| 麻豆av噜噜一区二区三区| 免费av不卡在线播放| 久久久久久久久久黄片| 能在线免费观看的黄片| 大香蕉久久网| 麻豆国产97在线/欧美| 国产大屁股一区二区在线视频| 日韩欧美精品v在线| 久久6这里有精品| 国产单亲对白刺激| 久久欧美精品欧美久久欧美| 最近中文字幕高清免费大全6| 赤兔流量卡办理| 亚洲综合色惰| 久久99热6这里只有精品| 熟女电影av网| 舔av片在线| 久久精品国产鲁丝片午夜精品| av中文乱码字幕在线| 在现免费观看毛片| 白带黄色成豆腐渣| 欧美一区二区亚洲| 99精品在免费线老司机午夜| 菩萨蛮人人尽说江南好唐韦庄 | 51国产日韩欧美| 中国美白少妇内射xxxbb| 国产精品久久久久久精品电影| 啦啦啦啦在线视频资源| 不卡一级毛片| 69人妻影院| 成人综合一区亚洲| 男女做爰动态图高潮gif福利片| 美女 人体艺术 gogo| 日本-黄色视频高清免费观看| 国产高清视频在线播放一区| 国产私拍福利视频在线观看| 一级av片app| 日本免费一区二区三区高清不卡| 一本久久中文字幕| 免费av观看视频| 亚洲熟妇中文字幕五十中出| 免费看日本二区| 国产高潮美女av| 床上黄色一级片| 亚洲久久久久久中文字幕| 一进一出抽搐gif免费好疼| 一级毛片久久久久久久久女| 国产又黄又爽又无遮挡在线| 午夜影院日韩av| 久久午夜福利片| 国产精品人妻久久久久久| 色噜噜av男人的天堂激情| 在线观看一区二区三区| 99热6这里只有精品| 国产精品99久久久久久久久| 亚洲精品色激情综合| 干丝袜人妻中文字幕| 天天一区二区日本电影三级| 亚洲18禁久久av| 91精品国产九色| 男女啪啪激烈高潮av片| 国模一区二区三区四区视频| 国产伦在线观看视频一区| 国产精品国产三级国产av玫瑰| 亚洲欧美中文字幕日韩二区| 不卡视频在线观看欧美| 亚洲熟妇中文字幕五十中出| 午夜精品国产一区二区电影 | 久久久久国内视频| 亚洲人成网站在线观看播放| 国产成年人精品一区二区| 熟女人妻精品中文字幕| 国产老妇女一区| 噜噜噜噜噜久久久久久91| 午夜久久久久精精品| 亚洲国产精品sss在线观看| 亚洲aⅴ乱码一区二区在线播放| 少妇的逼水好多| 日日撸夜夜添| 午夜福利成人在线免费观看| 国产高清视频在线播放一区| 国产成人影院久久av| 国产白丝娇喘喷水9色精品| 美女内射精品一级片tv| 免费观看在线日韩| 少妇人妻精品综合一区二区 | 91麻豆精品激情在线观看国产| 亚洲av成人精品一区久久| 有码 亚洲区| 国产亚洲精品av在线| 日本a在线网址| 亚洲精品一卡2卡三卡4卡5卡| 男插女下体视频免费在线播放| 国产一级毛片七仙女欲春2| 日韩 亚洲 欧美在线| 午夜影院日韩av| 99热这里只有精品一区| 亚洲自偷自拍三级| 亚洲精华国产精华液的使用体验 | 午夜精品国产一区二区电影 | 91久久精品国产一区二区三区| 成人永久免费在线观看视频| 久久天躁狠狠躁夜夜2o2o| 寂寞人妻少妇视频99o| 最近2019中文字幕mv第一页| 搡老岳熟女国产| 国产乱人偷精品视频| 亚洲av美国av| 人人妻人人看人人澡| 乱人视频在线观看| h日本视频在线播放| 久久国内精品自在自线图片| 神马国产精品三级电影在线观看| 极品教师在线视频| 91麻豆精品激情在线观看国产| 精品国内亚洲2022精品成人| 乱人视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久午夜亚洲精品久久| av中文乱码字幕在线| 中文字幕免费在线视频6| 日韩一本色道免费dvd| 乱系列少妇在线播放| 无遮挡黄片免费观看| 午夜福利成人在线免费观看| 深夜精品福利| 久久久久免费精品人妻一区二区| 欧美成人a在线观看| 欧美三级亚洲精品| 非洲黑人性xxxx精品又粗又长| 亚洲欧美日韩无卡精品| 国产综合懂色| 激情 狠狠 欧美| 免费无遮挡裸体视频| 最近手机中文字幕大全| 99国产极品粉嫩在线观看| 国产91av在线免费观看| 日本精品一区二区三区蜜桃| 日韩在线高清观看一区二区三区| 免费搜索国产男女视频| 我的老师免费观看完整版| 桃色一区二区三区在线观看| 亚洲综合色惰| 久久久欧美国产精品| 日日摸夜夜添夜夜爱| 亚洲国产高清在线一区二区三| 非洲黑人性xxxx精品又粗又长| 国产不卡一卡二| 精品久久久噜噜| 免费看美女性在线毛片视频| 一级黄色大片毛片| 中文字幕精品亚洲无线码一区| 色噜噜av男人的天堂激情| 亚洲在线观看片| 欧美一区二区亚洲| 中文亚洲av片在线观看爽| 在线免费观看不下载黄p国产| 欧美bdsm另类| 免费人成在线观看视频色| 日韩成人av中文字幕在线观看 | 免费在线观看成人毛片| 日韩制服骚丝袜av| 波多野结衣巨乳人妻| 亚洲性夜色夜夜综合| 欧美+日韩+精品| 偷拍熟女少妇极品色| 一级av片app| 免费看光身美女| 国产精品女同一区二区软件| 国产乱人偷精品视频| 日韩欧美 国产精品| 亚洲av免费高清在线观看| 亚洲国产高清在线一区二区三| 中国美女看黄片| 精品不卡国产一区二区三区| 亚洲精品久久国产高清桃花| 亚洲成人av在线免费| 成人无遮挡网站| 日本成人三级电影网站| 亚洲va在线va天堂va国产| 高清午夜精品一区二区三区 | 欧美在线一区亚洲| 老熟妇乱子伦视频在线观看| 夜夜爽天天搞| 亚洲专区国产一区二区| 亚洲va在线va天堂va国产| 欧美三级亚洲精品| 欧美色视频一区免费| 久久久久久九九精品二区国产| 亚洲人与动物交配视频| 亚洲激情五月婷婷啪啪| 99热这里只有是精品在线观看| 亚洲国产精品sss在线观看| 色av中文字幕| 久久精品国产亚洲av香蕉五月| 女人被狂操c到高潮| 久久精品久久久久久噜噜老黄 | 一个人免费在线观看电影| 韩国av在线不卡| 免费观看在线日韩| 别揉我奶头~嗯~啊~动态视频| 天天躁夜夜躁狠狠久久av| 免费看美女性在线毛片视频| 久久久久久久久久久丰满| 精品乱码久久久久久99久播| 国产精品一区二区免费欧美| 亚州av有码| 欧美最黄视频在线播放免费| 有码 亚洲区| 亚洲性久久影院| 国产一区亚洲一区在线观看| av卡一久久| 亚洲性久久影院| 深爱激情五月婷婷| 网址你懂的国产日韩在线| 久久午夜福利片| 1000部很黄的大片| 免费在线观看成人毛片| 美女免费视频网站| 天堂影院成人在线观看| 国产av不卡久久| 国产探花在线观看一区二区| 中国国产av一级| 国产探花极品一区二区| 丝袜美腿在线中文| 亚洲中文字幕日韩| 精品人妻熟女av久视频| 蜜臀久久99精品久久宅男| 成年免费大片在线观看| 国内揄拍国产精品人妻在线| 中文字幕人妻熟人妻熟丝袜美| 天堂√8在线中文| 尾随美女入室| 色播亚洲综合网| 久久精品91蜜桃| 乱系列少妇在线播放| av在线观看视频网站免费| 精品99又大又爽又粗少妇毛片| 久久久成人免费电影| 免费观看精品视频网站| 日韩强制内射视频| 亚洲最大成人中文| 国产成人影院久久av| 麻豆久久精品国产亚洲av| 国产视频内射| 菩萨蛮人人尽说江南好唐韦庄 | 人妻夜夜爽99麻豆av| 亚洲成人久久爱视频| 国产午夜精品久久久久久一区二区三区 | 在线看三级毛片| 看非洲黑人一级黄片| 尤物成人国产欧美一区二区三区| 日韩欧美三级三区| 日韩在线高清观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 在线天堂最新版资源| 国产精品一区www在线观看| av中文乱码字幕在线| 九九爱精品视频在线观看| 国产av不卡久久| 伦精品一区二区三区| 观看美女的网站| 夜夜看夜夜爽夜夜摸| 久久精品国产亚洲网站| 一区福利在线观看| 日韩大尺度精品在线看网址| 听说在线观看完整版免费高清| 又黄又爽又免费观看的视频| 日本一二三区视频观看| av天堂在线播放| 又爽又黄a免费视频| 久久精品影院6| 欧美绝顶高潮抽搐喷水| 欧美xxxx黑人xx丫x性爽| 我的老师免费观看完整版|