• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impacts of Power Density on Heavy Metal Release During Ultrasonic Sludge Treatment Process*

    2014-07-18 11:56:14張光明,萬甜,高峰
    關(guān)鍵詞:高峰光明

    Impacts of Power Density on Heavy Metal Release During Ultrasonic Sludge Treatment Process*

    ZHANG Guangming (張光明)1,**, WAN Tian (萬甜)2, GAO Feng (高峰)2and DONG Shan (董姍)2
    1School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China
    2State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China

    The impact of ultrasonic power density on changes of heavy metals during sludge sonication was investigated. Results showed that ultrasound could release heavy metals from sludge into the supernatant. There existed an effective power density range of 0.8-1.6 W·ml?1for the release of the total heavy metal; there was little release below 0.8 W·ml?1and too high power density was adverse to the release. Furthermore, sonication showed selective release of heavy metal from sludge to the supernatant; copper, cadmium and lead were not released by sonication, while arsenic and nickel were released easily and their release ratio could reach 40%. The effective energy range for each heavy metal was also different that 0.8-1.2 W·ml?1for arsenic, 0.5-1.6 W·ml?1for nickel, and 0.8-1.6 W·ml?1for mercury and chrome. The differences among heavy metal release during sonication might be explained by the different distribution of chemical fractions of each metal in sludge. Such selectivity could be used to control heavy metal release during sludge treatment.

    activated sludge, sonication, metals, power density, chemical fractions

    1 INTRODUCTION

    Large content of excess sludge are generated during biological wastewater treatment processes. The presence of contaminants such as organics, heavy metals and pathogens in excess sludge poses serious environmental risks, and considerably hampers the final sludge disposal, especially in the agricultural use [1, 2]. Over the past decades, many techniques have been developed for sludge treatment and disposal [3]. Among these techniques, ultrasound is of great values [4].

    During ultrasonic sludge treatment process, violent cavitation occurs, which quickly disrupts sludge flocs, breaks cells of sludge bacteria, and thus releases the intracellular and extracellular substances, and inorganic and organic materials trapped in the sludge flocs into the supernatant. Therefore, sludge characteristics such as floc size, viscosity, capillary suction time and soluble organic contents are changed by ultrasound [5, 6]. Those changes are beneficial for improving sludge biodegradability, enhancing the aerobic digestion rate, and cutting down the sludge dewatering time and sludge volume [5-8]. Therefore, sonication can serve as pretreatment of sludge before anaerobic digestion, aerobic fermentation, and mechanical dewatering [7-10]. Alternatively, the sonicated sludge may be recycled into an aeration tank as substances for microorganisms to achieve 60%-100% of sludge reduction in low-sludge wastewater treatment processes [7, 9]. The sonicated sludge may also be used as carbon source for biological nitrogen and phosphorus removal processes [6, 8]. Detailed changes of organic matters and floc morphology during sonication have been reported [7, 9], and change of heavy metals during sonication has also been reported but the details are still unclear [11].

    Heavy metals in sludge are of great concerns due to their health and environment impacts. Sludge heavy metals are most of transition elements, which are easily affected by the environmental conditions, such as pH, oxidation reduction potential, temperatures, organic matters and so on [12, 13]. As sonication effectively changes the physical, chemical and morphological properties of sludge, it is reasonable to suppose significant changes of sludge heavy metals during sonication. Such changes of heavy metals might impact the following processes when sonication was used as sludge pretreatment before anaerobic digestion, aerobic fermentation, sludge recycling in low-sludge wastewater treatment processes, and carbon source provision for nitrogen and phosphorous removal processes. Therefore, it is very important to understand the detailed changes of heavy metals during sludge sonication for safe and efficient sludge treatment.

    This study investigated the detailed changes of heavy metals during sludge sonication. Since ultrasonic power density was the most significant factor for sonication efficiency [14], the impact of ultrasonic power density was examined.

    2 MATERIALS AND METHODS

    2.1 Sludge and reagents

    The studied sludge was collected from a local wastewater treatment plant in Harbin, China. Tables 1 and 2 show the basic properties of the sludge used. Ultra-pure water was used for all experiments andanalysis. All reagents used were of analytical-reagent grade or higher.

    Table 1 Physical-chemical characteristics of the untreated sludge

    Table 2 Heavy metal content in the untreated sludge (mg·kg?1)

    2.2 Experiments

    The sonication equipment was a horn-system (JY90-II, Ningbo Haishu Kesheng Ultrasonic Equipment Co., China) that emitted 25 kHz ultrasound waves through a tip with a surface area of 2.12 cm2. The range of ultrasonic power was from 0 to 250 W. Each time 100 ml sludge was put into a 150 ml beaker for sonication, and the probe was dipped 1 cm below the sludge surface in the center of the beaker. The beaker was then put in a water-bath to prevent over heating of sludge. Sonication duration of 15 min was used according to the previous work [9].

    The sonicated sludge was centrifuged at 4000 r·min?1using a TCL-16G desk centrifuge (Anting Scientific Apparatus plant in Shanghai, China) in order to separate the solid phase and the liquid phase (supernatant). The supernatant was used for the measurement of supernatant chemical oxygen demand (SCOD) and aqueous heavy metal concentrations, and the solid phase was for the analysis of heavy metal and chemical fractions in sludge.

    2.3 Analytical methods

    The SCOD, suspended solid content (TSS), and volatile solid content (VSS) were measured according to APHA standard methods [15]. The pH of samples was monitored with a PHS-3C pH meter (Shanghai Precision Scientific Instrument Co., China). The heavy metal concentrations in the supernatant were directly measured by a PerkinElmer Optima 5300 DV ICP (Perkin Elmer Inc., America) [16]. The chemical fraction of heavy metals in the solid phase was analyzed by a five-step sequential extraction procedure [17].

    All reported values of each index were average values calculated from duplicate samples.

    3 RESULTS AND DISCUSSION

    3.1 Ultrasonic release of sludge organics and total heavy metals

    The shear force generated in sonication breaks down the bacterial cell wall and releases the intracellular and extracellular substances into the aqueous phase including inorganic and organic materials. Fig. 1 shows the release of organic matters and heavy metals during sonication. Organic matters are largely released by sonication (high released SCOD), which might be contributed by the release of extracellular polymeric substances during floc disintegration and the release of cell components during cells lysis. Heavy metals could also be released, but their concentrations in the aqueous phase are thousands times lower than that of organic matters.

    Figure 1 Effect of ultrasonic power density on the release of sludge matters (15 min)

    Ultrasonic power density significantly affects the release of both organic matters and heavy metals during sludge sonication. For organic matters, low power density input could cause their release. SCOD concentration increases steadily till the power density reaches 1.6 W·ml?1, and do not change with further increasing power density. For the total heavy metals, the release by sonication is fall-after-rise with the increase of ultrasonic power density. A certain level of ultrasonic power density is needed for heavy metal release and significant increase of metal concentration is observed beyond 0.8 W·ml?1. However, the concentration of total heavy metal in the aqueous phase descends when the power density increases to 2.0 W·ml?1. Therefore, the effective energy range is 0-1.6 W·ml?1for organics release and 0.8-1.6 W·ml?1for total heavy metal release. Energy increase beyond the range is useless or even adverse.

    The difference between the release of organic matters and the release of heavy metals might be thatthe combination of heavy metals with the sludge was different from that of organic matters. Large quantity of organic matters exited in the extracellular polymeric substances [5, 8, 18], and even low energy input could loose the sludge floc and release them [9]. High ultrasonic power density was needed to cause acoustic cavitation, which then caused the sludge floc disintegration and cell breakage. Therefore, the released organic matters increased stably with power density increased from 0 to 1.6 W·ml?1. However, it was reported that when ultrasound power density increased beyond the most efficient level, the cavitation decreased with the increased power density, and the sludge disintegration thereby became weak [8, 18].

    Heavy metals combined with sludge more complexly [19]. Chemical fractions of heavy metals in the untreated sludge were examined, namely exchangeable (F1), carbonated-bound (F2), Fe/Mn oxides-bound fraction (F3), organically-bound (F4) and residual (F5). According to the determination of the five chemical fractions [17], F1, F2 and F3 are considered to be unsteady forms, while F4 and F5 are considered as stable ones [20]. The results are reported in Fig. 2. The most unsteady fractions (sum of F1 and F2) account for only about 10% in the untreated sludge, and therefore the release of heavy metals by sonication is not obvious at a low power density. With powerful energy inputting, the biting forces between heavy metals and sludge are weakened and more heavy metals could be released. However, sonication with higher power density might greatly disintegrate sludge matrix, and the floc size became smaller, which could supply large surface areas. The released heavy metals in the aqueous phase are then re-adsorbed by the small flocs with huge surface areas. Therefore, beyond 1.6 W·ml?1, the re-adsorption of heavy metal onto flocs exceeds the release of heavy metals from sludge, and the aqueous total heavy metals finally decreases.

    Figure 2 Chemical fractions of total heavy metals in the untreated sludge

    3.2 Ultrasonic release of individual heavy metals from sludge

    Figure 3 Release of each heavy metal by sonication (15 min)

    Ultrasonic power density greatly affects the release of each heavy metal during sonication (Fig. 3). Seven typical heavy metals are detected in the untreated sludge, namely copper, nickel, chrome, mercury, lead, arsenic and cadmium. After sonication, arsenic, nickel, chrome and mercury can be released, and all their release curves show fall-after-rise pattern. Other metals such as copper, lead and cadmium are released little during sonication with power density of 0-2.0 W·ml?1. Therefore, sonication can selectively release heavy metal from the sludge.

    Furthermore, for the four heavy metals that could be released by sonication, the effective energy range of each metal release is also different. For arsenic, low power density (lower than 0.8 W·ml?1) sonication has no effect on the release from sludge, and the release is naught. Power density of 1.2 W·ml?1is the most efficient for the release of arsenic and about 40% of arsenic is released from sludge. Therefore, the effective energy range for arsenic release is 0.8-1.2 W·ml?1.

    For nickel, it can be released at low power density (0.5 W·ml?1) in spite that vary low concentration is detected. With increased power density, the released concentration increases sharply. When power density reaches 1.6 W·ml?1, the release of nickel increases to 38%. The energy work range for nickel release is 0.5-1.6 W·ml?1.

    For chrome and mercury, the released concentration increases slowly at low power density, then increases sharply and finally decreases when power density reaches 1.6 W·ml?1. The work range for release of these two metals is 0.8-1.6 W·ml?1. The highest release ratio for chrome and mercury is 21% and 26%, respectively.

    The possible explanation for the different changes of heavy metals is that each metal showed different characteristics and chemical forms. The five chemical fractions of each heavy metal in the untreated sludge are examined and the distributions are reported in Fig. 4. For arsenic and nickel, unsteady fractions are high, resulting in the high release ratio from sludge and the wide energy work range as well. For chrome, fractions of F3 and F4 are the main forms with 55% and 42%, respectively. Therefore, the energy work range for release of chrome is narrower than nickel and arsenic. For mercury, fraction of F5 is the major fraction, however, mercury is a metalloid and its characteristics are relatively unstable [11]. The combination between mercury and sludge may be torn apart by the shear force during sonication. Besides,strong stirring during sonication also increased the sludge temperature by 10-20 °C [18], which may also contribute to mercury release. For cadmium, copper and lead, the stable fractions are high, and the combination force of these metals with sludge may be stronger than other metals. Therefore, little change can be observed during sonication.

    Figure 4 Heavy metals chemical fraction distributions in the untreated sludge

    3.3 Potential applications

    According to the investigation of heavy metal release during sonication, an energy work range of heavy metal release by sonication with power density of 0.8-1.6 W·ml?1was found. Too low or too high power density was not effective for heavy metal release. This new finding that the heavy metals can be removed from sludge within an energy range is useful for sludge treatment. For example, carbon source is normally insufficient in the biological nitrogen and phosphorus removal processes. As a counter measure, sonicated sludge can be put into the aeration tank as carbon source supplement. If the power density is controlled lower than the energy work range of heavy metal release, the sonicated sludge would supplement carbon source without heavy metals.

    Furthermore, as it was shown in the results, different heavy metals could be selectively released by sonication. Therefore, the power density of ultrasound could be adjusted for separating metals in a multi-metal system, which is beneficial for heavy metals recovery.

    4 CONCLUSIONS

    This study investigated the impact of ultrasonic power density on release of heavy metals in sludge during ultrasonic treatment. Several conclusions could be obtained as follows:

    Sonication released the organic matter and heavy metals. The released amount of the total heavy metals was far less than that of organic matter within power density range of 0-2.0 W·ml?1. The release of total heavy metals showed a pattern of fall-after-rise with the increased power density.

    There was an effective energy range of 0.8-1.6 W·ml?1for heavy metals release. The heavy metals in sludge could be effectively removed if power density was adjusted in the work range. Beyond the work range, more energy inputs were not good. Besides, the sonicated sludge could be safely recycled to wastewater treatment process as carbon source if the power density was adjusted lower than the work range.

    The release of each heavy metal had its individual energy work range, and the mechanism might be determined by the chemical fractions of each heavy metal in sludge. Nickel and arsenic had a wide energy work range since their unsteady fractions were high. Mercury and chrome could be released but the energy range was narrow. Other metals could not be released during sonication.

    REFERENCES

    1 Brisolara, K.F., Qi, Y.N., “Biosolids and sludge management”, Water Environ. Res., 82 (10), 1311-1326 (2010).

    2 Mungray, A.K., Murthy, Z.V.P., Tirpude, A.J., “Post treatment of up-flow anaerobic sludge blanket based sewage treatment plant effluents: A review”, Desal. Wat. Treat., 22 (1-3), 220-237 (2010).

    3 Dogan, I., Sanin, F.D., “Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method”, Water Res., 43, 2139-2148 (2009).

    4 Bougrier, C., Albasi, C., Delgenès, J.P., Carrère, H., “Effect of ultrasonic, thermal and ozone pretreatments on waste activated sludge solubilization and anaerobic biodegradability”, Chem. Eng. Process., 45 (8), 711-718 (2006).

    5 Erden, G., Filibeli, A., “Ultrasonic pre-treatment of biological sludge: consequences for disintegration, anaerobic biodegradability, and filterability”, J. Chem. Technol. Biotechnol., 85, 145-150 (2010).

    6 Na, S., Kim, Y.U., Khim, J., “Physiochemical properties of digested sewage sludge with ultrasonic treatment”, Ultrason. Sonochem. 14 (3), 281-285 (2007).

    7 Yoon, S., Kim, H., Lee, S., “Incorporation of ultrasonic cell disintegration into a membrane bioreactor for zero sludge production”, Process Biochem., 39 (12), 1923-1929 (2004).

    8 Wang, F., Lu, S., Ji, M., “Components of released liquid from ultrasonic waste activated sludge disintegration”, Ultrason. Sonochem., 13, 334-338 (2006).

    9 Zhang, G., Zhang, P., Yang, J., Chen, Y., “Ultrasonic reduction of excess sludge from the activated sludge system”, J. Hazard. Mater., 145 (3), 515-519 (2007).

    10 Muller, C.D., Abu-Orf, M., Blumenschein, C.D., Novak, J.T., “A comparative study of ultrasonic pretreatment and an internal recycle for the enhancement of mesophilic anaerobic digestion”, Water Environ. Res., 81 (12), 2398-2410 (2009).

    11 Laurent, J., Pierra, M., Casellas, M., Dagot, C., “The fate of heavy metals during thermal and ultrasound treatment of activated sludge”, Environ. Prot. Eng., 35 (3), 5-15 (2009).

    12 Sauvé, S., Hendershot, H., Allen, H.E., “Solid-solution partitioning of metals in contaminated soils: dependence on pH total metal burden and organic matter”, Environ. Sci. Technol., 34 (7), 1125-1131 (2000).

    13 Masood, F., Malik, A., “Biosorption of metal ions from aqueous solution and tannery effluent by Bacillus sp. FM1”, J. Environ. Sci. Health. Part A: Toxic/Hazard. Subst. Environ. Eng., 46 (14),1667-1674 (2011).

    14 Zhang, G., Zhang, P., Yang, J., Liu, H., “Energy-efficient sludge sonication: Power and sludge characteristics”, Bioresour. Technol., 99, 9029-9031 (2008).

    15 Clesceri, L., Greenberg, A., Eaton, A., Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington, D.C. (1998).

    16 Dewil, R., Baeyens, J., Roelandt, F., Peereman, M., “The analysis of the total sulphur content of wastewater treatment sludge by ICP-OES”, Environ. Sci. Tech., 23, 904-907 (2007).

    17 Tessier, A., Compbell, P.G., Bisson, M., “Sequential extraction procedure for the speciation of particulate trace metals”, Anal. Chem., 51 (7), 844-850 (1979).

    18 Dewil, R., Baeyens, J., Goutvrind, R. “The use of ultrasonics in the treatment of waste activated sludge”, Chin. J. Chem. Eng., 14 (1), 105-113 (2006).

    19 Fuents, A., Llorens, M., Saez, J., Aguilar, M.I., Ortuno, J.F., Meseguer, V.F., “Comparative study of six different sludges by sequential speciation of heavy metals”, Bioresour. Technol., 99, 517-525 (2008).

    20 Zorpas, A.A., Inglezakis, V.J., Loizidou, M., “Heavy metals fractionation before, during and after composting of sewage sludge with natural zeolite”, Waste Manage., 28, 2054-2060 (2008).

    2012-08-25, accepted 2013-01-25.

    * Supported by the Basic Research Funds in Renmin University of China from the center government (12XNL101).

    ** To whom correspondence should be addressed. E-mail: zgm200@126.com

    猜你喜歡
    高峰光明
    遇見光明
    病毒病將迎“小高峰”全方位布控巧應(yīng)對
    黑暗中的光明
    黑暗中的光明
    石慶云
    書香兩岸(2020年3期)2020-06-29 12:33:45
    秋天 一個絢麗、光明的季節(jié)
    文苑(2019年22期)2019-12-07 05:28:58
    僑愛執(zhí)燈 復(fù)刻光明
    華人時刊(2019年23期)2019-05-21 03:31:32
    努力攀登文藝高峰
    中華詩詞(2017年1期)2017-07-21 13:49:54
    求真務(wù)實 開拓創(chuàng)新 不忘初心 再攀高峰
    中國核電(2017年1期)2017-05-17 06:09:54
    走向光明
    国产精品九九99| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产日韩欧美精品在线观看 | 亚洲三区欧美一区| 婷婷精品国产亚洲av在线| 国产精品香港三级国产av潘金莲| 亚洲,欧美精品.| 国产欧美日韩精品亚洲av| 日韩av在线大香蕉| 无人区码免费观看不卡| 日韩欧美国产在线观看| 国产精品乱码一区二三区的特点 | 日韩有码中文字幕| 成人18禁高潮啪啪吃奶动态图| 一级毛片女人18水好多| 99久久久亚洲精品蜜臀av| 日韩欧美一区二区三区在线观看| 人人妻人人爽人人添夜夜欢视频| 亚洲av第一区精品v没综合| av福利片在线| 首页视频小说图片口味搜索| 啦啦啦观看免费观看视频高清 | 一边摸一边抽搐一进一小说| 亚洲男人的天堂狠狠| 午夜福利影视在线免费观看| 亚洲欧美日韩另类电影网站| 亚洲伊人色综图| 巨乳人妻的诱惑在线观看| 少妇被粗大的猛进出69影院| 亚洲五月天丁香| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久免费视频了| 久久香蕉精品热| 中文字幕人成人乱码亚洲影| 国产伦人伦偷精品视频| 精品日产1卡2卡| 亚洲国产日韩欧美精品在线观看 | 97碰自拍视频| 国产蜜桃级精品一区二区三区| 中文字幕人妻丝袜一区二区| 精品欧美国产一区二区三| 级片在线观看| 激情在线观看视频在线高清| 国产精品香港三级国产av潘金莲| 女生性感内裤真人,穿戴方法视频| av超薄肉色丝袜交足视频| 欧美成人免费av一区二区三区| 亚洲国产欧美网| 纯流量卡能插随身wifi吗| 国产欧美日韩一区二区三| 欧美在线一区亚洲| 级片在线观看| 中文亚洲av片在线观看爽| 亚洲视频免费观看视频| 99在线视频只有这里精品首页| 在线播放国产精品三级| 身体一侧抽搐| 亚洲无线在线观看| 女人被狂操c到高潮| 欧美乱码精品一区二区三区| 欧美黑人精品巨大| 大香蕉久久成人网| 九色国产91popny在线| 亚洲专区字幕在线| 一区福利在线观看| 亚洲国产欧美一区二区综合| 欧美久久黑人一区二区| 老司机靠b影院| 老汉色av国产亚洲站长工具| 美女 人体艺术 gogo| 久久国产亚洲av麻豆专区| 黑人巨大精品欧美一区二区mp4| 在线视频色国产色| 母亲3免费完整高清在线观看| 美女 人体艺术 gogo| 国内精品久久久久精免费| 亚洲国产中文字幕在线视频| 99久久99久久久精品蜜桃| 婷婷精品国产亚洲av在线| 亚洲精品国产精品久久久不卡| 女性生殖器流出的白浆| 男女下面插进去视频免费观看| 午夜福利视频1000在线观看 | 动漫黄色视频在线观看| 国产主播在线观看一区二区| 久久九九热精品免费| 多毛熟女@视频| 午夜免费鲁丝| 麻豆成人av在线观看| 女人高潮潮喷娇喘18禁视频| or卡值多少钱| 国产97色在线日韩免费| 一级毛片精品| 中文字幕久久专区| 精品电影一区二区在线| 国产亚洲欧美在线一区二区| 人人妻人人澡人人看| 日本一区二区免费在线视频| 脱女人内裤的视频| 悠悠久久av| 美女高潮喷水抽搐中文字幕| 国产极品粉嫩免费观看在线| 成人亚洲精品av一区二区| 中文字幕高清在线视频| 国产精品影院久久| 国产一区二区三区综合在线观看| 最近最新中文字幕大全免费视频| 久久久久国内视频| 欧美中文综合在线视频| 美国免费a级毛片| 成年版毛片免费区| 亚洲精品国产区一区二| 免费高清视频大片| 麻豆国产av国片精品| 欧美大码av| 激情在线观看视频在线高清| 嫩草影视91久久| 亚洲熟妇中文字幕五十中出| 69精品国产乱码久久久| 精品欧美一区二区三区在线| 国产伦一二天堂av在线观看| 91成人精品电影| 婷婷六月久久综合丁香| 一本久久中文字幕| 成人18禁高潮啪啪吃奶动态图| 国产成人免费无遮挡视频| 亚洲国产精品合色在线| 久久婷婷人人爽人人干人人爱 | 日日爽夜夜爽网站| 国产乱人伦免费视频| 啦啦啦免费观看视频1| 国产精品精品国产色婷婷| 日韩有码中文字幕| 啦啦啦韩国在线观看视频| 日本黄色视频三级网站网址| 老汉色av国产亚洲站长工具| 黄片大片在线免费观看| 精品卡一卡二卡四卡免费| 又黄又粗又硬又大视频| 欧美成人午夜精品| 亚洲美女黄片视频| 亚洲人成77777在线视频| 制服丝袜大香蕉在线| 日本vs欧美在线观看视频| www.精华液| 无限看片的www在线观看| 自线自在国产av| 午夜福利欧美成人| 久久人妻熟女aⅴ| 成年人黄色毛片网站| 制服人妻中文乱码| 97人妻天天添夜夜摸| 精品电影一区二区在线| 国产精品自产拍在线观看55亚洲| 亚洲五月婷婷丁香| 怎么达到女性高潮| 亚洲欧美激情在线| 女性生殖器流出的白浆| 成人手机av| av片东京热男人的天堂| 欧美一级a爱片免费观看看 | av视频在线观看入口| 欧美色欧美亚洲另类二区 | 久久婷婷成人综合色麻豆| 日韩欧美一区二区三区在线观看| or卡值多少钱| 97超级碰碰碰精品色视频在线观看| av天堂久久9| 午夜日韩欧美国产| 精品久久久久久,| 大陆偷拍与自拍| 日韩一卡2卡3卡4卡2021年| 精品卡一卡二卡四卡免费| 久久精品亚洲精品国产色婷小说| 麻豆成人av在线观看| 精品人妻在线不人妻| or卡值多少钱| 欧美另类亚洲清纯唯美| 欧美成人午夜精品| 国产又色又爽无遮挡免费看| 久久亚洲真实| 日日夜夜操网爽| 成人av一区二区三区在线看| 老汉色av国产亚洲站长工具| 久久久精品国产亚洲av高清涩受| 看免费av毛片| 成人国产综合亚洲| 亚洲片人在线观看| 嫁个100分男人电影在线观看| 国产单亲对白刺激| 国产精品98久久久久久宅男小说| 国产野战对白在线观看| 色播亚洲综合网| 亚洲av电影不卡..在线观看| 97人妻天天添夜夜摸| 国产蜜桃级精品一区二区三区| 免费看美女性在线毛片视频| 午夜福利成人在线免费观看| 欧美日韩瑟瑟在线播放| 国产精品香港三级国产av潘金莲| 成人免费观看视频高清| 国产亚洲欧美98| 亚洲自偷自拍图片 自拍| 国产一区在线观看成人免费| 99riav亚洲国产免费| 日韩欧美国产在线观看| 一进一出抽搐gif免费好疼| av有码第一页| 最近最新免费中文字幕在线| 中文字幕久久专区| 午夜免费成人在线视频| 亚洲成av人片免费观看| 91九色精品人成在线观看| 久久久国产欧美日韩av| 国产精品一区二区三区四区久久 | 午夜a级毛片| 1024视频免费在线观看| 在线av久久热| 欧美 亚洲 国产 日韩一| 97碰自拍视频| 国产伦人伦偷精品视频| 久久人妻av系列| 久久久久久人人人人人| 国产成人系列免费观看| 18美女黄网站色大片免费观看| 免费久久久久久久精品成人欧美视频| 757午夜福利合集在线观看| 亚洲精品久久成人aⅴ小说| 国产黄a三级三级三级人| 国产成人一区二区三区免费视频网站| 久久人人爽av亚洲精品天堂| 亚洲三区欧美一区| 国产精品九九99| 美女 人体艺术 gogo| 久久精品亚洲精品国产色婷小说| 神马国产精品三级电影在线观看 | 久久国产精品影院| av视频免费观看在线观看| 欧美激情高清一区二区三区| 色综合欧美亚洲国产小说| 亚洲精品一卡2卡三卡4卡5卡| 此物有八面人人有两片| 中文字幕另类日韩欧美亚洲嫩草| 精品欧美国产一区二区三| 国产99久久九九免费精品| 欧美+亚洲+日韩+国产| 精品国产乱码久久久久久男人| 好男人在线观看高清免费视频 | 亚洲在线自拍视频| 少妇粗大呻吟视频| 久久久久久久久久久久大奶| 亚洲av电影不卡..在线观看| 国产国语露脸激情在线看| 国产精品久久视频播放| 亚洲在线自拍视频| 亚洲少妇的诱惑av| 国产一区二区三区综合在线观看| 午夜精品在线福利| 无限看片的www在线观看| 一区二区日韩欧美中文字幕| 制服诱惑二区| 日本三级黄在线观看| 一边摸一边做爽爽视频免费| 久久国产精品男人的天堂亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 老司机靠b影院| 长腿黑丝高跟| 性少妇av在线| 亚洲天堂国产精品一区在线| 亚洲国产精品合色在线| 国产高清激情床上av| 桃红色精品国产亚洲av| 好看av亚洲va欧美ⅴa在| 村上凉子中文字幕在线| 男人的好看免费观看在线视频 | 午夜福利18| 高清黄色对白视频在线免费看| 非洲黑人性xxxx精品又粗又长| 国产aⅴ精品一区二区三区波| 成人特级黄色片久久久久久久| 日韩精品免费视频一区二区三区| 日本免费a在线| 国产精品永久免费网站| 婷婷精品国产亚洲av在线| 免费搜索国产男女视频| 国产伦一二天堂av在线观看| 99精品欧美一区二区三区四区| 18美女黄网站色大片免费观看| 首页视频小说图片口味搜索| 一区二区三区激情视频| 露出奶头的视频| 亚洲国产精品久久男人天堂| 97碰自拍视频| 啪啪无遮挡十八禁网站| 中文字幕高清在线视频| 国产av在哪里看| av视频在线观看入口| 久久人人爽av亚洲精品天堂| 一边摸一边做爽爽视频免费| 午夜免费观看网址| 女警被强在线播放| 久热爱精品视频在线9| 国产精品九九99| 色av中文字幕| 国产精品综合久久久久久久免费 | 国产av又大| 韩国av一区二区三区四区| 久久亚洲精品不卡| 好男人在线观看高清免费视频 | 国产99久久九九免费精品| 日韩精品青青久久久久久| 亚洲国产欧美一区二区综合| 91精品国产国语对白视频| 在线观看www视频免费| 免费在线观看完整版高清| 色播亚洲综合网| 窝窝影院91人妻| 国产不卡一卡二| 真人一进一出gif抽搐免费| 超碰成人久久| 老汉色av国产亚洲站长工具| 成人亚洲精品av一区二区| 国产亚洲av高清不卡| 俄罗斯特黄特色一大片| 欧美乱妇无乱码| 久久久久久久久免费视频了| 亚洲专区中文字幕在线| 欧美日本中文国产一区发布| 狠狠狠狠99中文字幕| 久久午夜综合久久蜜桃| 亚洲色图综合在线观看| 美女大奶头视频| 亚洲五月婷婷丁香| 韩国av一区二区三区四区| 国产又爽黄色视频| 免费女性裸体啪啪无遮挡网站| 国产精华一区二区三区| 无限看片的www在线观看| 久久精品影院6| 国产亚洲欧美精品永久| 欧美 亚洲 国产 日韩一| 亚洲少妇的诱惑av| 制服丝袜大香蕉在线| 级片在线观看| 亚洲自拍偷在线| 午夜精品久久久久久毛片777| 99精品在免费线老司机午夜| 中文字幕人成人乱码亚洲影| 人人妻人人澡人人看| 国产在线精品亚洲第一网站| av在线播放免费不卡| tocl精华| 欧美激情久久久久久爽电影 | 欧美成人性av电影在线观看| 亚洲色图综合在线观看| 国产精品久久久久久精品电影 | 精品国产一区二区久久| 亚洲色图综合在线观看| 欧美黑人精品巨大| 成熟少妇高潮喷水视频| 久久久久亚洲av毛片大全| 99香蕉大伊视频| 无限看片的www在线观看| 中文字幕人成人乱码亚洲影| 69精品国产乱码久久久| 精品国产乱子伦一区二区三区| 日韩精品青青久久久久久| 男人的好看免费观看在线视频 | 国产精品影院久久| 18禁裸乳无遮挡免费网站照片 | 操美女的视频在线观看| 亚洲人成网站在线播放欧美日韩| 十八禁网站免费在线| 亚洲欧美精品综合久久99| 午夜视频精品福利| 午夜精品在线福利| av免费在线观看网站| 免费女性裸体啪啪无遮挡网站| 操美女的视频在线观看| 欧美日韩黄片免| 免费人成视频x8x8入口观看| 欧美乱色亚洲激情| 欧美激情极品国产一区二区三区| 免费不卡黄色视频| 999久久久精品免费观看国产| 淫秽高清视频在线观看| 国产在线精品亚洲第一网站| 亚洲激情在线av| 欧美日韩亚洲国产一区二区在线观看| 精品一区二区三区视频在线观看免费| 美女高潮喷水抽搐中文字幕| 国产激情久久老熟女| 欧美日韩精品网址| 欧美日韩乱码在线| 99精品在免费线老司机午夜| 岛国视频午夜一区免费看| 成人亚洲精品av一区二区| 国产精品久久久久久亚洲av鲁大| 成人亚洲精品一区在线观看| 久久久久国产一级毛片高清牌| 亚洲成人免费电影在线观看| 日韩av在线大香蕉| 黑人操中国人逼视频| 人人妻人人爽人人添夜夜欢视频| 精品熟女少妇八av免费久了| 女同久久另类99精品国产91| 男女下面插进去视频免费观看| 最新美女视频免费是黄的| 日韩成人在线观看一区二区三区| 亚洲精品中文字幕一二三四区| 免费久久久久久久精品成人欧美视频| 亚洲欧美日韩另类电影网站| 成人免费观看视频高清| 两个人看的免费小视频| 此物有八面人人有两片| 可以在线观看的亚洲视频| 日韩中文字幕欧美一区二区| 午夜福利在线观看吧| 国产熟女xx| 国产精品久久久久久精品电影 | aaaaa片日本免费| 久久精品91蜜桃| 免费搜索国产男女视频| 欧美日韩瑟瑟在线播放| 久久人妻熟女aⅴ| 久久影院123| 亚洲国产精品sss在线观看| 午夜福利成人在线免费观看| 国产男靠女视频免费网站| 别揉我奶头~嗯~啊~动态视频| 香蕉久久夜色| 成人免费观看视频高清| 怎么达到女性高潮| 亚洲男人天堂网一区| 久久伊人香网站| 亚洲第一av免费看| 高清毛片免费观看视频网站| 一本综合久久免费| 天天添夜夜摸| 色播在线永久视频| 亚洲精品中文字幕一二三四区| 日本三级黄在线观看| 国产av在哪里看| 国产欧美日韩综合在线一区二区| 午夜福利影视在线免费观看| 国产精品免费一区二区三区在线| 国产男靠女视频免费网站| 黄色视频,在线免费观看| 黄色毛片三级朝国网站| av视频免费观看在线观看| 可以在线观看的亚洲视频| 亚洲欧美日韩另类电影网站| 久久久久久大精品| 免费一级毛片在线播放高清视频 | 国产欧美日韩综合在线一区二区| 欧美绝顶高潮抽搐喷水| 国产亚洲精品久久久久5区| 咕卡用的链子| 人人妻人人爽人人添夜夜欢视频| 欧美中文日本在线观看视频| 久久久久亚洲av毛片大全| 99久久国产精品久久久| 国产精品亚洲一级av第二区| 国产精品久久久久久人妻精品电影| 最近最新中文字幕大全电影3 | 女警被强在线播放| 好男人电影高清在线观看| 女人精品久久久久毛片| 每晚都被弄得嗷嗷叫到高潮| 午夜福利视频1000在线观看 | 久久精品影院6| 久久人妻av系列| 一进一出好大好爽视频| 欧美大码av| 久久天堂一区二区三区四区| 亚洲av电影不卡..在线观看| 99精品欧美一区二区三区四区| 欧美一级毛片孕妇| 亚洲自拍偷在线| 国产精品亚洲av一区麻豆| 自线自在国产av| 久久精品91无色码中文字幕| 不卡av一区二区三区| 两个人视频免费观看高清| 久久 成人 亚洲| 91成人精品电影| 97人妻精品一区二区三区麻豆 | 亚洲精品一区av在线观看| 后天国语完整版免费观看| 久久精品国产综合久久久| 人人妻,人人澡人人爽秒播| 亚洲精品中文字幕一二三四区| 精品日产1卡2卡| 无遮挡黄片免费观看| 久久久国产成人精品二区| 久久国产精品男人的天堂亚洲| 日韩大码丰满熟妇| 侵犯人妻中文字幕一二三四区| 国产一区二区三区在线臀色熟女| 亚洲精品国产色婷婷电影| 午夜福利一区二区在线看| 日本在线视频免费播放| 午夜福利,免费看| 午夜成年电影在线免费观看| 1024香蕉在线观看| 国产片内射在线| 国产精品影院久久| aaaaa片日本免费| 国产蜜桃级精品一区二区三区| 国产aⅴ精品一区二区三区波| 女生性感内裤真人,穿戴方法视频| 国产伦一二天堂av在线观看| 欧美激情高清一区二区三区| 不卡av一区二区三区| 90打野战视频偷拍视频| 亚洲第一欧美日韩一区二区三区| 久久香蕉精品热| av网站免费在线观看视频| 日韩精品中文字幕看吧| 亚洲黑人精品在线| 又黄又爽又免费观看的视频| 两个人视频免费观看高清| 亚洲精品国产区一区二| 在线观看日韩欧美| 久久人人97超碰香蕉20202| 中亚洲国语对白在线视频| 黑人巨大精品欧美一区二区mp4| 欧美日韩乱码在线| 欧美精品啪啪一区二区三区| 最近最新中文字幕大全免费视频| 99国产精品99久久久久| 国产av精品麻豆| 窝窝影院91人妻| 免费高清在线观看日韩| 色综合婷婷激情| 免费高清在线观看日韩| 黑人欧美特级aaaaaa片| 久久狼人影院| 成人国语在线视频| 人人妻,人人澡人人爽秒播| 欧美丝袜亚洲另类 | 日韩高清综合在线| 亚洲熟女毛片儿| 免费人成视频x8x8入口观看| 淫妇啪啪啪对白视频| 一区二区三区高清视频在线| 亚洲五月婷婷丁香| 一区二区三区国产精品乱码| 亚洲男人天堂网一区| 国产精品美女特级片免费视频播放器 | 亚洲熟妇熟女久久| 国产单亲对白刺激| 精品福利观看| 人人妻人人爽人人添夜夜欢视频| 久久久久国内视频| 91精品国产国语对白视频| 精品国产超薄肉色丝袜足j| 国产蜜桃级精品一区二区三区| 中亚洲国语对白在线视频| 一区二区三区国产精品乱码| 一区二区日韩欧美中文字幕| 夜夜爽天天搞| 99国产精品99久久久久| 久久亚洲精品不卡| 波多野结衣一区麻豆| 亚洲av电影不卡..在线观看| 丝袜在线中文字幕| 亚洲成人国产一区在线观看| 精品熟女少妇八av免费久了| 岛国在线观看网站| 国产精品日韩av在线免费观看 | bbb黄色大片| 搞女人的毛片| 一二三四社区在线视频社区8| 国产熟女午夜一区二区三区| 亚洲色图综合在线观看| 亚洲 国产 在线| 国产精品自产拍在线观看55亚洲| 国产精品一区二区在线不卡| 国产高清视频在线播放一区| 欧美日韩中文字幕国产精品一区二区三区 | 久久久水蜜桃国产精品网| 免费在线观看黄色视频的| 一级毛片女人18水好多| 少妇被粗大的猛进出69影院| 久久午夜亚洲精品久久| 免费在线观看视频国产中文字幕亚洲| www.自偷自拍.com| 麻豆av在线久日| 成年版毛片免费区| 电影成人av| 最近最新中文字幕大全电影3 | 久久狼人影院| 国产成人影院久久av| 精品少妇一区二区三区视频日本电影| 成人亚洲精品一区在线观看| 亚洲av电影不卡..在线观看| 男人舔女人下体高潮全视频| 99久久综合精品五月天人人| 国产欧美日韩一区二区三区在线| 久久精品91无色码中文字幕| 又黄又爽又免费观看的视频| 18禁美女被吸乳视频| 一本大道久久a久久精品| 国产精品,欧美在线| 人人妻人人澡人人看| 色老头精品视频在线观看| 99热只有精品国产| 欧美久久黑人一区二区| 他把我摸到了高潮在线观看| 国产片内射在线| 精品久久久久久,| aaaaa片日本免费| 精品人妻在线不人妻| 黄色片一级片一级黄色片|