• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Two-step Design Method for Shaft Work Targeting on Low-temperature Process*

    2014-07-18 12:09:48LUOYiqing羅祎青FENGShengke馮勝科SUNChangjiang孫長(zhǎng)江andYUANXigang袁希鋼SchoolofChemicalEngineeringandTechnologyTianjinUniversityTianjin30007ChinaBeijingRisunChemicalTechnologiesInstituteCompanyLimitedBeijing00070China
    關(guān)鍵詞:長(zhǎng)江

    LUO Yiqing (羅祎青)**, FENG Shengke (馮勝科) SUN Changjiang (孫長(zhǎng)江)and YUAN Xigang (袁希鋼)School of Chemical Engineering and Technology, Tianjin University, Tianjin 30007, ChinaBeijing Risun Chemical Technologies Institute Company Limited, Beijing 00070, China

    A Two-step Design Method for Shaft Work Targeting on Low-temperature Process*

    LUO Yiqing (羅祎青)1,**, FENG Shengke (馮勝科)1, SUN Changjiang (孫長(zhǎng)江)2and YUAN Xigang (袁希鋼)11School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China2Beijing Risun Chemical Technologies Institute Company Limited, Beijing 100070, China

    In low-temperature processes, there are interactions between heat exchanger network (HEN) and refrigeration system. The modification on HEN of the chilling train for increasing energy recovery does not always coordinate with the minimum shaft work consumption of the corresponding refrigeration system. In this paper, a systematic approach for optimizing low-temperature system is presented through mathematical method and exergy analysis. The possibility of “pockets”, which appears as right nose section in the grand composite curve (EGCC) of the process, is first optimized. The EGCC with the pockets cutting down is designed as a separate part. A case study is used to illustrate the application of the approach for a HEN of a chilling train with propylene and ethylene refrigerant system in an ethylene production process.

    exergy, shaft work, heat exchanger network, cold pocket, low-temperature process, optimization

    1 INTRODUCTION

    The heat exchanger network (HEN) and the refrigeration system in a low-temperature process are interlinked and their interactions are complex because compressor power is involved in utility requirements as well as heat in the system [1]. There are several methods for optimizing HEN in low temperature in recent years, almost all of which try to recover more heat energy in HEN [2]. However, since different level cold utility is supported by the refrigeration compressor, although these methods can recover most of heat energy in HEN, the refrigeration shaft work is usually not optimal and the optimization for whole system cannot be guaranteed. In a low-temperature process, the refrigeration shaft work should be the final target in optimizing the whole system [3, 4]. The pinch analysis method [5] can set heat load targets, but it is difficult to optimize the shaft work target simultaneously. Linnhoff and Dhole [6] had introduced the concept of “shaft work targets”, which allows the designer to obtain quantitive changes in the refrigeration shaft work requirement with exergy analysis [7] and bypass the exact design of both HEN and refrigeration system. To show the exergy loss in a heat exchanger network, carnot factor has been used to form the grand composite curve (EGCC) as shown in Fig. 1 [8-10],

    where ηcis the carnot efficiency and T0is the environment temperature. In Fig. 1 the shaded area between curves is proportional to the exergy loss in the HEN and is denoted as (σT0)HEN[8, 11]. Thus the amount of ideal work equivalent lost in heat transfer is proportional to the shaded area. When the reduction of shaded area is (σT0)HEN, the reduction of the shaft work is

    Figure 1 Exergy grand composite curve

    where ηexis the exergetic efficiency of refrigeration system, which is approximately constant [12] and is 0.59 here.

    However, as shown in Fig. 2, there are always pockets in the EGCC. If the energy in pockets and the temperature difference of the hot and cold streams in the pocket are both large [13], it is worthwhile to recover the energy in the pocket to improve the energy efficiency of the system. In this study, a two-step method is introduced to reduce the shaft work of a low-temperature process. First, cold pockets in the EGCC will be optimized in order to recover high quality utility. Then a mathematical method will be used to optimize the optimal utility arrangement. AHEN of a chilling train with propylene and ethylene refrigerant cycle process, with several cold pockets below the pinch of its EGCC, is used as a case study to specify the significant economic benefits.

    Figure 2 EGCC with pocket

    2 OPTIMIZATION METHOD

    In a low-temperature process, the EGCC always contains some pockets. A two-step method is adopted to optimize the process.

    2.1 Optimizing cold pockets

    Figure 3 shows the principle of optimizing cold pockets. A lower quality utility “EB” is used to exchange heat with the hot streams. Then, cold streams are used to generate a higher quality utility “FC”, and its temperature is decided by the minimum temperature difference of heat transfer. According to Linnhoff, the reduction of the exergy loss is proportional to the area of “EBCF”, namely Δ(σT0)HEN,P.

    Figure 3 Cold pockets in the EGCC

    2.2 Optimizing the low-temperature process without pockets

    Figure 4 shows the EGCC without pockets after optimizing the cold package of “EBCF”, and a mathematical method is then used to obtain the optimum utility setting for the system. The level as well as the number of cold utilities is chosen as optimization variables, and the shaded area between the cold utilities and the process streams is the objective for minimization.

    The mathematical model is presented as

    where N is the number of cold utilities, Hirepresents the enthalpy supplied by cold utility at temperature level i, ηciis the carnot factor at temperature level i, Hminand Hmaxrepresent the minimum and maximum enthalpy in the EGCC, respectively, S is the original loss of exergy, which is represented by the shaded area in Fig. 4. The optimization problem can be solved using a particle swarm optimization (PSO) [14] algorithm, which is a population based stochastic optimization technique. In PSO, the potential solutions, named as particles, fly through the problem space following the current optimum particles. As a point in a D-dimensional space, each particle updates according to its own experience and of other particles. The algorithm is simple in concept and can give good results in a faster and cheaper way. A PSO algorithm [15] is implemented and is illustrated in Fig. 5, where k is the number of iteration, ω, c1and c2are positive constants, v is the set of rate of position change of particle, and T is a set of temperature levels needed to be optimized for all particles.

    Figure 4 EGCC without pockets

    Figure 5 The methodology framework

    Table 1 Stream data of the HEN

    3 CASE STUDY

    The stream data shown in Table 1 belong to a HEN of a chilling train in an ethylene plant. The value of T0in Eq. (1) is 298.15 K. Fig. 6 is the EGCC for the process with vertical axis ηc. The original cold utilitiesare shown in Table 2, where P represents the propylene refrigerant and E represents the ethylene refrigerant. By calculating the area between the EGCC and the cold utilities, we get the exergy loss 2.659 MW. Then the two-step method is adopted to optimize the process.

    Figure 6 shows the pockets for the system. We optimize the pocket as shown in Fig. 7, in which both the energy and the temperature difference of the hot and cold streams are large. Here, the minimum temperature difference of heat transfer is taken as 3.0 °C. A lower quality utility is used to exchange heat with the hot streams and the cold streams are used to generate a higher quality utility. The rectangle area is proportional to the reduction of exergy loss.

    Figure 6 EGCC for the HEN of a chilling train in an ethylene plant

    Table 2 The data of original cold utilities

    Figure 7 The pocket with the lowest temperature for the HEN of a chilling train

    To maximum the area of the rectangle, a cold utility at ?101.0 °C with 1 MW heat load is used to exchange heat with the hot streams in the pocket. Meanwhile, the process cold streams generate a high quality utility at ?134.5 °C with 1 MW heat load. From the area of the rectangle, the reduction of exergy loss is 0.457 MW. According to Eq. (2), the reduction of the shaft work is 0.775 MW.

    Next, the process without pockets is optimized. Fig. 8 is the EGCC. To find the optimum arrangement of cold utilities, which makes the area between the process streams and the utilities minimum, mathematical programming is used. The number of cold utilities is first set 7, then the levels of refrigeration are searched in the curve with the objective function of minimizing the area between the refrigeration and process streams. Table 3 shows the results with 7 optimum cold utilities. By calculating the area between the process streams and the cold utilities, we get the exergy loss of 2.316 MW. Then the reduction of exergy loss is 0.343 MW and the reduction of the shaft work is 0.581 MW.

    Figure 8 EGCC without pockets for the HEN of a chilling train in the ethylene plant

    Table 3 The data with 7 cold utilities

    Table 4 shows the optimum results with 8 cold utilities. The reduction of exergy loss is 0.454 MW and the reduction of the shaft work is 0.769 MW. Table 5 shows the optimum results with 6 cold utilities. The reduction of exergy loss is 0.140 MW and the reduction of the shaft work is 0.237 MW.

    Table 4 The data with 8 cold utilities

    Table 5 The data with 6 cold utilities

    The results are compared in Table 6. The reduction of shaft work increases with the number of utilities, but the increment is reduced as the number is increased from 7 to 8. More utilities mean more capital cost, so a suitable level of utilities should be chosen by a trade-off between the reduction of shaft work and capital cost.

    Table 6 Comparison of the reduction of shaft work with different numbers of utilities

    4 CONCLUSIONS

    This paper presents a two-step method to optimize HEN in a low-temperature process. The main purpose is to achieve the largest reduction of shaft work needed in HEN and to obtain optimal refrigerant levels. The cold pockets are first optimized to improve the energy performance of the system, which not only reduces the refrigerant quality requirement, but also generates higher quality refrigerant; then a mathematical method is used to find the best utility setting in the EGCC to cut down the cold pockets. The two-step method can give the optimal configuration of refrigeration levels in an efficient and effective way. A HEN of a chilling train with propylene and ethylene refrigerant cycle process is used as a case study. The results show that the two-step method can reduce the shaft work loss significantly.

    NOMENCLATURE

    Subscripts

    REFERENCE

    1 Linnhoff, B., Ashmad, S., “Super-targeting: Optimal synthesis of energy management systems”, Trans. ASME, J. Energy Resources Techno, 111 (3), 131-136 (1989).

    2 Huang, K.F., Zhang, J.W., Feng, X., “Optimum setting for the utility system of ethylene plant”, Chemical Industry and Engineering Progress, 25, 466-469 (2006). (in Chinese)

    3 Mehra Yuv, R., “Refrigeration charts for low temperature processes”, Chemical Engineering, 15 (1), 131-139 (1979).

    4 Shelton, M.R., Grossmann, I.E., “Optimal synthesis of refrigeration systems”, Computers and Chemical Engineering, 10 (5), 461-477 (1986).

    5 Linnhoff, B., “The pinch design method for heat exchanger networks”, Chemical Engineering Science, 38 (4), 745-763 (1983).

    6 Linnhoff, B., Dhole, V. R., “Shaft work targets for low-temperature process design”, Chemical Engineering Science, 47 (8), 2081-2091 (1992).

    7 Rosen, M.A., Dincer, I., “Exergy as the confluence of energy, environment and sustainable development”, International Journal of Eχergy, 1 (1), 3-13 (2001).

    8 Linnhoff, B., “Pinch technology for the synthesis of optimal heat and power systems”, Trans ASME, J. Energy Resources Technol, 111 (3), 137-147 (1989).

    9 Hui, C.W., Ahmad, S., “Total site heat integration using the utility system”, Computers and Chemical Engineering, 18 (8), 729-742 (1994).

    10 Panjeshahi, M. H., Langeroudi, E.G., Tahouni, N., “Retrofit of ammonia plant for improving energy efficiency”, Energy, 33 (1), 46-64 (2008).

    11 Umeda, T., “A thermodynamic approach to the synthesis of heat integration systems in chemical processes”, Computers and Chemical Engineering, 3 (1-4), 273-282 (1979).

    12 Dhole, V. R., “Distillation column integration and overall design of sub-ambient plants”, Ph.D. Thesis, University of Manchester (UMIST), England (1991).

    13 Wang, Y.F., Feng, X., Cai, Y., Zhu, M.B., Chu, K.H., “Improving a process’s efficiency by exploiting heat pockets in its heat exchange network”, Energy, 34 (11), 1925-1932 (2009).

    14 Luo, Y.Q., Yuan, X.G., Liu, Y.J., “An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints”, Computers and Chemical Engineering, 31, 153-162 (2007).

    15 Luo, Y.Q., Yuan, X.G., “Global optimization for the synthesis of integrated water systems with particle swarm optimization algorithm”, Chin. J. Chem. Eng., 16 (1), 11-15 (2008).

    2013-08-13, accepted 2013-09-09.

    * Supported by the National Basic Research Program of China (2010CB720500) and the National Natural Science Foundation (21176178).

    ** To whom correspondence should be addressed. E-mail: luoyq@tju.edu.cn

    猜你喜歡
    長(zhǎng)江
    第17屆長(zhǎng)江韜奮獎(jiǎng)
    長(zhǎng)江學(xué)人
    理論探索(2022年6期)2023-01-17 01:56:30
    長(zhǎng)江學(xué)人
    理論探索(2022年5期)2022-11-07 10:17:18
    萬(wàn)里長(zhǎng)江第一站,有一束“光””
    長(zhǎng)江,你從哪里來(lái)
    長(zhǎng)江之頭
    青年歌聲(2020年11期)2020-11-24 06:57:28
    游長(zhǎng)江
    長(zhǎng)江之歌(外二首)
    長(zhǎng)江圖(外二首)
    長(zhǎng)江石的一次大發(fā)現(xiàn)
    寶藏(2017年7期)2017-08-09 08:15:18
    插逼视频在线观看| 国国产精品蜜臀av免费| 亚洲欧美清纯卡通| 午夜久久久久精精品| 看黄色毛片网站| 国产精品一区二区性色av| 91aial.com中文字幕在线观看| 免费电影在线观看免费观看| 国产精品女同一区二区软件| 久久人人爽人人片av| 亚洲av成人精品一区久久| 天天一区二区日本电影三级| 深夜a级毛片| 国产亚洲最大av| 麻豆成人午夜福利视频| 国产成人精品一,二区| 亚洲性久久影院| 国产三级中文精品| a级毛片免费高清观看在线播放| 午夜福利在线观看吧| 国产乱来视频区| 国产激情偷乱视频一区二区| 永久网站在线| 国产一区亚洲一区在线观看| 毛片女人毛片| 成人一区二区视频在线观看| 纵有疾风起免费观看全集完整版 | 国产免费一级a男人的天堂| 亚洲欧洲国产日韩| 18禁裸乳无遮挡免费网站照片| 免费看日本二区| 国产伦一二天堂av在线观看| 日本与韩国留学比较| 精品久久久久久久久av| 人妻少妇偷人精品九色| 免费一级毛片在线播放高清视频| 麻豆久久精品国产亚洲av| 少妇丰满av| 岛国在线免费视频观看| 女人被狂操c到高潮| 波多野结衣巨乳人妻| 日本-黄色视频高清免费观看| 少妇被粗大猛烈的视频| 日日摸夜夜添夜夜爱| 久久精品久久久久久久性| 精品久久久噜噜| 亚洲中文字幕日韩| 国产精品人妻久久久影院| 18禁在线无遮挡免费观看视频| 干丝袜人妻中文字幕| 日韩欧美在线乱码| av免费观看日本| 我要搜黄色片| 亚洲国产精品久久男人天堂| 免费av不卡在线播放| 欧美日韩精品成人综合77777| 乱人视频在线观看| 老司机福利观看| 国产探花极品一区二区| 欧美日韩精品成人综合77777| 舔av片在线| 美女高潮的动态| 国产伦在线观看视频一区| 亚洲av中文av极速乱| 最近最新中文字幕免费大全7| 女人十人毛片免费观看3o分钟| a级毛色黄片| 中国美白少妇内射xxxbb| 天天躁夜夜躁狠狠久久av| 亚洲国产欧美在线一区| 1024手机看黄色片| 国产伦理片在线播放av一区| 汤姆久久久久久久影院中文字幕 | 91在线精品国自产拍蜜月| 色视频www国产| 久久久久免费精品人妻一区二区| 91av网一区二区| 免费搜索国产男女视频| 日韩欧美国产在线观看| 精品熟女少妇av免费看| 一边亲一边摸免费视频| 三级毛片av免费| 18+在线观看网站| 亚洲真实伦在线观看| 淫秽高清视频在线观看| 韩国av在线不卡| 亚洲无线观看免费| 久久99热这里只有精品18| 91久久精品国产一区二区成人| 国产单亲对白刺激| 欧美日韩综合久久久久久| 国产91av在线免费观看| 人人妻人人澡人人爽人人夜夜 | av免费在线看不卡| 亚洲人与动物交配视频| 国产午夜精品论理片| 国产av在哪里看| 视频中文字幕在线观看| 中文字幕亚洲精品专区| av福利片在线观看| 99久久中文字幕三级久久日本| 一边摸一边抽搐一进一小说| 老女人水多毛片| 亚洲av日韩在线播放| 亚洲精品乱久久久久久| 简卡轻食公司| 久久精品国产亚洲av涩爱| 日日啪夜夜撸| 91久久精品国产一区二区成人| 久久久久久久国产电影| 天天一区二区日本电影三级| 国内揄拍国产精品人妻在线| 一本久久精品| 国产精品人妻久久久久久| 中文天堂在线官网| 亚洲怡红院男人天堂| 99九九线精品视频在线观看视频| 男人的好看免费观看在线视频| 晚上一个人看的免费电影| 人妻制服诱惑在线中文字幕| 国内揄拍国产精品人妻在线| 亚洲欧美清纯卡通| 欧美+日韩+精品| 精品国产三级普通话版| 国产精华一区二区三区| 国产在线男女| 亚洲欧美成人综合另类久久久 | 国产精品综合久久久久久久免费| 激情 狠狠 欧美| 如何舔出高潮| 欧美日韩一区二区视频在线观看视频在线 | 国产精品永久免费网站| 国产成人精品久久久久久| 中文精品一卡2卡3卡4更新| 在现免费观看毛片| 日韩国内少妇激情av| 五月伊人婷婷丁香| 2021少妇久久久久久久久久久| av在线老鸭窝| 只有这里有精品99| 亚洲精品影视一区二区三区av| 直男gayav资源| 永久网站在线| av在线天堂中文字幕| 婷婷色av中文字幕| 国内精品美女久久久久久| 99在线人妻在线中文字幕| 亚洲欧美一区二区三区国产| 久久鲁丝午夜福利片| 26uuu在线亚洲综合色| 美女内射精品一级片tv| 欧美97在线视频| 欧美又色又爽又黄视频| 日日摸夜夜添夜夜爱| 99久久成人亚洲精品观看| 全区人妻精品视频| 日韩成人av中文字幕在线观看| 蜜桃亚洲精品一区二区三区| 黄色一级大片看看| 精品久久久久久久久av| 老司机福利观看| 亚洲电影在线观看av| 亚洲av成人av| 韩国高清视频一区二区三区| 国产精品1区2区在线观看.| 99久久中文字幕三级久久日本| 亚洲欧美日韩高清专用| 久久久久久久久久成人| 国产精品,欧美在线| 99久国产av精品国产电影| 国产伦精品一区二区三区四那| 中文字幕av成人在线电影| 国产高清国产精品国产三级 | 免费不卡的大黄色大毛片视频在线观看 | 99热6这里只有精品| 精品少妇黑人巨大在线播放 | 午夜精品一区二区三区免费看| 两个人的视频大全免费| 校园人妻丝袜中文字幕| av在线老鸭窝| 成人三级黄色视频| 乱系列少妇在线播放| 亚洲精华国产精华液的使用体验| 亚洲精品成人久久久久久| 亚洲高清免费不卡视频| 成人欧美大片| 男女下面进入的视频免费午夜| 亚洲精品影视一区二区三区av| 亚洲av成人精品一区久久| 日韩av在线免费看完整版不卡| 亚洲av电影在线观看一区二区三区 | 日韩强制内射视频| 级片在线观看| 日本色播在线视频| 国产亚洲精品久久久com| 中文字幕av在线有码专区| 村上凉子中文字幕在线| 国内精品宾馆在线| 内射极品少妇av片p| 色综合亚洲欧美另类图片| 国产精品嫩草影院av在线观看| 国产综合懂色| 日韩成人伦理影院| 久久精品久久久久久久性| 精品99又大又爽又粗少妇毛片| 久久久久久久久中文| 亚洲色图av天堂| 日本五十路高清| 舔av片在线| 麻豆乱淫一区二区| 亚洲在线自拍视频| 插逼视频在线观看| 最近最新中文字幕免费大全7| 深爱激情五月婷婷| 亚洲一区高清亚洲精品| 国产淫语在线视频| 午夜福利网站1000一区二区三区| 五月伊人婷婷丁香| 亚洲国产精品成人综合色| 狂野欧美白嫩少妇大欣赏| 国产免费又黄又爽又色| av福利片在线观看| www.色视频.com| 国产精品.久久久| 深夜a级毛片| 亚洲aⅴ乱码一区二区在线播放| 国内精品宾馆在线| 性色avwww在线观看| 亚洲国产欧美在线一区| 午夜爱爱视频在线播放| 欧美潮喷喷水| 国产精品一区二区性色av| 国产一区亚洲一区在线观看| 性插视频无遮挡在线免费观看| 国产精品久久久久久久久免| 久久久久国产网址| 美女国产视频在线观看| 大香蕉97超碰在线| 久久精品夜色国产| 精品酒店卫生间| 精品久久久久久电影网 | 可以在线观看毛片的网站| .国产精品久久| 国产精品国产三级国产av玫瑰| 国语对白做爰xxxⅹ性视频网站| 午夜精品国产一区二区电影 | 深爱激情五月婷婷| 午夜福利成人在线免费观看| 久久久欧美国产精品| 我的老师免费观看完整版| 黄片wwwwww| 日日干狠狠操夜夜爽| 欧美高清性xxxxhd video| 亚洲av日韩在线播放| 嫩草影院新地址| 99热精品在线国产| 国产精品人妻久久久影院| 亚洲一区高清亚洲精品| 精品人妻偷拍中文字幕| 亚洲国产最新在线播放| 搞女人的毛片| 成人漫画全彩无遮挡| 午夜久久久久精精品| 亚洲真实伦在线观看| 一级毛片我不卡| 天天一区二区日本电影三级| 日韩强制内射视频| 亚洲在线观看片| 最新中文字幕久久久久| a级毛色黄片| 麻豆久久精品国产亚洲av| 国产高清有码在线观看视频| 中文字幕av在线有码专区| 久久久成人免费电影| 三级毛片av免费| 日本黄色视频三级网站网址| 男女视频在线观看网站免费| 尾随美女入室| 国产高清国产精品国产三级 | 亚洲精品国产成人久久av| 国产av一区在线观看免费| 亚洲精品久久久久久婷婷小说 | 黄色配什么色好看| 搡老妇女老女人老熟妇| 午夜视频国产福利| 亚洲国产欧美人成| 国产探花在线观看一区二区| 色综合亚洲欧美另类图片| 韩国高清视频一区二区三区| 夫妻性生交免费视频一级片| 精品久久久久久电影网 | 天堂√8在线中文| 国语对白做爰xxxⅹ性视频网站| 免费看日本二区| .国产精品久久| 亚洲av电影在线观看一区二区三区 | 国产三级中文精品| 一个人观看的视频www高清免费观看| 精品国内亚洲2022精品成人| 久久久久久伊人网av| 国产亚洲一区二区精品| 欧美三级亚洲精品| 久久久久九九精品影院| 三级经典国产精品| 少妇猛男粗大的猛烈进出视频 | 日韩视频在线欧美| 亚洲国产欧美在线一区| 中文在线观看免费www的网站| 日韩欧美精品v在线| 国产片特级美女逼逼视频| 国产黄片美女视频| av卡一久久| 欧美激情国产日韩精品一区| a级毛片免费高清观看在线播放| 老师上课跳d突然被开到最大视频| 精品人妻视频免费看| 国产淫片久久久久久久久| 欧美不卡视频在线免费观看| 一级毛片久久久久久久久女| 免费观看精品视频网站| 亚洲av.av天堂| 高清毛片免费看| 精品人妻视频免费看| 能在线免费观看的黄片| 日本免费在线观看一区| 嫩草影院新地址| av在线亚洲专区| 日韩强制内射视频| 欧美日本视频| 青春草亚洲视频在线观看| 黄色欧美视频在线观看| 亚洲av男天堂| videos熟女内射| 色综合亚洲欧美另类图片| 一级av片app| 免费看a级黄色片| 最近的中文字幕免费完整| 欧美日韩一区二区视频在线观看视频在线 | 欧美最新免费一区二区三区| 日日摸夜夜添夜夜爱| 中文资源天堂在线| 深爱激情五月婷婷| 不卡视频在线观看欧美| 一级二级三级毛片免费看| 午夜精品一区二区三区免费看| 精品久久久久久电影网 | 一边亲一边摸免费视频| 日韩欧美国产在线观看| www.色视频.com| 别揉我奶头 嗯啊视频| 日本色播在线视频| 国产精品伦人一区二区| 久久久亚洲精品成人影院| 99久久精品国产国产毛片| 国产精品1区2区在线观看.| 日本爱情动作片www.在线观看| 人人妻人人看人人澡| 国产男人的电影天堂91| 国产成人a区在线观看| 国产精品久久久久久精品电影| 老司机福利观看| av国产免费在线观看| 久久99热6这里只有精品| 天天躁夜夜躁狠狠久久av| 日韩亚洲欧美综合| 成人毛片60女人毛片免费| 最近手机中文字幕大全| 国产精品久久久久久久电影| 日韩欧美精品免费久久| 精品不卡国产一区二区三区| 插阴视频在线观看视频| 亚洲经典国产精华液单| 毛片一级片免费看久久久久| 国产精品国产高清国产av| 99九九线精品视频在线观看视频| kizo精华| 免费看美女性在线毛片视频| 中国美白少妇内射xxxbb| a级毛片免费高清观看在线播放| 欧美97在线视频| 高清av免费在线| 日韩一区二区视频免费看| 亚洲av.av天堂| 观看免费一级毛片| 久久人人爽人人爽人人片va| 欧美97在线视频| 99在线人妻在线中文字幕| 亚洲在线自拍视频| 国产亚洲午夜精品一区二区久久 | 久久精品国产亚洲av天美| 精品久久久久久久久亚洲| 精品人妻熟女av久视频| 91午夜精品亚洲一区二区三区| 亚洲四区av| 永久免费av网站大全| 日韩亚洲欧美综合| 神马国产精品三级电影在线观看| 午夜福利视频1000在线观看| 九九爱精品视频在线观看| 亚洲人与动物交配视频| 91狼人影院| 国国产精品蜜臀av免费| 超碰97精品在线观看| 国语自产精品视频在线第100页| 中文精品一卡2卡3卡4更新| 国产精品蜜桃在线观看| av免费观看日本| 欧美另类亚洲清纯唯美| 日韩精品有码人妻一区| 免费黄网站久久成人精品| 91av网一区二区| 99热这里只有精品一区| 草草在线视频免费看| 欧美成人午夜免费资源| 久久这里只有精品中国| 级片在线观看| 麻豆国产97在线/欧美| 免费观看精品视频网站| 国产一区二区亚洲精品在线观看| 99久久精品一区二区三区| 亚洲内射少妇av| 小蜜桃在线观看免费完整版高清| 最近视频中文字幕2019在线8| 97超碰精品成人国产| a级毛片免费高清观看在线播放| 精品久久久久久久人妻蜜臀av| 色综合站精品国产| 免费看光身美女| 美女内射精品一级片tv| 中文亚洲av片在线观看爽| 午夜老司机福利剧场| 在线观看66精品国产| 精品久久久久久久末码| 精品不卡国产一区二区三区| 亚洲四区av| 久久热精品热| 久热久热在线精品观看| 亚洲精品日韩av片在线观看| 国产精品久久电影中文字幕| 久久久久久伊人网av| 观看免费一级毛片| 综合色av麻豆| www.av在线官网国产| av视频在线观看入口| 白带黄色成豆腐渣| 一级毛片我不卡| 纵有疾风起免费观看全集完整版 | 老司机影院成人| 日韩人妻高清精品专区| 国产精品国产三级国产专区5o | 老师上课跳d突然被开到最大视频| 99久久中文字幕三级久久日本| 十八禁国产超污无遮挡网站| 亚洲国产欧洲综合997久久,| 免费一级毛片在线播放高清视频| 亚洲av电影在线观看一区二区三区 | 少妇人妻精品综合一区二区| 免费看a级黄色片| 亚洲国产成人一精品久久久| 国产一区二区三区av在线| 国产精品久久久久久精品电影小说 | av在线观看视频网站免费| 狂野欧美激情性xxxx在线观看| 高清视频免费观看一区二区 | 成人性生交大片免费视频hd| 国产乱人视频| 久久草成人影院| 99热网站在线观看| 午夜视频国产福利| 69av精品久久久久久| 黄色日韩在线| 久99久视频精品免费| 日日啪夜夜撸| 别揉我奶头 嗯啊视频| 最近最新中文字幕免费大全7| 久久久精品大字幕| 一级毛片久久久久久久久女| 看十八女毛片水多多多| 男人的好看免费观看在线视频| 麻豆久久精品国产亚洲av| 最近的中文字幕免费完整| 久久99精品国语久久久| 免费看av在线观看网站| 久久久久精品久久久久真实原创| 精品人妻一区二区三区麻豆| 久久精品影院6| 国产伦在线观看视频一区| 成人午夜高清在线视频| 欧美日韩综合久久久久久| 老司机影院成人| 中文欧美无线码| 国产在视频线在精品| 国产成人精品婷婷| 亚洲,欧美,日韩| 日韩高清综合在线| 波多野结衣高清无吗| 嘟嘟电影网在线观看| 九九久久精品国产亚洲av麻豆| 国产高清三级在线| 久久久精品欧美日韩精品| 亚洲最大成人中文| 亚洲欧美日韩高清专用| 久久99精品国语久久久| 成年av动漫网址| 少妇的逼好多水| 免费看光身美女| 亚洲最大成人手机在线| 国产乱人视频| 亚洲国产精品久久男人天堂| 精品午夜福利在线看| 国产午夜精品一二区理论片| 日日干狠狠操夜夜爽| 精品不卡国产一区二区三区| 国产精品一区www在线观看| 2021天堂中文幕一二区在线观| 18禁动态无遮挡网站| 精品一区二区免费观看| 成人综合一区亚洲| 美女xxoo啪啪120秒动态图| www.av在线官网国产| 亚洲欧美清纯卡通| 中文欧美无线码| av在线老鸭窝| 天美传媒精品一区二区| 国产伦在线观看视频一区| 噜噜噜噜噜久久久久久91| 国产精品久久电影中文字幕| 国产精品麻豆人妻色哟哟久久 | 国产免费一级a男人的天堂| 午夜福利在线观看吧| 黄色配什么色好看| 能在线免费看毛片的网站| 精品不卡国产一区二区三区| 99久久无色码亚洲精品果冻| 国产精品乱码一区二三区的特点| 最近视频中文字幕2019在线8| 午夜视频国产福利| 国产精品精品国产色婷婷| 久久久欧美国产精品| 久久精品影院6| 麻豆一二三区av精品| 国产高清不卡午夜福利| 久久韩国三级中文字幕| 大香蕉久久网| 97热精品久久久久久| 看十八女毛片水多多多| 亚洲国产精品成人综合色| 白带黄色成豆腐渣| 最后的刺客免费高清国语| 免费av不卡在线播放| 久久午夜福利片| av.在线天堂| 熟女人妻精品中文字幕| 精品一区二区三区人妻视频| 久久久色成人| 男女啪啪激烈高潮av片| 麻豆乱淫一区二区| 爱豆传媒免费全集在线观看| 尾随美女入室| 99久国产av精品国产电影| 免费看a级黄色片| 又黄又爽又刺激的免费视频.| 听说在线观看完整版免费高清| 色综合色国产| 熟女人妻精品中文字幕| 黄片wwwwww| 午夜视频国产福利| 国语对白做爰xxxⅹ性视频网站| 午夜日本视频在线| 级片在线观看| 观看美女的网站| 身体一侧抽搐| 成年av动漫网址| 噜噜噜噜噜久久久久久91| av福利片在线观看| 欧美丝袜亚洲另类| 国产精品国产三级国产av玫瑰| 在线播放无遮挡| 午夜免费激情av| 日本色播在线视频| 天堂av国产一区二区熟女人妻| 91在线精品国自产拍蜜月| 国产免费福利视频在线观看| 精品一区二区三区视频在线| av在线蜜桃| 一级av片app| 国产一区二区亚洲精品在线观看| 伊人久久精品亚洲午夜| 99国产精品一区二区蜜桃av| 波野结衣二区三区在线| 成人性生交大片免费视频hd| 色噜噜av男人的天堂激情| 久久精品熟女亚洲av麻豆精品 | 午夜福利视频1000在线观看| 久久99蜜桃精品久久| 乱码一卡2卡4卡精品| 我要看日韩黄色一级片| 一个人看的www免费观看视频| 国产美女午夜福利| 99久久中文字幕三级久久日本| 小蜜桃在线观看免费完整版高清| 亚洲高清免费不卡视频| 男人舔奶头视频| 亚洲在线自拍视频| 一个人观看的视频www高清免费观看| 久久热精品热| 丝袜喷水一区| 日日摸夜夜添夜夜爱| 日韩人妻高清精品专区| 高清毛片免费看| 超碰av人人做人人爽久久| 国产成人精品久久久久久| 国产v大片淫在线免费观看| 99在线人妻在线中文字幕| 看十八女毛片水多多多|