• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase Behavior of Sodium Dodecyl Sulfate-n-Butanol-Kerosene-Water Microemulsion System*

    2014-07-18 12:09:48LIUHuie劉會(huì)娥ZHANGXiaokun張孝坤DINGChuanqin丁傳芹CHENShuang陳爽andQIXuanliang齊選良StateKeyLaboratoryofHeavyOilProcessingChinaUniversityofPetroleumQingdao266555China
    關(guān)鍵詞:脂肪組織傷口體重

    LIU Huie (劉會(huì)娥)**, ZHANG Xiaokun (張孝坤), DING Chuanqin (丁傳芹), CHEN Shuang (陳爽) and QI Xuanliang (齊選良)State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China

    Phase Behavior of Sodium Dodecyl Sulfate-n-Butanol-Kerosene-Water Microemulsion System*

    LIU Huie (劉會(huì)娥)**, ZHANG Xiaokun (張孝坤), DING Chuanqin (丁傳芹), CHEN Shuang (陳爽) and QI Xuanliang (齊選良)
    State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China

    Experiments were carried out to investigate the influences of cation from electrolytes and acidity/alkalinity on the phase behavior of sodium dodecyl sulfate-n-butanol-organics-water (with electrolytes) microemulsion system. The organics used is commercial kerosene. The volume ratio of water to organics is 1︰1. The results show that the type and valence of electrolyte cations are important factors influencing the microemulsion behavior. Bivalent Ca2+ is more effective than monovalent K+ and Na+ for the formation of Winsor type III and II microemulsion. For electrolytes with the same monovalent cation Na+, i.e. NaCl and Na2CO3, anions in the electrolyte have some effect. Bivalent anion 2 CO3? leads to a lower activity of cation Na+ than monovalent anion Cl?. NaOH (or KOH) behaves similar with NaCl (or KCl). When HCl is used as electrolyte, its acidity plays an important role. Phase inversion of microemulsion from type III (or II) to type I is observed through precipitation of Ca2+ using Na2CO3, neutralization of HCl by NaOH, and addition of water to the system, which releases the oil from the microemulsion.

    microemulsion, sodium dodecyl sulfate, kerosene, phase inversion

    1 INTRODUCTION

    Microemulsions are thermodynamically stable, optically transparent, isotropic dispersions of aqueous and organic liquids stabilized by an interfacial film of surfactant molecules [1]. Three types of microemulsion systems are found with the change of hydrophile-lipophile balance (HLB), i.e., Winsor type I, II and III microemulsion systems. Winsor type I system is an O/W microemulsion in equilibrium with excess oil, which, in the form of oil-swollen micelles in aqueous phase, is water soluble. Winsor type II is a W/O microemulsion in equilibrium with excess water, which is oil soluble and exists in the form of water-swollen micelles in the organic phase. Winsor type III is a middle phase microemulsion coexisting with excess water and organic phases, which has a bicontinuous structure and contains large quantities of organics and water. It can be considered as an accumulation of swollen micelles, which are so numerous that they touch one another, forming dispersion or a perfectly bicontinuous structure with all water domains connected and all oil domains connected likewise [2]. The microemulsion systems have the advantages of high interfacial area and ultra-low organics/water interfacial tension.

    Microemulsion is an efficient tool in the enhanced oil recovery (EOR) [3-6], because it can provide high levels of extraction. For example, Santana et al. [6] observed that with the commercial surfactant-based MCS microemulsion, a recovery factor as high as 87.5% was obtained. A modification and extension of the EOR concept is the environmental applications, such as the remediation of organic-polluted soil [7-13] or groundwater aquifers contaminated by non-aqueous phase liquids [14-18]. Different research groups [e.g. 7, 12, 14] have given similar results that for those surfactant-based washing agents, micro-emulsification (forming Winsor type III microemulsion) of organic contaminants in the processes presents higher de-polluting efficiency than others.

    However, the economics of surfactant-based remediation technologies benefits from material separation and recycling of surfactant [19, 20]. For processes with high organics content of Winsor type III or II microemulsions in contaminant removal, shifting of microemulsion from Winsor type II or III to type I is an attractive method for organics separation and surfactant reuse. During the phase shifting from Winsor type II or III to type I, most organics is separated as free phase, and through reverse phase shifting, that is, Winsor type I to type III or II, the reuse of surfactants can be realized. What factors influence the phase behavior of a microemulsion system is a crucial point for this problem.

    Chai et al. [21] found that there existed differences in the state with different electrolytes in sodium dodecyl sulfate (SDS) microemulsion systems. Both aliphatic acid and short chain alcohol were used as co-surfactants in their work. For the salts with the same anion but different cations (MgCl2, CaCl2, SrCl2), the solubility of alcohol (Sa) and the solubilization ability (SP) are in the same order of MgCl2>CaCl2~SrCl2, no matter in the aliphatic acid-based or in the alcoholbased microemulsion systems. For salts with the same cation but different anions [CaCl2, CaBr2, Ca(NO3)2], Saand SP are also in the same order of Ca(NO3)2>CaBr2>CaCl2for the two kinds of microemulsion systems. Anton and Salvager [22] investigated the anionic surfactant-oil-water-alcohol microemulsion systems by using sodium salts with different anions from monovalence through tetravalence. Oil phases with different equivalent alkane carbon number were used, with petroleum sulfonate sodium salts as the surfactant and sec-butanol as the cosurfactant. For the sodium salts, the correspondent anion valence showed important influence on the electrolyte activity and a correlation was given for the optimum formulation of anionic surfactant-oil-water systems. Puerto and Reed [23] found that for monovalents Li+, Na+and K+, whose hydration radii are in the sequence of Li+>Na+>K+, the optimal salinities are in the sequence of K+>Na+>Li+. It was concluded that at constant valence, the greater the hydration radius, the higher the optimal salinity.

    Rudolph et al. [24] found that varying oil/water ratio changed the extension of the three-phase region for the oil/water/nonionic surfactant (2-butoxyethanol) system. The experimental results of Raijb and Bidyut indicated that increasing oil/water ratio reduced the solubilization capacity for the Brij-56/1-butanol/ n-heptane/water system, while with negligible influence on the phase behavior of Brij/SDBS mixed system [25]. Chai et al. [26] investigated the influence of oil/water ratio on the phase behavior of SDS/alcohol/oil/water microemulsion system. As the oil/water mass ratio increases, the solubility of alcohol increases while both the mass fraction of the alcohol in the interfacial layer and the solubilization ability decrease.

    Kunieda and Shinoda [27] showed a HLB temperature for the aerosol OT-isooctane-brine system with the increase of temperature. A phase inversion from W/O microemulsion to three-phase microemulsion and then O/W microemulsion was observed. The influence of temperature on phase behavior of nonionic surfactant microemulsion system was also reported in [25, 28, 29].

    In summary, several variables (e.g., temperature, electrolyte, surfactant and cosurfactant) are important factors influencing the property of a microemulsion system. The phase state of a microemulsion may be changed by changing one of the several variables. Cheng and Sabatini [30] shifted the contaminant-rich Winsor type III microemulsion to type I system through precipitation-based exchange of polyvalent cations (Al3+and Ca2+) with equivalent amount of monovalent cation (Na+). The contaminants used were decane and tetradecane and the surfactant was Alfoterra 145-4 PO sulfate. In this work, the phase behavior of kerosene-water-SDS-n-butanol microemulsion systems is investigated. The effects of electrolytes, including NaCl, KCl, CaCl2, Na2CO3, NaOH, KOH and HCl, are investigated to find an effective way for phase inversion of microemulsions. The influence of acidity and alkalinity and water/oil ratio are also studied. Phase inversion of Winsor type II→III→I→III→II is to be realized through manipulating electrolytes and the acidity/alkalinity. Water is added into the Winsor type II microemulsion system for the shift from Winsor type II→III→I.

    2 EXPERIMENTAL

    2.1 Materials

    The surfactant used in this work was an anionic type, chemically pure sodium dodecyl sulfate (SDS). Other materials used were analytically pure n-butanol, NaCl, NaOH, KOH, KCl, CaCl2, Na2CO3, HCl, deionized water, and simulated contaminant-industrial kerosene [density 840 kg·m?3, distillation range 170-240 °C, total alkane content 50.5% (by mass), total naphthene content 29.9% (by mass), and total arene content 19.6%]. All chemicals were used as received without further purification.

    2.2 Preparation of microemulsions

    Microemulsions were prepared using SDS, 1︰1 (by volume) deionized water and kerosene, n-butanol and one cation donor (electrolyte) from the above reagents. Both salinity scan and alcohol scan were used to observe the phase behavior of microemulsions. For convenient, the concentrations of reagents were based on the total volume of water and kerosene.

    For determined organics, with equal volume of organics and water at fixed surfactant and electrolyte concentration, the microemulsion will change from Winsor type I→III→II with the increase of alcohol concentration. This is called alcohol scanning method.

    On the other hand, for determined organics, with equal volume of organics and water at fixed surfactant and cosurfactant concentration, if the concentration of electrolyte in the system increases, the system will also change from Winsor type I→III→II. This is called salinity scanning method.

    Taking the phase volume data during the alcohol or salinity scan, simple phase diagram can be made to show the phase state and the oil-solubilization capacity of each state. The schematic phase diagram is shown in Fig. 1. To show the phase state, a pair of curves is needed. The distance between the upper curve and the 100% line is the volume fraction of oil phase, that between the two curves is the volume fraction of microemulsion phase and between the lower one and abscissa axis is that of water phase. It is Winsor type I when the lower curve coincides with the abscissa, Winsor type II when the upper one coincides with the 100% volume fraction line and Winsor type III in between.

    3 RESULTS AND DISCUSSION

    3.1 Influence of electrolyte cations on phase behavior

    To observe the influence of cation types on the microemulsion phase behavior, CaCl2, KCl, NaCl andNa2CO3are used as the electrolyte separately. 10 ml kerosene and 10 ml water were used, with the concentration of SDS and n-butanol being 0.14 and 1.73 mol·L?1, respectively. Fig. 2 shows the salinity scanning results for different types of electrolytes for the SDS-n-butanol-kerosene-water microemulsion system. The system changes from Winsor type I→III→II with increasing electrolyte concentration, no matter what kind of electrolyte is used. With the addition of electrolyte, the critical micelle concentration of anionic surfactant SDS greatly decreases, while the aggregation number of micelle increases and micelles get bigger, solubilizing more oil.

    Figure 1 Schematic phase diagram for microemulsion during salinity or alcohol scan

    Figure 2 Phase diagram for SDS-n-butanol-kerosene-water microemulsion system using different electrolytes

    The results also show that each type of electrolyte has its typical length of salinity for the existence of Winsor type III microemulsion. Under the conditions of Vkerosene︰Vwater=1︰1, c(SDS)=0.14 mol·L?1and c(n-butanol)=1.73 mol·L?1, for electrolytes CaCl2, KCl, NaCl, and Na2CO3, their concentrations for forming Winsor type III microemulsion are 0.041-0.099, 0.15-0.30, 0.19-0.43 and 0.21-0.47 mol·L?1, and the salinity length is 0.058, 0.15, 0.24 and 0.26 mol·L?1, respectively. High surface charge density of Ca2+makes it more effective than K+and Na+in decreasing the HLB of surfactant system, and much easier for the formation of Winsor type III and II microemulsion. At the same time, the effect of K+is stronger than Na+, similar to the results obtained by Aarra et al [31]. As to the effect of NaCl and Na2CO3, it is found that NaCl is more effective than Na2CO3although they have the same monovalent cation, Na+. Anton and Salager [22] gave similar results. They put forward a concept of “valence activity factor (VAF)”to indicate the active fraction of sodium cations, COleads to a lower activity of the sodium salt than monovalent Cl?.

    It is attractive that when Winsor type II or III microemulsion is obtained using CaCl2, it may be Winsor type I for NaCl under the same valence number (see Fig. 2). Therefore, if Ca2+is replaced by Na+, Winsor type II or III microemulsion may convert into type I, and most of the oil solubilized in the microemulsion is released. Tests were carried out to approve this supposition. CaCl2was first used to prepare Winsor III microemulsion, with the volume fraction of microemulsified kerosene being 35% and then Na2CO3added into the system, causing Ca2+to precipitate as CaCO3. Thus Ca2+in the system was substituted by Na+. Fig. 3 (a) shows the phase behavior during this substituting process. Phase inversion from Winsor type III→I can be observed with the substitution of where Z is the valence of the anion. Eq. (1) indicates that the higher the anion valence, the lower its VAF, i.e. the less active the sodium salt. Thus bivalentCa2+by Na+. The volume fraction of solubilized kerosene in the Winsor type I microemulsion is only 7.6%. After exchanging Ca2+with Na+through precipitation, 74% of the oil in the microemulsion phase is released to the free oil phase. With further addition of Na2CO3, the microemulsion system changes from Winsor type I→III→II. The volume fraction of kerosene in the microemulsion phase gradually changes from 7.6% to 65%.

    Winsor type II microemulsion is also formed initially using CaCl2, and then Na2CO3is added gradually. The phase diagram is shown in Fig. 3 (b). For the Winsor type II microemulsion, the volume fraction of kerosene is 67%. When proper amount of Ca2+is substituted by Na+, Winsor type I microemulsion forms, in which the volume fraction of kerosene is only 11%. It means that 85% of the oil is released from the microemulsion. Similarly, with further addition of Na2CO3, the microemulsion system changes from Winsor type I→III→II, and more oil goes into the microemulsion again.

    In summary, after the replacement of Ca2+by Na+, Winsor type III (or II) goes to type I microemulsion, whose oil solubilization capacity is relatively small, releasing most of the oil initially contained. With the addition of cation Na+, Winsor type I microemulsion converts into type III (or II) again and more oil goes into the microemulsion gradually. Thus, the system will repeatedly convert between Winsor type III (or II) and I with the precipitation and re-dissolution of Ca2+(just as the addition of cations). This is a promising way for the recovery of organic contaminants and reuse of the surfactant system repeatedly. However, the content of Na+increases monotonously during the Ca2+precipitation and re-dissolution process, with no replacement of Na+taking place, which will lead to the end of the recycle because the cation concentration is too high eventually. The replacement of Ca2+with Na+and that of Na+with Ca2+are the keys for the repeated inversion between Winsor type III (or II) and I microemulsions, which is still under investigation in our laboratory.

    Figure 3 Phase inversion through cation substitution [Vkerosene︰Vwater=1︰1, c(SDS)=0.14 mol·L?1, c(n-butanol)=1.75 mol·L?1] O—oil phase; M—microemulsion phase; W—water phase

    3.2 Influence of acidity and alkalinity on phase behavior

    The results of Section 3.1 show that different types of cations have different effects on the phase behavior of microemulsion. The effects of monovalents H+, Na+and K+are compared and analyzed further in this section. The electrolytes used include HCl, NaCl, NaOH, KCl, and KOH, to find any special information about the H+cation or about acidity and alkalinity.

    The phase diagram obtained through salinity scan and alcohol scan are shown in Fig. 4. With the increase of salinity or alcohol concentration, the phase inversion from Winsor type I→II→III can be observed. Fig. 4 (a) shows that each type of monovalent cation has its typical length of salinity for forming Winsor type III microemulsion. Under the conditions of Vkerosene︰Vwater=1︰1 (10 ml︰10 ml), c(SDS)= 0.14 mol·L?1and c(n-butanol)=1.42 mol·L?1, for electrolytes HCl, NaCl, NaOH, KCl and KOH, the concentration for forming Winsor type III microemulsion are 0.15-0.23, 0.22-0.42, 0.22-0.42, 0.17-0.29, 0.17-0.29 mol·L?1, and the length of salinity is 0.54, 0.20, 0.20, 0.12 and 0.12 mol·L?1, respectively. Fig. 4 (b) is the phase diagram obtained from alcohol scan, the alcohol concentration for forming Winsor type III microemulsion is 0.88-1.42, 1.53-2.19, 1.53-2.19, 1.15-1.81 and 1.15-1.81 mol·L?1for HCl, NaCl, NaOH, KCl and KOH, respectively.

    It is interesting that the microemulsion phase diagram using KCl (or NaCl) is almost identical tothat using KOH (or NaOH). That is, for the same monovalent cation (K+or Na+), the type of monovalent anion (Cl?or OH?) has little influence on the state of SDS-n-butanol-kerosene-water microemulsion under the conditions in this work, even though KOH (or NaOH) is alkalis. With the addition of electrolytes into the microemulsion system, the counterion concentration increases, compressing the electrical double layer and depressing the electrostatic repulsion between the polar heads of surfactant. SDS is an anionic surfactant. The cation, Na+or K+, is the conterion that influences the electrical double layer, while the type of monovalent anion (no matter Cl?or OH?) of the electrolyte shows little influence. Extended conditions are still under investigation in our laboratory to justify this observation.

    The results in Fig. 4 show that the effect of the monovalent cations on microemulsion phase behavior decreases in the order of H+>K+>Na+. Puerto and Reed [23] considered that the greater the hydration radius, the higher the optimal salinity at constant cation valence. According to the analysis, the effect of monovalent cations in this work should be K+>Na+>H+, because the hydration radius is in the sequence of K+

    Obvious difference in state exists between the microemulsion systems using HCl and NaCl as electrolyte, as shown in Fig. 4. For the kerosene-water microemulsion system [Vwater︰Vkerosene=1︰1, 10 ml for each, c(SDS)=0.14 mol·L?1and c(n-butanol)= 1.42 mol·L?1], when Winsor type III or II microemulsion is formed using HCl as electrolyte, it may be type I for NaCl. Thus if Winsor type III or II microemulsion is formed using HCl, it will convert into type I with the substitution of H+by Na+.

    A test for phase inversion through acid-base neutralization was carried out. Under the conditions of c(SDS)= 0.14 mol·L?1, c(n-butanol)=1.42 mol·L?1and c(HCl)=0.23 mol·L?1, a Winsor type II microemulsion was formed initially. Then, NaOH was added into the system gradually. The microemulsion phase diagram is given in Fig. 5.

    Figure 4 Effect of acidic and alkaline electrolytes on microemulsion phase state [Vkerosene︰Vwater=1︰1 (10 ml for each), c(SDS)=0.14 mol·L?1]▼ HCl; △ NaCl; ▲ NaOH; ○ KCl; ● KOH

    Figure 5 Phase diagram through acid-base neutralization [Winsor II initially, c(SDS)=0.14 mol·L?1, c(n-butanol)=1.42 mol·L?1, c(HCl)=0.23 mol·L?1] O—oil phase; M—microemulsion phase; W—water phase

    The inversion of Winsor type II→III→I→III→II is observed. With the addition of NaOH, HCl is neutralized and H+is substituted by Na+gradually. With the NaOH added into the system and 0.23 mol·L?1reached, all of H+should combine with OH?. All the effective cations in the system should be Na+at this point and Winsor type I microemulsion is observed, which is consistent with the results in Fig. 4 (a). Duringthis process, the content of kerosene decreases from the initial 71% (by volume) in the Winsor type II microemulsion to 12% (by volume) in the type I microemulsion, with 82% oil releases from the microemulsion phase. With further addition of NaOH, the concentration of Na+cation increases and more oil is solubilized into the microemulsion again. Winsor type II microemulsion is formed in the end.

    Just as the substitution of Ca2+by Na+in Section 3.1, H+is replaced by Na+during the acid-base neutralization process. Similarly, if effective way of Na+substitution by H+can be provided, the solubilization and release of organic contaminants and thus the reuse of surfactant system can be repeated ideally, which is our aim in the future work.

    3.3 Influence of water/oil ratio on phase behavior

    Under the conditions of Vkerosene︰Vwater=1︰1 (10 ml︰10 ml) and the concentrations of n-butanol, SDS and NaCl being 2.07, 0.14 and 0.32 mol·L?1, respectively, Winsor type I microemulsion was formed, as shown in Fig. 6. Water was then added gradually into the system so as to change the water/oil ratio in the system. It is attractive that the change from microemulsion Winsor type II→III→I occurs and more and more oil is released gradually. When the volume of water increases to 18 ml, 9 ml or 90% (by volume) oil is released from the microemulsion.

    Figure 6 Influence of water volume on phase behavior of SDS-n-butanol-kerosene-water microemulsion system [Vkerosene︰Vwater=1︰1 (10 ml︰10 ml), c(n-butanol)=2.07 mol·L?1, c(SDS)=0.14 mol·L?1, c( NaCl)=0.32mol·L?1]

    Tongcumpoua et al. [8] also found that the interfacial tension between oil and water changed with the ratio of oil to water, so a phase inversion may take place. According to the description of Aarra et al. [31], for Winsor type III microemulsion, electrolyte cations are partitioned in the excess water phase and microemulsion phase, while Na+shows a strong tendency to partition in the excess water phase for a SDS-heptanewater-1-butanol-NaCl system. Bellocq et al. [32] gave similar results for SDS-toluene-water butanol-NaCl system. The results of Aarra et al. [31] were consistent with the calculation results from Robertson’s model [33]. According to Robertson’s model, the water in the surfactant/water pseudocomponent does not contain electrolyte. The remaining bulk water in the microemulsion has the same salinity as the excess water. It is the equilibrium excess-water-phase salinity that controls the phase behavior. The release of oil from Winsor type II or III microemulsion with water addition in this work can be also explained by Robertson’s model [33]. The addition of water reduces the excess-waterphase salinity, and a salinity low enough leads to the phase inversion to Winsor type I.

    These phenomena mean that when organic contaminants are transferred into Winsor type II or III microemulsion for disposal of organic contaminants, water may be added to release the organics from the microemulsion and the surfactants may be reused, although a great amount of water is needed.

    4 CONCLUSIONS

    The experimental results show that the type and valence of electrolyte cations are important factors influencing the phase behavior of the SDS-n-butanolkerosenewater microemulsion system. High surface charge density of bivalent cation (Ca2+) makes it more effective in adjusting the HLB of the SDS surfactant system, and much easier for the formation of Winsor type III and II microemulsion than monovalent cations (K+ and Na+). For the same monovalent cation (Na+), the valence of correspondent anions in the electrolyte show some influence on its effect. Bivalent anion ( 2 CO3? ) leads to a lower activity of the cation (Na+) than monovalent anion (Cl?). For the same type of cation (K+ or Na+), the type of monovalent anion (Cl?or OH?) in the electrolyte has little influence on the microemulsion state under the operation conditions in this work, even though KOH (or NaOH) is alkalis. The cation H+ in the electrolyte HCl has strong effect on the formation of Winsor type III microemulsion. The acidity plays an important role in this process.

    Winsor type III (or II) microemulsion changes to type I with the precipitation of Ca2+ using Na2CO3, neutralization of HCl by NaOH and addition of water into the system. Most of the organics enters into the free phase during this process. These may give us some inspiration for the release of organics from type III (or II) microemulsion and the recycling of surfactants.

    REFERENCES

    1 Rosano, H.L., Cavallo, J.L., Chang, D.L., Whittam, J.H., “Microemulsions: A commentary on their preparation”, J. Soc. Cosmet. Chem., 39, 201-209 (1988).

    2 Salager, J.L., Antón, R.E., Sabatini, D.A., Harwell, J.H., Acosta, E.J., Tolosa, L.I., “Enhancing solubilization in microemulsions—State of the art and current trends”, J. Surfact. Deterg., 8 (1), 3-21 (2005).

    3 Healy, R.N., Reed, R.L., “Physicochemical aspects of microemulsion flooding”, Soc. Pet. Eng. J., 14 (5), 491-501 (1974).

    4 Healy, R.N., Reed, R.L., “Immiscible microemulsion flooding”, Ibid, 17 (2), 129-139 (1977).

    5 Healy, R.N., Reed, R.L., Stenmark, D.G., “Multiphase microemulsion systems”, Ibid, 16 (3), 147-160 (1976).

    6 Santanna, V.C., Curbelo, F.D.S., Dantas, T.N.C., Datas Neto, A.A., Albuquerque, H.S., Garnica, A.I.C., “Microemulsion flooding for enhanced oil recovery”, J. Petrol. Sci. Eng., 66, 117-120 (2009).

    7 Tongcumpou, C., Acosta, E.J., Quencer, L.B., Joseph, A.F., Scamehorn, J.F., Sabatini, D.A., Chavadej, S., Yanumet, N., “Microemulsion formation and detergency with oily soils: I. Phase behavior and interfacial tension”, J. Surfact. Deterg., 6 (3), 191-203 (2003).

    8 Tongcumpoua, C., Acosta, E.J., Quencer, L.B., Josephc, A.F., Scamehorn, J.F., Sabatini, D.A., Chavadej, S., Yanumet, N., “Microemulsion formation and detergency with oily soils: II. Detergency formulation and performance”, J. Surfact. Deterg., 6 (3), 205-214 (2003).

    9 Tongcumpou, C., Acosta, E.J., Quencer, L.B., Joseph, A.F., Scamehorn, J.F., Sabatini, D.A., Yanumet, N., Chavadej, S., “Microemulsion formation and detergency with oily soils: III. Performance and mechanisms”, J. Surfact. Deterg., 8 (2), 147-156 (2005).

    10 Tanthakit, P., Chavadej, S., Scamehorn, J.F., Sabatini, D.A., Tongcumpou, C., “Microemulsion formation and detergency with oily soil: IV. Effect of rinse cycle design”, J. Surfact. Deterg., 11, 117-128 (2008).

    11 Tanthakit, P., Nakrachata-Amorn, A., Scamehorn, J.F., Sabatini, D.A., Tongcumpou, C., Chavadej, S., “Microemulsion formation and detergency with oily soil: V. Effects of water hardness and builder”, J. Surfact. Deterg., 12, 173-183 (2009).

    12 Dantas, T.N.C., Mpura, M.C.P.A., Datas Neto, A.A., Pinherio, F.S.H.T., Barros Neto, E.L., “The use of microemulsion and flushing solutions to remediate diesel-polluted soil”, Brazilian Journal of Petroleum and Gas, 1 (1), 26-33 (2007).

    2.1.5 肥胖 患者身高158 cm,體重74 kg,在化療期間體重減少3 kg左右,后又恢復(fù)正常。肥胖患者廣泛的皮下脂肪術(shù)后容易形成死腔和血腫妨礙血氧向傷口釋放,為感染提供了病灶;脂肪組織的血液供應(yīng)相對(duì)較少,傷口血供不足,易發(fā)生液化壞死;太多的脂肪組織會(huì)導(dǎo)致傷口的張力增加(1期縫合傷口),會(huì)阻礙傷口局部的血液循環(huán),影響傷口的愈合。

    13 Dantas, T.N.C., Datas Neto, A.A., Rossi, C.G.F.T., Gomes, D.A.A., Gurgel, A., “Use of microemulsion systems in the solubilization of petroleum heavy fractions for the prevention of oil sludge formation”, Energ Fuel, 24, 2312-2319 (2010).

    14 Shiau, B., Sabatini, D.A., Harwell, J.H., “Solubilization and microemulsification of chlorinated solvents using direct food additive (edible) surfactants”, Ground Water, 32 (4), 561-569 (1994).

    15 Sabatini, D.A., Knox, R.C., Harwell, J.H., “Emerging technologies in surfactant-enhanced subsurface remediation”, ACS Symp. Ser., 594, 1-7 (1995).

    16 Fountain, J.C., Starr, R.C., Middleton, T., Beikrich, M., Taylor, C., Hodge, D.A., “Controlled field test of surfactant enhanced aquifer remediation”, Ground Water, 34 (5), 910-916 (1996).

    17 Wu, B., Shiau, B.J., Sabatini, D.A., Harwell, J.H., Vu, D.Q., “Formulating microemulsion systems for a weathered jet fuel waste using surfactant/cosurfactant mixtures”, Sep. Sci. Technol., 35 (12), 1917-1937 (2000).

    18 Childs, J., Costa, E., Annable, M.D., Brooks, M.C., Enfield, C.G., Harwell, J.H., Hasegawa, M., Knox, R.C., Rao, P.S.C., Sabatini, D.A., Shiau, B., Szekeres, E., Wood, A.L., “Field demonstration of surfactant-enhanced solubilization of DNAPL at Dover Air Force Base, Delaware”, J. Contam. Hydrol., 2, 1-22 (2006)

    19 Cheng, H., Contaminant and Anionic Surfactant Separation Using Solvent Extraction and Anion Exchange, University of Oklahoma (2000).

    20 Cheng, H., Sabatini, D.A., “Separation of organics compounds from surfactant solutions: A review”, Sep. Sci. Technol., 42, 453-475 (2007).

    21 Chai, J., Sun, H., Li, X., Chen, L., Yang, B., Wu, Y., “Effect of inorganic salts on the phase behavior of microemulsion systems containing sodium dodecyl sulfate”, J. Disper. Sci. and Technol., 33 (10),1470-1474 (2012)

    23 Puerto, M.C., Reed, R.L., “Surfactant selection with the three-parameter diagram”, SPE Reservoir Engineering, 5 (2), 198-204 (1990).

    24 Rudolph, E.S.J., Cacao Pedroso, M.A., de Loos, Th. W., Swaan Arons, J. de, “Phase behavior of oil + water + nonionic surfactant systems for various oil-to-water ratios and the representation by a Landau-type model”, J. Phys. Chem. B, 101, 3914-3918 (1997).

    25 Rajib, K.M., Bidyut, K.P., “Effect of temperature and salt on the phase behavior of nonionic and mixed nonionic-ionic microemulsions with fish-tail diagrams”, J. Colloid. Interf. Sci., 291, 550-559 (2005).

    26 Chai, J., Wu, Y., Li, X., Yang, B., Lu, J., “Effect of oil/water ratios on the phase behavior and the solubilization ability of microemulsion systems containing sodium dodecyl sulfate”, J. Solution Chem., 40, 1889-1898 (2011)

    27 Kunieda, H., Shinoda, K., “Solution behavior and hydrophilelipophile balance temperature in the aerosol OT-isooctane-brine system: Correlation between microemulsions and ultralow interfacial tensions”, J. Colloid. Interf. Sci., 75 (2), 601-606 (1980).

    28 Kunieda, H., Nakano, A., Akimaru, M., “The effect of mixing of surfactants on solubilization in a microemulsion system”, J. Colloid. Interf. Sci., 170, 78-84 (1995).

    29 Pizzino, A., Molinier, V., Catte, M., Salager, J., Aubry, J., “Bidimensional analysis of the phase behavior of a well-defined surfactant (C10E4)/oil (n-octane)/water-temperature system”, J. Phys. Chem. B, 113, 16142-16150 (2009)

    30 Cheng, H., Sabatini, D.A., “Phase-behavior-base surfactant-contaminant separation of middle phase microemulsions”, Sep. Sci. Technol., 37 (1), 127-146 (2002).

    31 Aarra, M.G., H?iland, H., Skauge, A., “Phase behavior and salt partitioning in two- and three-phase anionic surfactant microemulsion systems: Part II, partitioning of salt”, J. Colloid. Interf. Sci., 215, 216-225 (1999).

    32 Bellocq, A.M., Biais, J., Clin, B., Gelot, A., Lalanne, P., Lemanceau, B., “Three-dimensional phase diagram of the brine-toluene-butanolsodium dodecyl sulfate system”, J. Colloid. Interf. Sci., 74 ( 2), 311-321 (1980).

    33 Robertson, S.D., “An empirical model for microemulsion phase behavior”, SPE Reservoir Engineering, 8, 1002-1016 (1988).

    2013-01-13, accepted 2013-06-08.

    * Supported by the National Natural Science Foundation of China (21106187), Promotive Research Funds for Excellent Young and Middle-aged Scientists of Shandong Province (BS2011NJ021), the Fundamental Research Funds for the Central Universities (11CX05016A), and the Graduate Innovation Project of CUP 2012 (CX-1214).

    ** To whom correspondence should be addressed. E-mail: liuhuie@upc.edu.cn

    猜你喜歡
    脂肪組織傷口體重
    給鯨測(cè)體重,總共分幾步
    傷口
    青年文摘(2021年17期)2021-12-11 18:23:02
    高脂肪飲食和生物鐘紊亂會(huì)影響體內(nèi)的健康脂肪組織
    中老年保健(2021年9期)2021-08-24 03:49:52
    雙源CT對(duì)心臟周圍脂肪組織與冠狀動(dòng)脈粥樣硬化的相關(guān)性
    稱體重
    意林·全彩Color(2019年7期)2019-08-13 00:53:50
    你的體重超標(biāo)嗎
    小學(xué)生作文(中高年級(jí)適用)(2016年3期)2016-11-11 06:30:22
    傷口“小管家”
    再不去傷口就好了等3 則
    视频区欧美日本亚洲| 亚洲,欧美精品.| 91精品国产国语对白视频| 女警被强在线播放| 日本精品一区二区三区蜜桃| 久久国产乱子伦精品免费另类| 午夜精品国产一区二区电影| 国产精品综合久久久久久久免费 | 免费日韩欧美在线观看| 在线观看免费高清a一片| 国产日韩一区二区三区精品不卡| 色综合欧美亚洲国产小说| 大香蕉久久成人网| 精品久久久久久久毛片微露脸| 久久香蕉国产精品| 天堂动漫精品| 成熟少妇高潮喷水视频| 少妇被粗大的猛进出69影院| 午夜福利欧美成人| 欧美精品高潮呻吟av久久| 欧美av亚洲av综合av国产av| 999精品在线视频| 18禁观看日本| 久久精品aⅴ一区二区三区四区| 叶爱在线成人免费视频播放| 美女 人体艺术 gogo| 黑人猛操日本美女一级片| 又黄又粗又硬又大视频| 欧美精品高潮呻吟av久久| 成在线人永久免费视频| 国产精品秋霞免费鲁丝片| av国产精品久久久久影院| 一边摸一边做爽爽视频免费| 黄片小视频在线播放| 啪啪无遮挡十八禁网站| 在线播放国产精品三级| 久久香蕉精品热| 精品亚洲成国产av| 久久中文字幕人妻熟女| 少妇的丰满在线观看| netflix在线观看网站| 妹子高潮喷水视频| 1024香蕉在线观看| 午夜福利在线观看吧| 校园春色视频在线观看| 欧美不卡视频在线免费观看 | 国产免费现黄频在线看| 99久久精品国产亚洲精品| 看片在线看免费视频| 亚洲自偷自拍图片 自拍| 人人妻,人人澡人人爽秒播| 中文字幕人妻丝袜一区二区| 这个男人来自地球电影免费观看| 亚洲精品国产一区二区精华液| 中文字幕精品免费在线观看视频| 免费黄频网站在线观看国产| 免费高清在线观看日韩| 少妇的丰满在线观看| 国产亚洲精品一区二区www | 亚洲欧洲精品一区二区精品久久久| 老熟妇乱子伦视频在线观看| 在线观看免费视频网站a站| 亚洲av日韩在线播放| 可以免费在线观看a视频的电影网站| 韩国av一区二区三区四区| 好男人电影高清在线观看| 欧美日本中文国产一区发布| 中文欧美无线码| 美女扒开内裤让男人捅视频| 又黄又爽又免费观看的视频| 热99久久久久精品小说推荐| 99riav亚洲国产免费| 伦理电影免费视频| 国产视频一区二区在线看| 欧美日韩黄片免| 老汉色∧v一级毛片| 午夜免费鲁丝| 免费观看精品视频网站| 99国产精品99久久久久| 欧美性长视频在线观看| 成年版毛片免费区| 久久久精品区二区三区| 久久香蕉精品热| 十八禁高潮呻吟视频| 18禁观看日本| 日本欧美视频一区| a级片在线免费高清观看视频| 亚洲av成人av| 亚洲熟妇熟女久久| 亚洲av成人av| 99热只有精品国产| 精品久久久久久久毛片微露脸| 久久精品成人免费网站| 久久久久久亚洲精品国产蜜桃av| 黄色毛片三级朝国网站| 精品国产乱子伦一区二区三区| 亚洲精品在线美女| 久久香蕉国产精品| 在线av久久热| 欧美乱码精品一区二区三区| 国产淫语在线视频| 嫁个100分男人电影在线观看| 亚洲第一欧美日韩一区二区三区| 久久国产精品人妻蜜桃| 亚洲午夜理论影院| 免费在线观看亚洲国产| 亚洲熟女精品中文字幕| 亚洲av熟女| 欧美日韩成人在线一区二区| 大香蕉久久成人网| 久久ye,这里只有精品| 人人妻人人添人人爽欧美一区卜| 黑人操中国人逼视频| 下体分泌物呈黄色| 老汉色∧v一级毛片| 国产精品久久久av美女十八| 午夜福利一区二区在线看| 91成年电影在线观看| 亚洲中文av在线| 亚洲黑人精品在线| 久久久精品国产亚洲av高清涩受| 女人爽到高潮嗷嗷叫在线视频| 村上凉子中文字幕在线| 亚洲av欧美aⅴ国产| 久久久久精品国产欧美久久久| 麻豆乱淫一区二区| 国产三级黄色录像| 老司机福利观看| 岛国在线观看网站| 热99久久久久精品小说推荐| 狂野欧美激情性xxxx| 欧美激情久久久久久爽电影 | 妹子高潮喷水视频| 天天添夜夜摸| 国产亚洲欧美98| 两性午夜刺激爽爽歪歪视频在线观看 | 91在线观看av| 国产又爽黄色视频| 成年人黄色毛片网站| 国产成人免费无遮挡视频| 自线自在国产av| 精品国产一区二区三区久久久樱花| 久久久国产成人精品二区 | 亚洲片人在线观看| 欧美人与性动交α欧美精品济南到| 国产99久久九九免费精品| 午夜精品国产一区二区电影| 亚洲一码二码三码区别大吗| 两个人看的免费小视频| av天堂在线播放| 18禁美女被吸乳视频| 国产亚洲欧美精品永久| 亚洲精品在线美女| 欧美日韩乱码在线| 黄色a级毛片大全视频| 精品电影一区二区在线| 叶爱在线成人免费视频播放| 久久影院123| ponron亚洲| 叶爱在线成人免费视频播放| 欧美大码av| 每晚都被弄得嗷嗷叫到高潮| 久久人妻福利社区极品人妻图片| 中文字幕最新亚洲高清| 亚洲少妇的诱惑av| 国产精品久久视频播放| 99久久99久久久精品蜜桃| 日本欧美视频一区| 午夜精品久久久久久毛片777| 看黄色毛片网站| 亚洲精品在线观看二区| 一边摸一边抽搐一进一小说 | 欧美激情高清一区二区三区| 久久国产精品人妻蜜桃| 欧美av亚洲av综合av国产av| 欧美日韩视频精品一区| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美激情 高清一区二区三区| 欧美色视频一区免费| 欧美最黄视频在线播放免费 | 国产不卡av网站在线观看| 久9热在线精品视频| 91在线观看av| 欧美黑人精品巨大| 精品一区二区三区四区五区乱码| 水蜜桃什么品种好| 国产成人精品在线电影| 亚洲avbb在线观看| av线在线观看网站| 黄片大片在线免费观看| 国产精品乱码一区二三区的特点 | 国产成人欧美| 日韩人妻精品一区2区三区| 啦啦啦在线免费观看视频4| 丁香欧美五月| 人人妻人人澡人人看| 国产精品国产高清国产av | 国产精品久久久久成人av| 国产成人系列免费观看| 免费在线观看黄色视频的| 欧美精品啪啪一区二区三区| 亚洲精品美女久久av网站| 免费不卡黄色视频| 亚洲国产欧美日韩在线播放| 亚洲黑人精品在线| 精品久久久精品久久久| 国产精品国产av在线观看| 操出白浆在线播放| 亚洲成人免费电影在线观看| 满18在线观看网站| 精品国产国语对白av| 丰满的人妻完整版| 高清毛片免费观看视频网站 | 国产精品一区二区精品视频观看| 国产av精品麻豆| 久久久久精品国产欧美久久久| 国产深夜福利视频在线观看| 中文欧美无线码| 高清欧美精品videossex| 深夜精品福利| 欧美国产精品一级二级三级| 免费黄频网站在线观看国产| 国产欧美日韩一区二区精品| 一级黄色大片毛片| 51午夜福利影视在线观看| av一本久久久久| 极品少妇高潮喷水抽搐| 亚洲一卡2卡3卡4卡5卡精品中文| 女同久久另类99精品国产91| 在线看a的网站| 中文字幕av电影在线播放| avwww免费| 精品国产一区二区久久| 黄网站色视频无遮挡免费观看| 久久久久久久午夜电影 | 欧美亚洲 丝袜 人妻 在线| 99久久国产精品久久久| av国产精品久久久久影院| 国产无遮挡羞羞视频在线观看| 欧美黑人精品巨大| 亚洲av欧美aⅴ国产| 亚洲综合色网址| 免费在线观看视频国产中文字幕亚洲| 黄色 视频免费看| 国产欧美日韩一区二区三| 亚洲国产欧美一区二区综合| 国产精品亚洲av一区麻豆| 亚洲情色 制服丝袜| 韩国av一区二区三区四区| 亚洲三区欧美一区| 亚洲精品在线美女| 亚洲情色 制服丝袜| 欧美日韩av久久| 欧美亚洲日本最大视频资源| 欧美在线黄色| 狠狠狠狠99中文字幕| 中文字幕av电影在线播放| 精品人妻1区二区| 香蕉国产在线看| 十分钟在线观看高清视频www| 亚洲午夜理论影院| 欧美日本中文国产一区发布| 叶爱在线成人免费视频播放| 免费一级毛片在线播放高清视频 | 自拍欧美九色日韩亚洲蝌蚪91| 9191精品国产免费久久| 少妇被粗大的猛进出69影院| 精品熟女少妇八av免费久了| 亚洲成人免费电影在线观看| 亚洲性夜色夜夜综合| 久久影院123| 又紧又爽又黄一区二区| 久久精品熟女亚洲av麻豆精品| 精品一区二区三区四区五区乱码| 757午夜福利合集在线观看| 午夜福利免费观看在线| 大片电影免费在线观看免费| 日韩欧美国产一区二区入口| 交换朋友夫妻互换小说| 色综合婷婷激情| 村上凉子中文字幕在线| 国产国语露脸激情在线看| 无限看片的www在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲一码二码三码区别大吗| 99国产精品99久久久久| 天天影视国产精品| 在线观看午夜福利视频| 一边摸一边抽搐一进一出视频| 女人被躁到高潮嗷嗷叫费观| 男女免费视频国产| 国产高清videossex| 欧美 日韩 精品 国产| 国产三级黄色录像| 50天的宝宝边吃奶边哭怎么回事| www.自偷自拍.com| 亚洲av第一区精品v没综合| 多毛熟女@视频| 91成人精品电影| 丝袜美腿诱惑在线| 脱女人内裤的视频| 国产亚洲精品第一综合不卡| 麻豆国产av国片精品| 日日夜夜操网爽| 国产深夜福利视频在线观看| 老司机影院毛片| 中文字幕人妻丝袜制服| 黑人欧美特级aaaaaa片| 日韩精品免费视频一区二区三区| 国产国语露脸激情在线看| 亚洲三区欧美一区| 啦啦啦 在线观看视频| av一本久久久久| 国产免费男女视频| 免费观看人在逋| 一级毛片精品| 亚洲第一av免费看| 老司机福利观看| 十八禁高潮呻吟视频| 在线观看午夜福利视频| 国产精品亚洲一级av第二区| 最近最新免费中文字幕在线| 久久精品国产99精品国产亚洲性色 | videos熟女内射| 亚洲五月婷婷丁香| 日本黄色视频三级网站网址 | 国精品久久久久久国模美| 99热只有精品国产| 成人黄色视频免费在线看| 一级a爱视频在线免费观看| 国产精品免费一区二区三区在线 | 人人澡人人妻人| 欧美精品亚洲一区二区| 欧美在线一区亚洲| 正在播放国产对白刺激| 久久精品国产清高在天天线| 国产精品美女特级片免费视频播放器 | 亚洲欧美精品综合一区二区三区| 精品国产乱码久久久久久男人| 精品午夜福利视频在线观看一区| 免费看a级黄色片| 人成视频在线观看免费观看| 九色亚洲精品在线播放| 极品教师在线免费播放| netflix在线观看网站| 在线永久观看黄色视频| 亚洲精品国产一区二区精华液| 国产高清视频在线播放一区| 欧美日韩视频精品一区| 下体分泌物呈黄色| 麻豆av在线久日| 丝袜美足系列| 叶爱在线成人免费视频播放| 中文字幕最新亚洲高清| 欧美黑人欧美精品刺激| 最近最新中文字幕大全电影3 | 香蕉久久夜色| 成人免费观看视频高清| 首页视频小说图片口味搜索| 天天影视国产精品| 免费观看a级毛片全部| 欧美成人午夜精品| 免费观看人在逋| 成人永久免费在线观看视频| 午夜免费观看网址| 国产 一区 欧美 日韩| 午夜福利高清视频| 成人av在线播放网站| 亚洲一区二区三区不卡视频| 狠狠狠狠99中文字幕| 久久久久久久亚洲中文字幕 | 999久久久精品免费观看国产| 日韩免费av在线播放| 国产黄a三级三级三级人| 一边摸一边抽搐一进一小说| 午夜福利在线观看吧| 最新美女视频免费是黄的| 九九在线视频观看精品| 搡老岳熟女国产| 最近最新中文字幕大全免费视频| 蜜桃久久精品国产亚洲av| 精品一区二区三区人妻视频| 男女下面进入的视频免费午夜| 免费搜索国产男女视频| 色av中文字幕| 国产午夜精品论理片| 波多野结衣高清作品| 欧美成人一区二区免费高清观看| 看免费av毛片| ponron亚洲| 一个人免费在线观看的高清视频| 国内久久婷婷六月综合欲色啪| 国产精品98久久久久久宅男小说| av在线天堂中文字幕| e午夜精品久久久久久久| 欧美区成人在线视频| 中亚洲国语对白在线视频| 日本一本二区三区精品| 国产一区二区激情短视频| 国产精品永久免费网站| 亚洲片人在线观看| 欧美中文综合在线视频| 精华霜和精华液先用哪个| 精品久久久久久,| 亚洲精品久久国产高清桃花| 日本成人三级电影网站| 成人无遮挡网站| 成人精品一区二区免费| 欧美性猛交╳xxx乱大交人| 99精品久久久久人妻精品| 欧美区成人在线视频| 久久九九热精品免费| 亚洲欧美日韩东京热| 免费搜索国产男女视频| 熟妇人妻久久中文字幕3abv| 天天躁日日操中文字幕| 国产在线精品亚洲第一网站| 99在线人妻在线中文字幕| 国产精品久久久久久久久免 | h日本视频在线播放| 亚洲国产欧美人成| 最近最新中文字幕大全电影3| 男人舔奶头视频| 亚洲欧美日韩高清专用| 1000部很黄的大片| 在线观看午夜福利视频| 91久久精品电影网| 制服丝袜大香蕉在线| 手机成人av网站| 国产一区二区三区在线臀色熟女| 欧美+日韩+精品| 亚洲熟妇熟女久久| 国产午夜精品论理片| 床上黄色一级片| 国产欧美日韩精品一区二区| 深爱激情五月婷婷| 日本一本二区三区精品| 90打野战视频偷拍视频| 亚洲在线自拍视频| 亚洲精品国产精品久久久不卡| 99热这里只有精品一区| 搡女人真爽免费视频火全软件 | 成年女人看的毛片在线观看| 久久香蕉国产精品| 搡老熟女国产l中国老女人| 丰满的人妻完整版| av专区在线播放| 亚洲片人在线观看| 天堂影院成人在线观看| 亚洲熟妇中文字幕五十中出| 久久国产精品人妻蜜桃| 成年女人永久免费观看视频| 一本综合久久免费| 欧美性猛交黑人性爽| 久久久久免费精品人妻一区二区| 亚洲精品粉嫩美女一区| 国产探花极品一区二区| 亚洲狠狠婷婷综合久久图片| 欧美不卡视频在线免费观看| 国产精品自产拍在线观看55亚洲| 日韩国内少妇激情av| 国产精品,欧美在线| 国产综合懂色| 波多野结衣高清作品| 精品久久久久久成人av| 国产欧美日韩精品亚洲av| 最近最新中文字幕大全电影3| 久久香蕉国产精品| 国产aⅴ精品一区二区三区波| 免费高清视频大片| 成人18禁在线播放| 成年女人永久免费观看视频| 欧美+日韩+精品| 深爱激情五月婷婷| 一级黄色大片毛片| 精品久久久久久久末码| 免费在线观看影片大全网站| 国产成人影院久久av| 好男人电影高清在线观看| 国产视频内射| 婷婷精品国产亚洲av在线| 亚洲avbb在线观看| 一a级毛片在线观看| 国产成人a区在线观看| av欧美777| 男女那种视频在线观看| 欧美午夜高清在线| 国产精品一区二区免费欧美| 国产主播在线观看一区二区| 久久久久性生活片| 国产精品久久久人人做人人爽| 嫁个100分男人电影在线观看| 亚洲精品亚洲一区二区| 精品久久久久久成人av| 一区福利在线观看| 中文字幕久久专区| avwww免费| 一级毛片女人18水好多| 一a级毛片在线观看| 国产在视频线在精品| 亚洲av免费在线观看| 亚洲av成人精品一区久久| 最近视频中文字幕2019在线8| 日韩欧美在线二视频| 床上黄色一级片| 真实男女啪啪啪动态图| 国产一区二区三区在线臀色熟女| 真实男女啪啪啪动态图| 听说在线观看完整版免费高清| 99热这里只有精品一区| 久久香蕉国产精品| 日本熟妇午夜| 天美传媒精品一区二区| 全区人妻精品视频| 国产亚洲精品久久久com| 又粗又爽又猛毛片免费看| 一个人观看的视频www高清免费观看| 老司机深夜福利视频在线观看| 在线天堂最新版资源| 欧美成人a在线观看| 成人18禁在线播放| 成人国产一区最新在线观看| 男人的好看免费观看在线视频| 亚洲一区二区三区不卡视频| 美女黄网站色视频| 午夜久久久久精精品| 两人在一起打扑克的视频| 中出人妻视频一区二区| 国产毛片a区久久久久| 日本免费a在线| 老司机午夜十八禁免费视频| 欧美日韩瑟瑟在线播放| 日韩av在线大香蕉| 国产视频内射| 精品国产亚洲在线| 一本久久中文字幕| 久久精品国产综合久久久| 成人av一区二区三区在线看| 免费人成视频x8x8入口观看| 天堂网av新在线| 国产国拍精品亚洲av在线观看 | 日韩高清综合在线| 国产精品一区二区免费欧美| 亚洲av美国av| 亚洲av不卡在线观看| 亚洲成人久久性| 国产精品精品国产色婷婷| 午夜免费激情av| 特级一级黄色大片| 亚洲美女视频黄频| 国产中年淑女户外野战色| 99国产极品粉嫩在线观看| 美女 人体艺术 gogo| 动漫黄色视频在线观看| 男人的好看免费观看在线视频| 成熟少妇高潮喷水视频| 麻豆久久精品国产亚洲av| 日日干狠狠操夜夜爽| 国内精品一区二区在线观看| 90打野战视频偷拍视频| 天天一区二区日本电影三级| 中亚洲国语对白在线视频| 精品人妻1区二区| 免费看日本二区| 波多野结衣高清作品| 国产高清三级在线| 国产亚洲欧美在线一区二区| 一级黄色大片毛片| 国产精品女同一区二区软件 | 精品熟女少妇八av免费久了| 国产老妇女一区| 欧美黄色淫秽网站| av天堂在线播放| www国产在线视频色| 床上黄色一级片| 欧美日韩精品网址| 国产精品免费一区二区三区在线| 亚洲在线自拍视频| 变态另类丝袜制服| 高潮久久久久久久久久久不卡| 日韩av在线大香蕉| 婷婷精品国产亚洲av在线| 国产日本99.免费观看| 国产私拍福利视频在线观看| 又爽又黄无遮挡网站| 亚洲国产欧洲综合997久久,| 伊人久久精品亚洲午夜| 国产黄色小视频在线观看| 老熟妇仑乱视频hdxx| 青草久久国产| 男女下面进入的视频免费午夜| 久久久久久久久中文| 超碰av人人做人人爽久久 | 国产精品99久久久久久久久| 少妇裸体淫交视频免费看高清| 国内精品美女久久久久久| 亚洲五月天丁香| 亚洲自拍偷在线| 熟女人妻精品中文字幕| 高清日韩中文字幕在线| 亚洲欧美日韩东京热| 国产精品爽爽va在线观看网站| 精品国产亚洲在线| 国产亚洲精品久久久com| 精品国产三级普通话版| 99久久精品国产亚洲精品| www日本黄色视频网| 色综合婷婷激情| 一进一出好大好爽视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品嫩草影院av在线观看 | 日韩欧美精品免费久久 | 久久九九热精品免费| 国产精品爽爽va在线观看网站| 国产精品乱码一区二三区的特点|