• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase Behavior of Sodium Dodecyl Sulfate-n-Butanol-Kerosene-Water Microemulsion System*

    2014-07-18 12:09:48LIUHuie劉會(huì)娥ZHANGXiaokun張孝坤DINGChuanqin丁傳芹CHENShuang陳爽andQIXuanliang齊選良StateKeyLaboratoryofHeavyOilProcessingChinaUniversityofPetroleumQingdao266555China
    關(guān)鍵詞:脂肪組織傷口體重

    LIU Huie (劉會(huì)娥)**, ZHANG Xiaokun (張孝坤), DING Chuanqin (丁傳芹), CHEN Shuang (陳爽) and QI Xuanliang (齊選良)State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China

    Phase Behavior of Sodium Dodecyl Sulfate-n-Butanol-Kerosene-Water Microemulsion System*

    LIU Huie (劉會(huì)娥)**, ZHANG Xiaokun (張孝坤), DING Chuanqin (丁傳芹), CHEN Shuang (陳爽) and QI Xuanliang (齊選良)
    State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China

    Experiments were carried out to investigate the influences of cation from electrolytes and acidity/alkalinity on the phase behavior of sodium dodecyl sulfate-n-butanol-organics-water (with electrolytes) microemulsion system. The organics used is commercial kerosene. The volume ratio of water to organics is 1︰1. The results show that the type and valence of electrolyte cations are important factors influencing the microemulsion behavior. Bivalent Ca2+ is more effective than monovalent K+ and Na+ for the formation of Winsor type III and II microemulsion. For electrolytes with the same monovalent cation Na+, i.e. NaCl and Na2CO3, anions in the electrolyte have some effect. Bivalent anion 2 CO3? leads to a lower activity of cation Na+ than monovalent anion Cl?. NaOH (or KOH) behaves similar with NaCl (or KCl). When HCl is used as electrolyte, its acidity plays an important role. Phase inversion of microemulsion from type III (or II) to type I is observed through precipitation of Ca2+ using Na2CO3, neutralization of HCl by NaOH, and addition of water to the system, which releases the oil from the microemulsion.

    microemulsion, sodium dodecyl sulfate, kerosene, phase inversion

    1 INTRODUCTION

    Microemulsions are thermodynamically stable, optically transparent, isotropic dispersions of aqueous and organic liquids stabilized by an interfacial film of surfactant molecules [1]. Three types of microemulsion systems are found with the change of hydrophile-lipophile balance (HLB), i.e., Winsor type I, II and III microemulsion systems. Winsor type I system is an O/W microemulsion in equilibrium with excess oil, which, in the form of oil-swollen micelles in aqueous phase, is water soluble. Winsor type II is a W/O microemulsion in equilibrium with excess water, which is oil soluble and exists in the form of water-swollen micelles in the organic phase. Winsor type III is a middle phase microemulsion coexisting with excess water and organic phases, which has a bicontinuous structure and contains large quantities of organics and water. It can be considered as an accumulation of swollen micelles, which are so numerous that they touch one another, forming dispersion or a perfectly bicontinuous structure with all water domains connected and all oil domains connected likewise [2]. The microemulsion systems have the advantages of high interfacial area and ultra-low organics/water interfacial tension.

    Microemulsion is an efficient tool in the enhanced oil recovery (EOR) [3-6], because it can provide high levels of extraction. For example, Santana et al. [6] observed that with the commercial surfactant-based MCS microemulsion, a recovery factor as high as 87.5% was obtained. A modification and extension of the EOR concept is the environmental applications, such as the remediation of organic-polluted soil [7-13] or groundwater aquifers contaminated by non-aqueous phase liquids [14-18]. Different research groups [e.g. 7, 12, 14] have given similar results that for those surfactant-based washing agents, micro-emulsification (forming Winsor type III microemulsion) of organic contaminants in the processes presents higher de-polluting efficiency than others.

    However, the economics of surfactant-based remediation technologies benefits from material separation and recycling of surfactant [19, 20]. For processes with high organics content of Winsor type III or II microemulsions in contaminant removal, shifting of microemulsion from Winsor type II or III to type I is an attractive method for organics separation and surfactant reuse. During the phase shifting from Winsor type II or III to type I, most organics is separated as free phase, and through reverse phase shifting, that is, Winsor type I to type III or II, the reuse of surfactants can be realized. What factors influence the phase behavior of a microemulsion system is a crucial point for this problem.

    Chai et al. [21] found that there existed differences in the state with different electrolytes in sodium dodecyl sulfate (SDS) microemulsion systems. Both aliphatic acid and short chain alcohol were used as co-surfactants in their work. For the salts with the same anion but different cations (MgCl2, CaCl2, SrCl2), the solubility of alcohol (Sa) and the solubilization ability (SP) are in the same order of MgCl2>CaCl2~SrCl2, no matter in the aliphatic acid-based or in the alcoholbased microemulsion systems. For salts with the same cation but different anions [CaCl2, CaBr2, Ca(NO3)2], Saand SP are also in the same order of Ca(NO3)2>CaBr2>CaCl2for the two kinds of microemulsion systems. Anton and Salvager [22] investigated the anionic surfactant-oil-water-alcohol microemulsion systems by using sodium salts with different anions from monovalence through tetravalence. Oil phases with different equivalent alkane carbon number were used, with petroleum sulfonate sodium salts as the surfactant and sec-butanol as the cosurfactant. For the sodium salts, the correspondent anion valence showed important influence on the electrolyte activity and a correlation was given for the optimum formulation of anionic surfactant-oil-water systems. Puerto and Reed [23] found that for monovalents Li+, Na+and K+, whose hydration radii are in the sequence of Li+>Na+>K+, the optimal salinities are in the sequence of K+>Na+>Li+. It was concluded that at constant valence, the greater the hydration radius, the higher the optimal salinity.

    Rudolph et al. [24] found that varying oil/water ratio changed the extension of the three-phase region for the oil/water/nonionic surfactant (2-butoxyethanol) system. The experimental results of Raijb and Bidyut indicated that increasing oil/water ratio reduced the solubilization capacity for the Brij-56/1-butanol/ n-heptane/water system, while with negligible influence on the phase behavior of Brij/SDBS mixed system [25]. Chai et al. [26] investigated the influence of oil/water ratio on the phase behavior of SDS/alcohol/oil/water microemulsion system. As the oil/water mass ratio increases, the solubility of alcohol increases while both the mass fraction of the alcohol in the interfacial layer and the solubilization ability decrease.

    Kunieda and Shinoda [27] showed a HLB temperature for the aerosol OT-isooctane-brine system with the increase of temperature. A phase inversion from W/O microemulsion to three-phase microemulsion and then O/W microemulsion was observed. The influence of temperature on phase behavior of nonionic surfactant microemulsion system was also reported in [25, 28, 29].

    In summary, several variables (e.g., temperature, electrolyte, surfactant and cosurfactant) are important factors influencing the property of a microemulsion system. The phase state of a microemulsion may be changed by changing one of the several variables. Cheng and Sabatini [30] shifted the contaminant-rich Winsor type III microemulsion to type I system through precipitation-based exchange of polyvalent cations (Al3+and Ca2+) with equivalent amount of monovalent cation (Na+). The contaminants used were decane and tetradecane and the surfactant was Alfoterra 145-4 PO sulfate. In this work, the phase behavior of kerosene-water-SDS-n-butanol microemulsion systems is investigated. The effects of electrolytes, including NaCl, KCl, CaCl2, Na2CO3, NaOH, KOH and HCl, are investigated to find an effective way for phase inversion of microemulsions. The influence of acidity and alkalinity and water/oil ratio are also studied. Phase inversion of Winsor type II→III→I→III→II is to be realized through manipulating electrolytes and the acidity/alkalinity. Water is added into the Winsor type II microemulsion system for the shift from Winsor type II→III→I.

    2 EXPERIMENTAL

    2.1 Materials

    The surfactant used in this work was an anionic type, chemically pure sodium dodecyl sulfate (SDS). Other materials used were analytically pure n-butanol, NaCl, NaOH, KOH, KCl, CaCl2, Na2CO3, HCl, deionized water, and simulated contaminant-industrial kerosene [density 840 kg·m?3, distillation range 170-240 °C, total alkane content 50.5% (by mass), total naphthene content 29.9% (by mass), and total arene content 19.6%]. All chemicals were used as received without further purification.

    2.2 Preparation of microemulsions

    Microemulsions were prepared using SDS, 1︰1 (by volume) deionized water and kerosene, n-butanol and one cation donor (electrolyte) from the above reagents. Both salinity scan and alcohol scan were used to observe the phase behavior of microemulsions. For convenient, the concentrations of reagents were based on the total volume of water and kerosene.

    For determined organics, with equal volume of organics and water at fixed surfactant and electrolyte concentration, the microemulsion will change from Winsor type I→III→II with the increase of alcohol concentration. This is called alcohol scanning method.

    On the other hand, for determined organics, with equal volume of organics and water at fixed surfactant and cosurfactant concentration, if the concentration of electrolyte in the system increases, the system will also change from Winsor type I→III→II. This is called salinity scanning method.

    Taking the phase volume data during the alcohol or salinity scan, simple phase diagram can be made to show the phase state and the oil-solubilization capacity of each state. The schematic phase diagram is shown in Fig. 1. To show the phase state, a pair of curves is needed. The distance between the upper curve and the 100% line is the volume fraction of oil phase, that between the two curves is the volume fraction of microemulsion phase and between the lower one and abscissa axis is that of water phase. It is Winsor type I when the lower curve coincides with the abscissa, Winsor type II when the upper one coincides with the 100% volume fraction line and Winsor type III in between.

    3 RESULTS AND DISCUSSION

    3.1 Influence of electrolyte cations on phase behavior

    To observe the influence of cation types on the microemulsion phase behavior, CaCl2, KCl, NaCl andNa2CO3are used as the electrolyte separately. 10 ml kerosene and 10 ml water were used, with the concentration of SDS and n-butanol being 0.14 and 1.73 mol·L?1, respectively. Fig. 2 shows the salinity scanning results for different types of electrolytes for the SDS-n-butanol-kerosene-water microemulsion system. The system changes from Winsor type I→III→II with increasing electrolyte concentration, no matter what kind of electrolyte is used. With the addition of electrolyte, the critical micelle concentration of anionic surfactant SDS greatly decreases, while the aggregation number of micelle increases and micelles get bigger, solubilizing more oil.

    Figure 1 Schematic phase diagram for microemulsion during salinity or alcohol scan

    Figure 2 Phase diagram for SDS-n-butanol-kerosene-water microemulsion system using different electrolytes

    The results also show that each type of electrolyte has its typical length of salinity for the existence of Winsor type III microemulsion. Under the conditions of Vkerosene︰Vwater=1︰1, c(SDS)=0.14 mol·L?1and c(n-butanol)=1.73 mol·L?1, for electrolytes CaCl2, KCl, NaCl, and Na2CO3, their concentrations for forming Winsor type III microemulsion are 0.041-0.099, 0.15-0.30, 0.19-0.43 and 0.21-0.47 mol·L?1, and the salinity length is 0.058, 0.15, 0.24 and 0.26 mol·L?1, respectively. High surface charge density of Ca2+makes it more effective than K+and Na+in decreasing the HLB of surfactant system, and much easier for the formation of Winsor type III and II microemulsion. At the same time, the effect of K+is stronger than Na+, similar to the results obtained by Aarra et al [31]. As to the effect of NaCl and Na2CO3, it is found that NaCl is more effective than Na2CO3although they have the same monovalent cation, Na+. Anton and Salager [22] gave similar results. They put forward a concept of “valence activity factor (VAF)”to indicate the active fraction of sodium cations, COleads to a lower activity of the sodium salt than monovalent Cl?.

    It is attractive that when Winsor type II or III microemulsion is obtained using CaCl2, it may be Winsor type I for NaCl under the same valence number (see Fig. 2). Therefore, if Ca2+is replaced by Na+, Winsor type II or III microemulsion may convert into type I, and most of the oil solubilized in the microemulsion is released. Tests were carried out to approve this supposition. CaCl2was first used to prepare Winsor III microemulsion, with the volume fraction of microemulsified kerosene being 35% and then Na2CO3added into the system, causing Ca2+to precipitate as CaCO3. Thus Ca2+in the system was substituted by Na+. Fig. 3 (a) shows the phase behavior during this substituting process. Phase inversion from Winsor type III→I can be observed with the substitution of where Z is the valence of the anion. Eq. (1) indicates that the higher the anion valence, the lower its VAF, i.e. the less active the sodium salt. Thus bivalentCa2+by Na+. The volume fraction of solubilized kerosene in the Winsor type I microemulsion is only 7.6%. After exchanging Ca2+with Na+through precipitation, 74% of the oil in the microemulsion phase is released to the free oil phase. With further addition of Na2CO3, the microemulsion system changes from Winsor type I→III→II. The volume fraction of kerosene in the microemulsion phase gradually changes from 7.6% to 65%.

    Winsor type II microemulsion is also formed initially using CaCl2, and then Na2CO3is added gradually. The phase diagram is shown in Fig. 3 (b). For the Winsor type II microemulsion, the volume fraction of kerosene is 67%. When proper amount of Ca2+is substituted by Na+, Winsor type I microemulsion forms, in which the volume fraction of kerosene is only 11%. It means that 85% of the oil is released from the microemulsion. Similarly, with further addition of Na2CO3, the microemulsion system changes from Winsor type I→III→II, and more oil goes into the microemulsion again.

    In summary, after the replacement of Ca2+by Na+, Winsor type III (or II) goes to type I microemulsion, whose oil solubilization capacity is relatively small, releasing most of the oil initially contained. With the addition of cation Na+, Winsor type I microemulsion converts into type III (or II) again and more oil goes into the microemulsion gradually. Thus, the system will repeatedly convert between Winsor type III (or II) and I with the precipitation and re-dissolution of Ca2+(just as the addition of cations). This is a promising way for the recovery of organic contaminants and reuse of the surfactant system repeatedly. However, the content of Na+increases monotonously during the Ca2+precipitation and re-dissolution process, with no replacement of Na+taking place, which will lead to the end of the recycle because the cation concentration is too high eventually. The replacement of Ca2+with Na+and that of Na+with Ca2+are the keys for the repeated inversion between Winsor type III (or II) and I microemulsions, which is still under investigation in our laboratory.

    Figure 3 Phase inversion through cation substitution [Vkerosene︰Vwater=1︰1, c(SDS)=0.14 mol·L?1, c(n-butanol)=1.75 mol·L?1] O—oil phase; M—microemulsion phase; W—water phase

    3.2 Influence of acidity and alkalinity on phase behavior

    The results of Section 3.1 show that different types of cations have different effects on the phase behavior of microemulsion. The effects of monovalents H+, Na+and K+are compared and analyzed further in this section. The electrolytes used include HCl, NaCl, NaOH, KCl, and KOH, to find any special information about the H+cation or about acidity and alkalinity.

    The phase diagram obtained through salinity scan and alcohol scan are shown in Fig. 4. With the increase of salinity or alcohol concentration, the phase inversion from Winsor type I→II→III can be observed. Fig. 4 (a) shows that each type of monovalent cation has its typical length of salinity for forming Winsor type III microemulsion. Under the conditions of Vkerosene︰Vwater=1︰1 (10 ml︰10 ml), c(SDS)= 0.14 mol·L?1and c(n-butanol)=1.42 mol·L?1, for electrolytes HCl, NaCl, NaOH, KCl and KOH, the concentration for forming Winsor type III microemulsion are 0.15-0.23, 0.22-0.42, 0.22-0.42, 0.17-0.29, 0.17-0.29 mol·L?1, and the length of salinity is 0.54, 0.20, 0.20, 0.12 and 0.12 mol·L?1, respectively. Fig. 4 (b) is the phase diagram obtained from alcohol scan, the alcohol concentration for forming Winsor type III microemulsion is 0.88-1.42, 1.53-2.19, 1.53-2.19, 1.15-1.81 and 1.15-1.81 mol·L?1for HCl, NaCl, NaOH, KCl and KOH, respectively.

    It is interesting that the microemulsion phase diagram using KCl (or NaCl) is almost identical tothat using KOH (or NaOH). That is, for the same monovalent cation (K+or Na+), the type of monovalent anion (Cl?or OH?) has little influence on the state of SDS-n-butanol-kerosene-water microemulsion under the conditions in this work, even though KOH (or NaOH) is alkalis. With the addition of electrolytes into the microemulsion system, the counterion concentration increases, compressing the electrical double layer and depressing the electrostatic repulsion between the polar heads of surfactant. SDS is an anionic surfactant. The cation, Na+or K+, is the conterion that influences the electrical double layer, while the type of monovalent anion (no matter Cl?or OH?) of the electrolyte shows little influence. Extended conditions are still under investigation in our laboratory to justify this observation.

    The results in Fig. 4 show that the effect of the monovalent cations on microemulsion phase behavior decreases in the order of H+>K+>Na+. Puerto and Reed [23] considered that the greater the hydration radius, the higher the optimal salinity at constant cation valence. According to the analysis, the effect of monovalent cations in this work should be K+>Na+>H+, because the hydration radius is in the sequence of K+

    Obvious difference in state exists between the microemulsion systems using HCl and NaCl as electrolyte, as shown in Fig. 4. For the kerosene-water microemulsion system [Vwater︰Vkerosene=1︰1, 10 ml for each, c(SDS)=0.14 mol·L?1and c(n-butanol)= 1.42 mol·L?1], when Winsor type III or II microemulsion is formed using HCl as electrolyte, it may be type I for NaCl. Thus if Winsor type III or II microemulsion is formed using HCl, it will convert into type I with the substitution of H+by Na+.

    A test for phase inversion through acid-base neutralization was carried out. Under the conditions of c(SDS)= 0.14 mol·L?1, c(n-butanol)=1.42 mol·L?1and c(HCl)=0.23 mol·L?1, a Winsor type II microemulsion was formed initially. Then, NaOH was added into the system gradually. The microemulsion phase diagram is given in Fig. 5.

    Figure 4 Effect of acidic and alkaline electrolytes on microemulsion phase state [Vkerosene︰Vwater=1︰1 (10 ml for each), c(SDS)=0.14 mol·L?1]▼ HCl; △ NaCl; ▲ NaOH; ○ KCl; ● KOH

    Figure 5 Phase diagram through acid-base neutralization [Winsor II initially, c(SDS)=0.14 mol·L?1, c(n-butanol)=1.42 mol·L?1, c(HCl)=0.23 mol·L?1] O—oil phase; M—microemulsion phase; W—water phase

    The inversion of Winsor type II→III→I→III→II is observed. With the addition of NaOH, HCl is neutralized and H+is substituted by Na+gradually. With the NaOH added into the system and 0.23 mol·L?1reached, all of H+should combine with OH?. All the effective cations in the system should be Na+at this point and Winsor type I microemulsion is observed, which is consistent with the results in Fig. 4 (a). Duringthis process, the content of kerosene decreases from the initial 71% (by volume) in the Winsor type II microemulsion to 12% (by volume) in the type I microemulsion, with 82% oil releases from the microemulsion phase. With further addition of NaOH, the concentration of Na+cation increases and more oil is solubilized into the microemulsion again. Winsor type II microemulsion is formed in the end.

    Just as the substitution of Ca2+by Na+in Section 3.1, H+is replaced by Na+during the acid-base neutralization process. Similarly, if effective way of Na+substitution by H+can be provided, the solubilization and release of organic contaminants and thus the reuse of surfactant system can be repeated ideally, which is our aim in the future work.

    3.3 Influence of water/oil ratio on phase behavior

    Under the conditions of Vkerosene︰Vwater=1︰1 (10 ml︰10 ml) and the concentrations of n-butanol, SDS and NaCl being 2.07, 0.14 and 0.32 mol·L?1, respectively, Winsor type I microemulsion was formed, as shown in Fig. 6. Water was then added gradually into the system so as to change the water/oil ratio in the system. It is attractive that the change from microemulsion Winsor type II→III→I occurs and more and more oil is released gradually. When the volume of water increases to 18 ml, 9 ml or 90% (by volume) oil is released from the microemulsion.

    Figure 6 Influence of water volume on phase behavior of SDS-n-butanol-kerosene-water microemulsion system [Vkerosene︰Vwater=1︰1 (10 ml︰10 ml), c(n-butanol)=2.07 mol·L?1, c(SDS)=0.14 mol·L?1, c( NaCl)=0.32mol·L?1]

    Tongcumpoua et al. [8] also found that the interfacial tension between oil and water changed with the ratio of oil to water, so a phase inversion may take place. According to the description of Aarra et al. [31], for Winsor type III microemulsion, electrolyte cations are partitioned in the excess water phase and microemulsion phase, while Na+shows a strong tendency to partition in the excess water phase for a SDS-heptanewater-1-butanol-NaCl system. Bellocq et al. [32] gave similar results for SDS-toluene-water butanol-NaCl system. The results of Aarra et al. [31] were consistent with the calculation results from Robertson’s model [33]. According to Robertson’s model, the water in the surfactant/water pseudocomponent does not contain electrolyte. The remaining bulk water in the microemulsion has the same salinity as the excess water. It is the equilibrium excess-water-phase salinity that controls the phase behavior. The release of oil from Winsor type II or III microemulsion with water addition in this work can be also explained by Robertson’s model [33]. The addition of water reduces the excess-waterphase salinity, and a salinity low enough leads to the phase inversion to Winsor type I.

    These phenomena mean that when organic contaminants are transferred into Winsor type II or III microemulsion for disposal of organic contaminants, water may be added to release the organics from the microemulsion and the surfactants may be reused, although a great amount of water is needed.

    4 CONCLUSIONS

    The experimental results show that the type and valence of electrolyte cations are important factors influencing the phase behavior of the SDS-n-butanolkerosenewater microemulsion system. High surface charge density of bivalent cation (Ca2+) makes it more effective in adjusting the HLB of the SDS surfactant system, and much easier for the formation of Winsor type III and II microemulsion than monovalent cations (K+ and Na+). For the same monovalent cation (Na+), the valence of correspondent anions in the electrolyte show some influence on its effect. Bivalent anion ( 2 CO3? ) leads to a lower activity of the cation (Na+) than monovalent anion (Cl?). For the same type of cation (K+ or Na+), the type of monovalent anion (Cl?or OH?) in the electrolyte has little influence on the microemulsion state under the operation conditions in this work, even though KOH (or NaOH) is alkalis. The cation H+ in the electrolyte HCl has strong effect on the formation of Winsor type III microemulsion. The acidity plays an important role in this process.

    Winsor type III (or II) microemulsion changes to type I with the precipitation of Ca2+ using Na2CO3, neutralization of HCl by NaOH and addition of water into the system. Most of the organics enters into the free phase during this process. These may give us some inspiration for the release of organics from type III (or II) microemulsion and the recycling of surfactants.

    REFERENCES

    1 Rosano, H.L., Cavallo, J.L., Chang, D.L., Whittam, J.H., “Microemulsions: A commentary on their preparation”, J. Soc. Cosmet. Chem., 39, 201-209 (1988).

    2 Salager, J.L., Antón, R.E., Sabatini, D.A., Harwell, J.H., Acosta, E.J., Tolosa, L.I., “Enhancing solubilization in microemulsions—State of the art and current trends”, J. Surfact. Deterg., 8 (1), 3-21 (2005).

    3 Healy, R.N., Reed, R.L., “Physicochemical aspects of microemulsion flooding”, Soc. Pet. Eng. J., 14 (5), 491-501 (1974).

    4 Healy, R.N., Reed, R.L., “Immiscible microemulsion flooding”, Ibid, 17 (2), 129-139 (1977).

    5 Healy, R.N., Reed, R.L., Stenmark, D.G., “Multiphase microemulsion systems”, Ibid, 16 (3), 147-160 (1976).

    6 Santanna, V.C., Curbelo, F.D.S., Dantas, T.N.C., Datas Neto, A.A., Albuquerque, H.S., Garnica, A.I.C., “Microemulsion flooding for enhanced oil recovery”, J. Petrol. Sci. Eng., 66, 117-120 (2009).

    7 Tongcumpou, C., Acosta, E.J., Quencer, L.B., Joseph, A.F., Scamehorn, J.F., Sabatini, D.A., Chavadej, S., Yanumet, N., “Microemulsion formation and detergency with oily soils: I. Phase behavior and interfacial tension”, J. Surfact. Deterg., 6 (3), 191-203 (2003).

    8 Tongcumpoua, C., Acosta, E.J., Quencer, L.B., Josephc, A.F., Scamehorn, J.F., Sabatini, D.A., Chavadej, S., Yanumet, N., “Microemulsion formation and detergency with oily soils: II. Detergency formulation and performance”, J. Surfact. Deterg., 6 (3), 205-214 (2003).

    9 Tongcumpou, C., Acosta, E.J., Quencer, L.B., Joseph, A.F., Scamehorn, J.F., Sabatini, D.A., Yanumet, N., Chavadej, S., “Microemulsion formation and detergency with oily soils: III. Performance and mechanisms”, J. Surfact. Deterg., 8 (2), 147-156 (2005).

    10 Tanthakit, P., Chavadej, S., Scamehorn, J.F., Sabatini, D.A., Tongcumpou, C., “Microemulsion formation and detergency with oily soil: IV. Effect of rinse cycle design”, J. Surfact. Deterg., 11, 117-128 (2008).

    11 Tanthakit, P., Nakrachata-Amorn, A., Scamehorn, J.F., Sabatini, D.A., Tongcumpou, C., Chavadej, S., “Microemulsion formation and detergency with oily soil: V. Effects of water hardness and builder”, J. Surfact. Deterg., 12, 173-183 (2009).

    12 Dantas, T.N.C., Mpura, M.C.P.A., Datas Neto, A.A., Pinherio, F.S.H.T., Barros Neto, E.L., “The use of microemulsion and flushing solutions to remediate diesel-polluted soil”, Brazilian Journal of Petroleum and Gas, 1 (1), 26-33 (2007).

    2.1.5 肥胖 患者身高158 cm,體重74 kg,在化療期間體重減少3 kg左右,后又恢復(fù)正常。肥胖患者廣泛的皮下脂肪術(shù)后容易形成死腔和血腫妨礙血氧向傷口釋放,為感染提供了病灶;脂肪組織的血液供應(yīng)相對(duì)較少,傷口血供不足,易發(fā)生液化壞死;太多的脂肪組織會(huì)導(dǎo)致傷口的張力增加(1期縫合傷口),會(huì)阻礙傷口局部的血液循環(huán),影響傷口的愈合。

    13 Dantas, T.N.C., Datas Neto, A.A., Rossi, C.G.F.T., Gomes, D.A.A., Gurgel, A., “Use of microemulsion systems in the solubilization of petroleum heavy fractions for the prevention of oil sludge formation”, Energ Fuel, 24, 2312-2319 (2010).

    14 Shiau, B., Sabatini, D.A., Harwell, J.H., “Solubilization and microemulsification of chlorinated solvents using direct food additive (edible) surfactants”, Ground Water, 32 (4), 561-569 (1994).

    15 Sabatini, D.A., Knox, R.C., Harwell, J.H., “Emerging technologies in surfactant-enhanced subsurface remediation”, ACS Symp. Ser., 594, 1-7 (1995).

    16 Fountain, J.C., Starr, R.C., Middleton, T., Beikrich, M., Taylor, C., Hodge, D.A., “Controlled field test of surfactant enhanced aquifer remediation”, Ground Water, 34 (5), 910-916 (1996).

    17 Wu, B., Shiau, B.J., Sabatini, D.A., Harwell, J.H., Vu, D.Q., “Formulating microemulsion systems for a weathered jet fuel waste using surfactant/cosurfactant mixtures”, Sep. Sci. Technol., 35 (12), 1917-1937 (2000).

    18 Childs, J., Costa, E., Annable, M.D., Brooks, M.C., Enfield, C.G., Harwell, J.H., Hasegawa, M., Knox, R.C., Rao, P.S.C., Sabatini, D.A., Shiau, B., Szekeres, E., Wood, A.L., “Field demonstration of surfactant-enhanced solubilization of DNAPL at Dover Air Force Base, Delaware”, J. Contam. Hydrol., 2, 1-22 (2006)

    19 Cheng, H., Contaminant and Anionic Surfactant Separation Using Solvent Extraction and Anion Exchange, University of Oklahoma (2000).

    20 Cheng, H., Sabatini, D.A., “Separation of organics compounds from surfactant solutions: A review”, Sep. Sci. Technol., 42, 453-475 (2007).

    21 Chai, J., Sun, H., Li, X., Chen, L., Yang, B., Wu, Y., “Effect of inorganic salts on the phase behavior of microemulsion systems containing sodium dodecyl sulfate”, J. Disper. Sci. and Technol., 33 (10),1470-1474 (2012)

    23 Puerto, M.C., Reed, R.L., “Surfactant selection with the three-parameter diagram”, SPE Reservoir Engineering, 5 (2), 198-204 (1990).

    24 Rudolph, E.S.J., Cacao Pedroso, M.A., de Loos, Th. W., Swaan Arons, J. de, “Phase behavior of oil + water + nonionic surfactant systems for various oil-to-water ratios and the representation by a Landau-type model”, J. Phys. Chem. B, 101, 3914-3918 (1997).

    25 Rajib, K.M., Bidyut, K.P., “Effect of temperature and salt on the phase behavior of nonionic and mixed nonionic-ionic microemulsions with fish-tail diagrams”, J. Colloid. Interf. Sci., 291, 550-559 (2005).

    26 Chai, J., Wu, Y., Li, X., Yang, B., Lu, J., “Effect of oil/water ratios on the phase behavior and the solubilization ability of microemulsion systems containing sodium dodecyl sulfate”, J. Solution Chem., 40, 1889-1898 (2011)

    27 Kunieda, H., Shinoda, K., “Solution behavior and hydrophilelipophile balance temperature in the aerosol OT-isooctane-brine system: Correlation between microemulsions and ultralow interfacial tensions”, J. Colloid. Interf. Sci., 75 (2), 601-606 (1980).

    28 Kunieda, H., Nakano, A., Akimaru, M., “The effect of mixing of surfactants on solubilization in a microemulsion system”, J. Colloid. Interf. Sci., 170, 78-84 (1995).

    29 Pizzino, A., Molinier, V., Catte, M., Salager, J., Aubry, J., “Bidimensional analysis of the phase behavior of a well-defined surfactant (C10E4)/oil (n-octane)/water-temperature system”, J. Phys. Chem. B, 113, 16142-16150 (2009)

    30 Cheng, H., Sabatini, D.A., “Phase-behavior-base surfactant-contaminant separation of middle phase microemulsions”, Sep. Sci. Technol., 37 (1), 127-146 (2002).

    31 Aarra, M.G., H?iland, H., Skauge, A., “Phase behavior and salt partitioning in two- and three-phase anionic surfactant microemulsion systems: Part II, partitioning of salt”, J. Colloid. Interf. Sci., 215, 216-225 (1999).

    32 Bellocq, A.M., Biais, J., Clin, B., Gelot, A., Lalanne, P., Lemanceau, B., “Three-dimensional phase diagram of the brine-toluene-butanolsodium dodecyl sulfate system”, J. Colloid. Interf. Sci., 74 ( 2), 311-321 (1980).

    33 Robertson, S.D., “An empirical model for microemulsion phase behavior”, SPE Reservoir Engineering, 8, 1002-1016 (1988).

    2013-01-13, accepted 2013-06-08.

    * Supported by the National Natural Science Foundation of China (21106187), Promotive Research Funds for Excellent Young and Middle-aged Scientists of Shandong Province (BS2011NJ021), the Fundamental Research Funds for the Central Universities (11CX05016A), and the Graduate Innovation Project of CUP 2012 (CX-1214).

    ** To whom correspondence should be addressed. E-mail: liuhuie@upc.edu.cn

    猜你喜歡
    脂肪組織傷口體重
    給鯨測(cè)體重,總共分幾步
    傷口
    青年文摘(2021年17期)2021-12-11 18:23:02
    高脂肪飲食和生物鐘紊亂會(huì)影響體內(nèi)的健康脂肪組織
    中老年保健(2021年9期)2021-08-24 03:49:52
    雙源CT對(duì)心臟周圍脂肪組織與冠狀動(dòng)脈粥樣硬化的相關(guān)性
    稱體重
    意林·全彩Color(2019年7期)2019-08-13 00:53:50
    你的體重超標(biāo)嗎
    小學(xué)生作文(中高年級(jí)適用)(2016年3期)2016-11-11 06:30:22
    傷口“小管家”
    再不去傷口就好了等3 則
    亚洲成人久久爱视频| 久久久精品欧美日韩精品| 久久精品综合一区二区三区| 国产av国产精品国产| 亚洲四区av| a级毛色黄片| 亚洲久久久久久中文字幕| 黄色视频在线播放观看不卡| 国产精品一二三区在线看| 18禁动态无遮挡网站| 国产淫语在线视频| 免费av不卡在线播放| 国产精品国产三级专区第一集| 亚洲欧美成人综合另类久久久| 国产精品女同一区二区软件| 最后的刺客免费高清国语| 久久国内精品自在自线图片| 免费看a级黄色片| 最近最新中文字幕免费大全7| 国产av国产精品国产| 简卡轻食公司| 国产免费又黄又爽又色| 色综合色国产| 日韩av在线免费看完整版不卡| 日韩精品有码人妻一区| 国产一区二区在线观看日韩| 嫩草影院新地址| 99久久精品国产国产毛片| 99久久人妻综合| 亚洲精华国产精华液的使用体验| 亚洲av国产av综合av卡| 国产av不卡久久| 久久久久九九精品影院| 中文字幕免费在线视频6| 国产伦理片在线播放av一区| 三级国产精品欧美在线观看| 午夜激情久久久久久久| 欧美日韩国产mv在线观看视频 | 日韩免费高清中文字幕av| 成年av动漫网址| 可以在线观看毛片的网站| 国产午夜福利久久久久久| 成人黄色视频免费在线看| 日日撸夜夜添| 欧美成人a在线观看| 午夜激情福利司机影院| 18+在线观看网站| 精品国产一区二区三区久久久樱花 | 亚洲不卡免费看| 少妇的逼水好多| 交换朋友夫妻互换小说| 一本色道久久久久久精品综合| 欧美日韩视频高清一区二区三区二| 97精品久久久久久久久久精品| 极品少妇高潮喷水抽搐| 老司机影院毛片| 久久99蜜桃精品久久| 七月丁香在线播放| 男人爽女人下面视频在线观看| 欧美极品一区二区三区四区| h日本视频在线播放| 国产亚洲5aaaaa淫片| 爱豆传媒免费全集在线观看| 深爱激情五月婷婷| 91精品国产九色| 国产探花在线观看一区二区| 搞女人的毛片| 国产毛片a区久久久久| 波野结衣二区三区在线| 亚洲成人av在线免费| 亚洲av欧美aⅴ国产| 3wmmmm亚洲av在线观看| 69人妻影院| 国产成人aa在线观看| 五月天丁香电影| 成人美女网站在线观看视频| 日韩人妻高清精品专区| 深爱激情五月婷婷| 美女视频免费永久观看网站| 日本熟妇午夜| 亚洲综合色惰| 简卡轻食公司| 中文字幕久久专区| 神马国产精品三级电影在线观看| 国产精品三级大全| 日本黄色片子视频| 国产精品99久久久久久久久| 久久女婷五月综合色啪小说 | 蜜桃亚洲精品一区二区三区| 热99国产精品久久久久久7| 亚洲av不卡在线观看| 内地一区二区视频在线| 在线观看一区二区三区激情| 国产欧美日韩一区二区三区在线 | 日本一二三区视频观看| 少妇熟女欧美另类| 国产伦精品一区二区三区四那| 亚洲精品乱码久久久久久按摩| 亚洲一级一片aⅴ在线观看| 18禁在线播放成人免费| 超碰97精品在线观看| 成人午夜精彩视频在线观看| 欧美日韩精品成人综合77777| 亚洲最大成人av| 干丝袜人妻中文字幕| 成人午夜精彩视频在线观看| 22中文网久久字幕| 国产亚洲最大av| 国产亚洲精品久久久com| 成人综合一区亚洲| 国产乱人视频| 亚洲色图综合在线观看| 国产91av在线免费观看| 日本黄大片高清| 亚洲综合色惰| 免费大片18禁| 女人被狂操c到高潮| 欧美3d第一页| 免费av不卡在线播放| 少妇丰满av| 午夜福利视频精品| 最近最新中文字幕大全电影3| 身体一侧抽搐| 少妇人妻 视频| 岛国毛片在线播放| .国产精品久久| 国产精品一及| 国产国拍精品亚洲av在线观看| 亚洲国产色片| 国产淫语在线视频| 国产老妇女一区| 婷婷色综合大香蕉| 亚洲内射少妇av| 97精品久久久久久久久久精品| 新久久久久国产一级毛片| 欧美激情久久久久久爽电影| av播播在线观看一区| 成人漫画全彩无遮挡| 下体分泌物呈黄色| 天堂网av新在线| 国产精品久久久久久久电影| 亚洲av.av天堂| 成人无遮挡网站| 国产精品蜜桃在线观看| 国产探花在线观看一区二区| 2022亚洲国产成人精品| 97在线视频观看| 亚洲欧美中文字幕日韩二区| 99热这里只有是精品50| 寂寞人妻少妇视频99o| 国产精品av视频在线免费观看| 日本av手机在线免费观看| 韩国高清视频一区二区三区| 少妇的逼水好多| freevideosex欧美| 欧美一级a爱片免费观看看| 午夜精品一区二区三区免费看| 在线播放无遮挡| 天堂中文最新版在线下载 | 久久人人爽人人爽人人片va| 97超视频在线观看视频| 国产精品秋霞免费鲁丝片| 黄片无遮挡物在线观看| 最近最新中文字幕免费大全7| 在线观看国产h片| 亚洲精品中文字幕在线视频 | 久久久亚洲精品成人影院| 九色成人免费人妻av| 亚洲高清免费不卡视频| 乱码一卡2卡4卡精品| 成人亚洲精品一区在线观看 | 久久精品久久精品一区二区三区| 成人亚洲精品av一区二区| 伊人久久精品亚洲午夜| 精品国产三级普通话版| 69人妻影院| 国产精品熟女久久久久浪| 亚洲三级黄色毛片| 国产午夜福利久久久久久| 精品午夜福利在线看| 97热精品久久久久久| 超碰av人人做人人爽久久| 国产美女午夜福利| 久久鲁丝午夜福利片| 日韩不卡一区二区三区视频在线| 色婷婷久久久亚洲欧美| 国产成人freesex在线| 亚洲欧美日韩无卡精品| av在线播放精品| 日本黄色片子视频| 国产一区二区亚洲精品在线观看| 欧美日韩视频高清一区二区三区二| 久久人人爽人人片av| 白带黄色成豆腐渣| 成人国产av品久久久| 99九九线精品视频在线观看视频| 99久国产av精品国产电影| 尤物成人国产欧美一区二区三区| 亚洲人成网站在线观看播放| 亚洲欧美精品专区久久| av卡一久久| 高清毛片免费看| 免费人成在线观看视频色| 身体一侧抽搐| 少妇丰满av| 女人十人毛片免费观看3o分钟| 欧美xxxx性猛交bbbb| 久久亚洲国产成人精品v| 只有这里有精品99| 国模一区二区三区四区视频| 国产亚洲av片在线观看秒播厂| 在线精品无人区一区二区三 | 午夜免费男女啪啪视频观看| 日韩不卡一区二区三区视频在线| 中文乱码字字幕精品一区二区三区| 午夜精品国产一区二区电影 | 亚洲美女视频黄频| 六月丁香七月| 国产探花在线观看一区二区| 国产精品成人在线| 欧美另类一区| 国产精品久久久久久久久免| .国产精品久久| 国产午夜精品久久久久久一区二区三区| av在线播放精品| 国产黄色视频一区二区在线观看| 色综合色国产| 国产精品一区二区性色av| 久久久久久久久大av| 亚洲四区av| 内射极品少妇av片p| 精品国产乱码久久久久久小说| 亚洲最大成人av| 中文字幕亚洲精品专区| 女人久久www免费人成看片| 精品久久国产蜜桃| 在线免费观看不下载黄p国产| 国产男女超爽视频在线观看| 亚洲最大成人av| 久久久a久久爽久久v久久| 久久精品人妻少妇| 18禁在线无遮挡免费观看视频| 真实男女啪啪啪动态图| 哪个播放器可以免费观看大片| 欧美成人a在线观看| 免费av观看视频| 自拍偷自拍亚洲精品老妇| 2021少妇久久久久久久久久久| 成人一区二区视频在线观看| 国产成人freesex在线| 欧美bdsm另类| 久久久久久久午夜电影| 中文字幕亚洲精品专区| 最近中文字幕2019免费版| 一级a做视频免费观看| 一级黄片播放器| 日韩成人伦理影院| 视频区图区小说| 男男h啪啪无遮挡| 又黄又爽又刺激的免费视频.| 大话2 男鬼变身卡| 偷拍熟女少妇极品色| 久久久久性生活片| 在线观看人妻少妇| 国产精品福利在线免费观看| 在线观看免费高清a一片| 青春草视频在线免费观看| 国内少妇人妻偷人精品xxx网站| 午夜免费鲁丝| 一级爰片在线观看| 一区二区三区精品91| 丝袜美腿在线中文| tube8黄色片| 1000部很黄的大片| 自拍偷自拍亚洲精品老妇| 26uuu在线亚洲综合色| 观看美女的网站| 内地一区二区视频在线| 大陆偷拍与自拍| 高清日韩中文字幕在线| 欧美一区二区亚洲| 国产69精品久久久久777片| 亚洲经典国产精华液单| 高清av免费在线| 狠狠精品人妻久久久久久综合| 夫妻性生交免费视频一级片| 91久久精品国产一区二区三区| 免费看日本二区| 岛国毛片在线播放| 美女xxoo啪啪120秒动态图| 中文字幕制服av| 在线天堂最新版资源| 日本猛色少妇xxxxx猛交久久| 亚洲欧美日韩另类电影网站 | 久久鲁丝午夜福利片| 国产精品av视频在线免费观看| 亚洲成人一二三区av| 男女边摸边吃奶| 男男h啪啪无遮挡| 亚洲av中文字字幕乱码综合| 亚洲怡红院男人天堂| 亚洲欧美精品专区久久| 黑人高潮一二区| 日韩 亚洲 欧美在线| 全区人妻精品视频| 免费观看无遮挡的男女| 日韩成人av中文字幕在线观看| videos熟女内射| 久久鲁丝午夜福利片| 欧美性感艳星| 在线免费观看不下载黄p国产| 国产女主播在线喷水免费视频网站| 国产亚洲午夜精品一区二区久久 | 97超碰精品成人国产| 亚洲美女视频黄频| 亚洲,一卡二卡三卡| 国产精品久久久久久精品古装| 精品国产一区二区三区久久久樱花 | 亚洲精品日本国产第一区| 国产精品不卡视频一区二区| 久久久久久伊人网av| 久久久久国产精品人妻一区二区| 亚洲在久久综合| 亚洲精品国产色婷婷电影| 亚洲国产成人一精品久久久| 黄片无遮挡物在线观看| 国产老妇伦熟女老妇高清| 欧美日韩综合久久久久久| 亚洲国产欧美人成| 国产v大片淫在线免费观看| 九九在线视频观看精品| 精品午夜福利在线看| 免费黄频网站在线观看国产| 22中文网久久字幕| 国产淫片久久久久久久久| 欧美高清成人免费视频www| 国产亚洲5aaaaa淫片| 亚洲国产最新在线播放| 久久久久久久久久成人| 99热网站在线观看| 一本久久精品| 国产午夜精品一二区理论片| 91aial.com中文字幕在线观看| 久久国内精品自在自线图片| 免费大片黄手机在线观看| 亚洲欧洲日产国产| 欧美高清性xxxxhd video| 欧美日韩精品成人综合77777| 一本一本综合久久| 欧美精品人与动牲交sv欧美| 色视频在线一区二区三区| 免费av观看视频| 99久久九九国产精品国产免费| 一区二区三区四区激情视频| 色视频www国产| 国产精品不卡视频一区二区| 亚洲精品亚洲一区二区| 久久久精品欧美日韩精品| 狠狠精品人妻久久久久久综合| 中文天堂在线官网| a级毛片免费高清观看在线播放| 亚洲成人久久爱视频| .国产精品久久| 欧美性猛交╳xxx乱大交人| 老女人水多毛片| 久久国产乱子免费精品| 禁无遮挡网站| 久久久久久久久久成人| 一级a做视频免费观看| 国产精品一区www在线观看| 亚洲av二区三区四区| 色哟哟·www| 成年av动漫网址| 成人一区二区视频在线观看| 少妇人妻久久综合中文| 国产老妇伦熟女老妇高清| 国产男女超爽视频在线观看| 国产高清有码在线观看视频| 亚洲精品一二三| 久久久久久九九精品二区国产| 性色avwww在线观看| 国产有黄有色有爽视频| 国产免费视频播放在线视频| 国产高清不卡午夜福利| 69av精品久久久久久| 国产白丝娇喘喷水9色精品| 舔av片在线| 国产大屁股一区二区在线视频| 高清午夜精品一区二区三区| 一区二区三区四区激情视频| 国产欧美亚洲国产| 18禁在线播放成人免费| 免费大片黄手机在线观看| 国产一区二区三区av在线| 久热久热在线精品观看| 亚洲第一区二区三区不卡| 毛片女人毛片| 色5月婷婷丁香| 国产精品爽爽va在线观看网站| 亚洲图色成人| 最新中文字幕久久久久| 大香蕉97超碰在线| 国产成人精品久久久久久| 国产一区二区亚洲精品在线观看| a级一级毛片免费在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品成人久久小说| 欧美三级亚洲精品| 国产淫片久久久久久久久| 国产有黄有色有爽视频| 久久久久精品性色| 国产高清不卡午夜福利| 色视频在线一区二区三区| 日韩欧美一区视频在线观看 | 久久午夜福利片| h日本视频在线播放| 少妇的逼好多水| 亚洲精品一区蜜桃| 亚洲精品日韩av片在线观看| 欧美3d第一页| 久久精品人妻少妇| 最近的中文字幕免费完整| 免费观看av网站的网址| 国产亚洲精品久久久com| 国产精品.久久久| 国产黄片视频在线免费观看| 午夜免费观看性视频| 国产亚洲91精品色在线| 青春草国产在线视频| 男的添女的下面高潮视频| 能在线免费看毛片的网站| 久久精品国产亚洲av涩爱| 久久久久久伊人网av| 欧美xxxx性猛交bbbb| 交换朋友夫妻互换小说| 亚洲国产精品成人综合色| 亚洲欧美成人精品一区二区| 日韩精品有码人妻一区| 国产精品蜜桃在线观看| 国产黄色免费在线视频| 水蜜桃什么品种好| 免费观看在线日韩| 精品人妻偷拍中文字幕| 激情五月婷婷亚洲| 建设人人有责人人尽责人人享有的 | av黄色大香蕉| 国产精品秋霞免费鲁丝片| 丝袜喷水一区| 亚洲国产欧美人成| 九九爱精品视频在线观看| 国产高潮美女av| 亚洲精品成人av观看孕妇| 国产午夜福利久久久久久| 亚洲国产高清在线一区二区三| 国产精品偷伦视频观看了| 99热网站在线观看| 国产综合精华液| 欧美成人一区二区免费高清观看| 国产探花在线观看一区二区| 午夜日本视频在线| 秋霞在线观看毛片| 久久久久精品久久久久真实原创| 亚洲婷婷狠狠爱综合网| 国产白丝娇喘喷水9色精品| 欧美激情国产日韩精品一区| 97人妻精品一区二区三区麻豆| 91在线精品国自产拍蜜月| 老司机影院成人| 熟妇人妻不卡中文字幕| 久久精品国产鲁丝片午夜精品| 国产精品一区二区性色av| 日韩免费高清中文字幕av| 人妻制服诱惑在线中文字幕| 久久国内精品自在自线图片| 欧美一级a爱片免费观看看| 舔av片在线| 亚洲高清免费不卡视频| 国产熟女欧美一区二区| 国产黄频视频在线观看| 少妇猛男粗大的猛烈进出视频 | 夫妻性生交免费视频一级片| 中国三级夫妇交换| 高清毛片免费看| 爱豆传媒免费全集在线观看| 久久久久久久大尺度免费视频| 日本黄大片高清| 少妇猛男粗大的猛烈进出视频 | 成人黄色视频免费在线看| 人妻少妇偷人精品九色| 搞女人的毛片| 免费看a级黄色片| 色视频在线一区二区三区| 在线亚洲精品国产二区图片欧美 | 国产精品一区二区性色av| 大香蕉97超碰在线| 欧美潮喷喷水| 777米奇影视久久| 美女视频免费永久观看网站| 国产亚洲5aaaaa淫片| 美女内射精品一级片tv| 中文字幕久久专区| 亚洲自偷自拍三级| 欧美丝袜亚洲另类| 欧美老熟妇乱子伦牲交| 黄片wwwwww| 午夜爱爱视频在线播放| 亚洲第一区二区三区不卡| 国产精品精品国产色婷婷| 国产久久久一区二区三区| 少妇丰满av| 日韩 亚洲 欧美在线| 交换朋友夫妻互换小说| 亚洲欧美日韩卡通动漫| 在线观看一区二区三区激情| 亚洲综合色惰| 免费看av在线观看网站| 神马国产精品三级电影在线观看| 少妇猛男粗大的猛烈进出视频 | 18禁裸乳无遮挡动漫免费视频 | 日日啪夜夜爽| 精华霜和精华液先用哪个| 亚洲婷婷狠狠爱综合网| 国产精品人妻久久久久久| 日韩三级伦理在线观看| 黄色视频在线播放观看不卡| 久久鲁丝午夜福利片| 免费观看a级毛片全部| 国产片特级美女逼逼视频| 国产一级毛片在线| 一级毛片黄色毛片免费观看视频| 欧美精品国产亚洲| 国产爽快片一区二区三区| 看十八女毛片水多多多| 亚洲美女视频黄频| 国产乱来视频区| av在线蜜桃| 亚洲av一区综合| 久久精品熟女亚洲av麻豆精品| 国产成人免费观看mmmm| a级毛色黄片| 精品国产露脸久久av麻豆| 在线观看免费高清a一片| 日日摸夜夜添夜夜添av毛片| 日韩欧美精品免费久久| 国产黄片美女视频| 一级黄片播放器| 2021天堂中文幕一二区在线观| 免费看日本二区| 亚洲国产av新网站| 国语对白做爰xxxⅹ性视频网站| 欧美激情久久久久久爽电影| 亚洲欧美日韩卡通动漫| 婷婷色av中文字幕| 国产男女超爽视频在线观看| 亚洲av电影在线观看一区二区三区 | 国产乱人偷精品视频| 看非洲黑人一级黄片| 国产成人a区在线观看| 欧美日韩一区二区视频在线观看视频在线 | 久久97久久精品| 91精品一卡2卡3卡4卡| 嫩草影院新地址| 99久久精品一区二区三区| 亚洲精品乱久久久久久| 亚洲在线观看片| 国产国拍精品亚洲av在线观看| 老师上课跳d突然被开到最大视频| 亚洲精品乱久久久久久| 中文字幕免费在线视频6| 麻豆国产97在线/欧美| 国产高潮美女av| 少妇猛男粗大的猛烈进出视频 | 九九爱精品视频在线观看| 久久久久久九九精品二区国产| 午夜免费鲁丝| 日韩,欧美,国产一区二区三区| 爱豆传媒免费全集在线观看| 91狼人影院| 国产成人免费观看mmmm| 亚洲人成网站高清观看| 汤姆久久久久久久影院中文字幕| 成人鲁丝片一二三区免费| 久久久久久伊人网av| 国产精品麻豆人妻色哟哟久久| 91久久精品国产一区二区三区| videos熟女内射| 在线观看国产h片| 成人一区二区视频在线观看| 国产成人福利小说| 久久久欧美国产精品| 欧美一区二区亚洲| 国产欧美亚洲国产| 亚洲av福利一区| 成人一区二区视频在线观看| 黄色日韩在线| 精品久久久久久电影网| 欧美3d第一页| 亚州av有码| 听说在线观看完整版免费高清| 伦理电影大哥的女人| 观看美女的网站| h日本视频在线播放| 18禁裸乳无遮挡免费网站照片| 国产熟女欧美一区二区| 少妇丰满av| 九九爱精品视频在线观看| 亚洲一级一片aⅴ在线观看| 亚洲国产精品成人久久小说| 日韩av在线免费看完整版不卡| 嫩草影院精品99| 国产男女超爽视频在线观看| 91aial.com中文字幕在线观看| 国产日韩欧美亚洲二区| 97人妻精品一区二区三区麻豆| 真实男女啪啪啪动态图|