陳 亮, 莊 建, 孫云霞, 梁穗新, 劉玉梅, 孫 新, 陳燕玲, 何少茹△
(1廣東省人民醫(yī)院兒科,廣東省醫(yī)學(xué)科學(xué)院, 2廣東省心血管病研究所小兒心臟外科,廣東 廣州 510080)
·實驗技術(shù)·
新生兔氣管軟骨細(xì)胞的生物學(xué)特性*
陳 亮1, 莊 建2, 孫云霞1, 梁穗新1, 劉玉梅1, 孫 新1, 陳燕玲1, 何少茹1△
(1廣東省人民醫(yī)院兒科,廣東省醫(yī)學(xué)科學(xué)院,2廣東省心血管病研究所小兒心臟外科,廣東 廣州 510080)
目的: 探討體外分離培養(yǎng)的新生兔氣管軟骨細(xì)胞的生物學(xué)特性。方法: 通過酶消化法體外分離培養(yǎng)新生兔氣管軟骨細(xì)胞;倒置顯微鏡觀察軟骨細(xì)胞形態(tài)及生長狀況;電鏡觀察軟骨細(xì)胞超微結(jié)構(gòu);運(yùn)用real-time PCR、免疫細(xì)胞化學(xué)染色和甲苯胺藍(lán)染色檢測氣管軟骨細(xì)胞分泌的細(xì)胞外基質(zhì)成分。結(jié)果: 體外分離、培養(yǎng)的兔氣管軟骨細(xì)胞呈短小三角形或不規(guī)則形貼壁生長。超微結(jié)構(gòu)顯示細(xì)胞較多突起,孔隙較多,胞質(zhì)豐富,細(xì)胞器發(fā)達(dá),細(xì)胞內(nèi)可見大量蛋白分泌物。軟骨細(xì)胞表達(dá)I、II型膠原、蛋白聚糖等,以II型膠原和蛋白聚糖表達(dá)為主。免疫細(xì)胞化學(xué)染色I(xiàn)I型膠原和SOX9陽性,I型膠原弱陽性。甲苯胺藍(lán)染色陽性。結(jié)論: 適宜的酶消化單層培養(yǎng)法獲得的新生兔氣管軟骨細(xì)胞具有分泌軟骨細(xì)胞外基質(zhì)成分的特性,可初步為體外構(gòu)建組織工程氣管治療新生兔氣管狹窄的實驗研究提供種子細(xì)胞。
新生兔; 氣管軟骨細(xì)胞; 氣管狹窄; 種子細(xì)胞; 組織工程氣管
氣管狹窄被定義為由于不同病變所造成氣管腔的狹窄,在新生兒中發(fā)生率為1%~8%[1]。嚴(yán)重新生兒氣管狹窄的治療仍以外科手術(shù)為主[2-3],但是新生兒氣管軟骨發(fā)育不完善,易受損傷、壓迫,術(shù)后并發(fā)癥及死亡率較高[4-5]。對于氣管狹窄患兒,保證氣管軟骨的穩(wěn)定,對于維持氣道通暢具有重要的意義[6]。組織工程氣管治療氣管狹窄越來越受到關(guān)注[1,7-8]。由于氣管的環(huán)狀結(jié)構(gòu)以軟骨為主,組織工程氣管種子細(xì)胞的研究主要集中在軟骨細(xì)胞領(lǐng)域。目前生物學(xué)修復(fù)軟骨缺陷的金標(biāo)準(zhǔn)是自體獲得的軟骨細(xì)胞移植[8]。盡管從鼻、關(guān)節(jié)和耳等部位獲得的軟骨細(xì)胞受到關(guān)注,但來源于不同解剖部位的軟骨細(xì)胞用于組織工程氣管移植仍存在爭議[9-10]。氣管軟骨組織中只含一種透明軟骨細(xì)胞,易于分離、成活,且具有良好的生物相容性及分泌蛋白聚糖(proteoglycans, PG)、II型膠原等細(xì)胞外基質(zhì)成分的特性[11]。目前國內(nèi)外對于氣管軟骨細(xì)胞生物學(xué)特性的研究主要是關(guān)于豬和成年兔的,尚未見對新生兔氣管軟骨細(xì)胞的詳細(xì)報道,因此,我們擬在體外分離、培養(yǎng)新生兔氣管軟骨細(xì)胞,并就獲得的新生兔氣管軟骨細(xì)胞進(jìn)行形態(tài)學(xué)、細(xì)胞超微結(jié)構(gòu)、細(xì)胞外基質(zhì)成分(extracellular matrix, ECM)的mRNA及蛋白表達(dá)等分析,初步探討新生兔氣管軟骨細(xì)胞的基本生物學(xué)特性,嘗試在再生醫(yī)學(xué)基礎(chǔ)上為組織工程氣管體外構(gòu)建的動物實驗研究初步提供一種可供選擇的種子細(xì)胞。
1 動物
新西蘭大白兔6只,出生后25~28 d,體重約0.8~1 kg,雄性,由南方醫(yī)科大學(xué)實驗動物中心提供。
2 主要試劑
3 主要方法
3.1 新生兔氣管軟骨細(xì)胞的分離及培養(yǎng) 根據(jù)參考文獻(xiàn)[12]分離培養(yǎng)細(xì)胞的方法, 無菌環(huán)境下取新西蘭新生大白兔氣管約2 cm(沿環(huán)狀軟骨下約0.5 cm),放入含有青霉素和鏈霉素的PBS緩沖液的培養(yǎng)皿中,去除氣管表面異物,放入無菌小燒杯中盡量剪碎,約1 mm×1 mm×1 mm,加入5 mL PBS緩沖液沖洗2次,加入0.25%胰酶-EDTA消化液消化30 min,PBS緩沖液沖洗2次,加入2 g/L II型膠原酶(量約氣管軟骨體積的3倍),37 ℃水浴箱中孵育4 h,每間隔 0.5 h輕搖晃一次,至大部分氣管軟骨被消化、液體變渾濁時,加10%的胎牛血清1 mL終止消化,經(jīng)200目尼龍篩過濾網(wǎng)過濾至另一15 mL離心管,保留濾液,1 500 r/min離心5 mim,去上清,加入5 mL完全培養(yǎng)基(DMEM/F12、10%胎牛血清、雙抗)混勻后移入75 cm2培養(yǎng)瓶,放入37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)。每天倒置顯微鏡下觀察細(xì)胞形態(tài)變化,初始第3天換1次液,隨后隔天換1次液,待細(xì)胞長至90%以上時傳代。
3.2 掃描及透視電鏡觀察第1代(passage 1,P1)軟骨細(xì)胞的超微結(jié)構(gòu) 將培養(yǎng)的P1新生兔氣管軟骨細(xì)胞經(jīng)0.25%胰酶-EDTA消化液消化收集,以PBS溶液清洗,離心成團(tuán)后加2.5%的戊二醛固定送檢。
3.3 氣管軟骨細(xì)胞總RNA提取及real-time PCR 實驗組為P1和P6氣管軟骨細(xì)胞,對照組為骨髓間充質(zhì)干細(xì)胞。取各組細(xì)胞進(jìn)行誘導(dǎo)實驗 根據(jù)我們前期報道的方法[13]用TRIzol提取P1和P6新生兔氣管軟骨細(xì)胞和骨髓間充質(zhì)干細(xì)胞的總RNA,使用逆轉(zhuǎn)錄試劑盒PrimeScriptTMRT Master Mix 獲得cDNA(反應(yīng)條件:37 ℃ 15 min×3次,85 ℃ 5 s,4 ℃ 2 h),熒光定量PCR過程使用熒光定量試劑盒SYBR Premix Ex TaqTM(反應(yīng)條件:95 ℃ 30 s,95 ℃ 5 s,60 ℃ 34 s,95 ℃ 15 s,60 ℃ 1 min,95 ℃ 15 s,60 ℃ 15 s)。引物序列見表1,由Invitrogen公司設(shè)計,內(nèi)參照為GAPDH。在PCR反應(yīng)中,將正常的骨髓間充質(zhì)干細(xì)胞作為對照組。Real-time PCR由熒光定量PCR儀自動采集目的基因與內(nèi)參照基因的Ct值,各個基因的基因表達(dá)量根據(jù)公式2-ΔΔCt計算。
表1 Real-time PCR引物序列
F:forward; R:reverse.
3.4 免疫細(xì)胞化學(xué)染色檢測I、II型膠原及轉(zhuǎn)錄因子SOX9表達(dá) 將接種于培養(yǎng)皿中的P1和P6氣管軟骨細(xì)胞用PBS洗1 min×3次,用0.25%胰酶消化細(xì)胞;將細(xì)胞按1×109/L加入到放有無菌蓋玻片的6孔板中,待細(xì)胞長滿,用PBS洗5 min×3次,加入4%多聚甲醛固定20 min;用PBS洗5min×3次,加入0.5% 的Triton X-100作用20 min;PBS洗3次,3%雙氧水作用20 min,PBS洗3次;10%正常山羊血清封閉液封閉30 min,加入Ⅰ抗(1∶100),4 ℃過夜,滴加Ⅱ抗37 ℃作用30 min,DAB顯色,加入蘇木素染色10 min,流水沖洗終止染色;將蓋玻片取出,中性樹膠封片,共聚焦顯微鏡下觀察。
3.5 甲苯胺藍(lán)染色檢測蛋白聚糖 將長滿85%以上形成集落的P1和P6氣管軟骨細(xì)胞的培養(yǎng)皿用PBS沖洗2次,勿將細(xì)胞沖洗掉,1%甲苯胺藍(lán)染液加入培養(yǎng)孔中,放入5% CO2培養(yǎng)箱中孵育2~3 h,去除甲苯胺藍(lán)染液,用PBS洗3次,倒置顯微鏡觀察。
“先吃一點(diǎn)吧”,黑背心從床下拉出一個包,“等完事了,你想怎么瀟灑就怎么瀟灑去!”他給我扔來兩包鍋巴,又甩來一瓶純凈水。
4 統(tǒng)計學(xué)處理
用SPSS 13.0統(tǒng)計軟件進(jìn)行分析。數(shù)據(jù)均采用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,兩組間比較采用兩獨(dú)立樣本t檢驗,以P<0.05為差異有統(tǒng)計學(xué)意義。
1 新生兔氣管軟骨細(xì)胞的分離、培養(yǎng)
原代軟骨細(xì)胞培養(yǎng)24 h后,部分軟骨細(xì)胞成短小的多角形或不規(guī)則形貼壁生長,胞核清晰,細(xì)胞外基質(zhì)折光性強(qiáng),第6天細(xì)胞聚集形成明顯集落,增殖速度加快,約7~10 d細(xì)胞融合達(dá)90%以上;傳代的細(xì)胞貼壁迅速,約4~5 h部分貼壁,24 h已大部分貼壁,部分呈集落生長,4~5 d已融合達(dá)90%以上,呈魚群樣分布;傳代的軟骨細(xì)胞傳至P6,培養(yǎng)3~4 d仍呈多角形或不規(guī)則形貼壁且呈集落生長,胞核清晰,見圖1。
Figure 1.Culture of chondrocytes (×200). A: P0 chondrocytes, cultured for 24 h; B: P0 chondrocytes, cultured for 6 d; C: P1 chondrocytes, cultured for 24 h; D: P1 chondrocytes, cultured for 4~5 d; E: P6 chondrocytes, cultured for 3~4 d.
圖1 新生兔氣管軟骨細(xì)胞的分離、培養(yǎng)結(jié)果
2 電鏡觀察P1軟骨細(xì)胞的超微結(jié)構(gòu)
掃描電鏡示,新生兔氣管軟骨細(xì)胞較多突起,有偽足,孔隙較多,胞質(zhì)豐富,細(xì)胞表面見顆粒狀物質(zhì),見圖2。透射電鏡示:胞質(zhì)豐富,粗面內(nèi)質(zhì)網(wǎng)、線粒體等細(xì)胞器發(fā)達(dá),胞內(nèi)可見空泡形成,有單個或成對的細(xì)胞核,細(xì)胞內(nèi)可見大量蛋白分泌物,見圖3。
Figure 2.P1 chondrocytes observed by scanning electron micro-scopy (A: ×2 000; B: ×4 000).
圖2 第一代軟骨細(xì)胞掃描電鏡觀察結(jié)果
Figure 3.P1 chondrocytes observed by transmission electron microscopy(A: ×6 000; B: ×10 000).
圖3 第一代軟骨細(xì)胞透射電鏡觀察結(jié)果
3 Real-time PCR檢測氣管軟骨細(xì)胞I、II型膠原及蛋白聚糖mRNA的表達(dá)
P1和P6氣管軟骨細(xì)胞均表達(dá)I、II型膠原和蛋白聚糖,且以II型膠原和蛋白聚糖的表達(dá)為主;與對照組骨髓間充質(zhì)干細(xì)胞比較,上述指標(biāo)達(dá)水平明顯增高(P<0.05),見表2、3。
表2 Real-time PCR檢測P1軟骨細(xì)胞COL2A、COL1A及PG mRNA的表達(dá)
Table 2.The mRNA expression of COL2A, COL1A and PG in the P1 chondrocytes determined by real-time PCR (Mean±SD.n=3)
CellsCOL2ACOL1APGBMMSCs1.0001.0001.000Chondrocytes23.664±1.389**5.416±1.756*7.521±0.303**
TableP<0.05,**P<0.01vsBMMSCs.
表3 Real-time PCR檢測P6軟骨細(xì)胞 COL2A、COL1A及PG mRNA的表達(dá)
Table 3.The mRNA expression of COL2A, COL1A and PG in the P6 chondrocytes determined by real-time PCR (Mean±SD.n=3)
CellsCOL2ACOL1APGBMMSCs1.0001.0001.000Chondrocytes16.999±1.894**5.209±0.653*7.289±0.433**
TableP<0.05,**P<0.01vsBMMSCs.
4 細(xì)胞免疫化學(xué)染色
P1氣管軟骨細(xì)胞II型膠原、I型膠原和SOX9免疫細(xì)胞化學(xué)染色后, 細(xì)胞胞漿染成紅色,核質(zhì)分界清晰,且與II型膠原染色相比,I型膠原染色僅部分細(xì)胞染成紅色,部分細(xì)胞淺染,見圖4;P6氣管軟骨細(xì)胞II型膠原和蛋白聚糖免疫細(xì)胞化學(xué)染色后胞核呈藍(lán)色,胞漿呈紅色,且兩者分界清晰,見圖5。
5 甲苯胺藍(lán)染色檢測氣管軟骨細(xì)胞分泌的蛋白聚糖
經(jīng)甲苯胺藍(lán)染色,P1和P6氣管軟骨細(xì)胞細(xì)胞核染成深藍(lán)色,細(xì)胞質(zhì)及周圍組織染成藍(lán)紫色,胞核清晰,見圖6、7。
Figure 4.Immunohistochemical staining of the P1 chondrocytes (×200). A: negative control; B: COL1A; C: COL2A; D: SOX9.
圖4 第1代軟骨細(xì)胞免疫細(xì)胞化學(xué)染色結(jié)果
Figure 5.Immunohistochemical staining of the P6 chondrocytes (×400). A: negative control; B: COL2A; C: PG.
圖5 第6代軟骨細(xì)胞免疫細(xì)胞化學(xué)染色結(jié)果
Figure 6.P1 chondrocytes with toluidine blue staining (×100). A: unstained chondrocytes; B: stained chondrocytes.
圖6 第1代軟骨細(xì)胞甲苯胺藍(lán)染色結(jié)果
Figure 7.P6 chondrocytes with toluidine blue staining (×200). A: unstained chondrocytes; B: stained chondrocytes.
圖7 第6代軟骨細(xì)胞甲苯胺藍(lán)染色結(jié)果
再生醫(yī)學(xué)中,種子細(xì)胞是構(gòu)建組織工程氣管的三個要素之一[1, 14]。作為組織工程氣管種子細(xì)胞的軟骨細(xì)胞主要來源有2個:(1)氣管、鼻間隔、肋軟骨、關(guān)節(jié)或耳等軟骨組織[9-11];(2)干細(xì)胞誘導(dǎo)分化。目前來源于不同解剖部位的細(xì)胞用于組織工程氣管細(xì)胞移植仍存在爭議。Kojima等[10]認(rèn)為耳軟骨用于重建氣管組織時不能提供理想的機(jī)械性能,鼻軟骨細(xì)胞可用于組織工程氣管細(xì)胞移植。但是Henderson等[9]通過研究發(fā)現(xiàn)關(guān)節(jié)或鼻的軟骨細(xì)胞形成的軟骨材料缺乏完整的機(jī)械性能及硬度,耳軟骨卻具有一定的機(jī)械性能,認(rèn)為在同等環(huán)境下,僅耳軟骨細(xì)胞在體內(nèi)喉氣管重建中可產(chǎn)生合適的組織工程軟骨。經(jīng)生長因子等不同因素刺激間充質(zhì)干細(xì)胞誘導(dǎo)分化成軟骨細(xì)胞應(yīng)用較廣泛,但是誘導(dǎo)分化成的軟骨細(xì)胞產(chǎn)生的軟骨質(zhì)量明顯低于正常軟骨細(xì)胞產(chǎn)生的軟骨質(zhì)量[15-17]。氣管是理想的軟骨細(xì)胞獲取部位。氣管軟骨組織中只含一種透明軟骨細(xì)胞,易于分離,且細(xì)胞氧耗低,易成活,具有良好的物理性質(zhì)及生物相容性,體外有少量的氣管軟骨就可以培養(yǎng)出足夠的軟骨細(xì)胞,并在體內(nèi)環(huán)境下形成氣管軟骨結(jié)構(gòu),能作為一種細(xì)胞來源去構(gòu)建組織工程氣管以替換狹窄的氣管[11]。但是成年兔氣管軟骨細(xì)胞在體外隨著傳代次數(shù)的增多,細(xì)胞易失去原有的形態(tài)和生物學(xué)特征,出現(xiàn)去分化現(xiàn)象[18-20]。對于新生兔氣管軟骨細(xì)胞的生物學(xué)特性,目前研究仍未見詳細(xì)的報道。因此,作為新生兔組織工程氣管體外構(gòu)建可選擇的種子細(xì)胞之一,需要進(jìn)一步在體外分離培養(yǎng)新生兔氣管軟骨細(xì)胞的情況下,探討其生物學(xué)特性。
從軟骨組織中分離培養(yǎng)出軟骨細(xì)胞最常用的是酶消化貼壁篩選(單層培養(yǎng))法[9,11-12,21],其次是組織塊法。酶消化貼壁篩選法,是利用II型膠原酶和胰蛋白酶-EDTA消化液消化軟骨組織,獲得軟骨細(xì)胞,進(jìn)行單層培養(yǎng),并通過反復(fù)換液去除懸浮細(xì)胞而獲得純度較高的軟骨細(xì)胞,在臨床及試驗中廣泛應(yīng)用。組織塊法是直接取軟骨組織進(jìn)行培養(yǎng),操作相對簡單,但培養(yǎng)時間較長,所獲得的軟骨細(xì)胞純度不夠。因此,本實驗采用酶消化貼壁篩選方法成功分離培養(yǎng)新生兔氣管軟骨細(xì)胞,并通過細(xì)胞形態(tài)學(xué)、超微結(jié)構(gòu)和細(xì)胞分泌的細(xì)胞外基質(zhì)成分等方面初步明確新生兔氣管軟骨細(xì)胞的生物學(xué)特性。
本實驗對分離培養(yǎng)的新生兔氣管軟骨細(xì)胞在倒置顯微鏡下觀察發(fā)現(xiàn):所分離培養(yǎng)的新生兔氣管軟骨細(xì)胞為短小三角形或不規(guī)則形,生長至一定程度后呈鋪路石子樣聚集,傳代后細(xì)胞生長旺盛,短時間內(nèi)可形成魚群樣聚集,細(xì)胞融合達(dá)95%以上,傳代至第6代時仍保持良好的生長狀態(tài)。大量文獻(xiàn)報道體外培養(yǎng)軟骨細(xì)胞易受到生長因子[22]、年齡[23]、力學(xué)[24]、氧氣[25]等多種因素通過物理環(huán)境和化學(xué)因子之間的相互刺激作用影響。從本實驗新生兔氣管軟骨細(xì)胞的生長變化觀察發(fā)現(xiàn),在37 ℃、5% CO2環(huán)境中培養(yǎng)的早期,軟骨細(xì)胞生長緩慢,隨后生長顯著加快,傳代后生長旺盛,考慮對于新生兔氣管軟骨細(xì)胞,初期生長緩慢可能與接種的細(xì)胞密度低、從活體環(huán)境進(jìn)入體外培養(yǎng)時因其生存環(huán)境和生長所需營養(yǎng)物質(zhì)發(fā)生改變而需要一段時間適應(yīng)新的環(huán)境以及細(xì)胞內(nèi)部自分泌、細(xì)胞與細(xì)胞之間相互作用不充分等有關(guān);隨著時間的延長,細(xì)胞逐漸適應(yīng)環(huán)境,其數(shù)目增多,細(xì)胞內(nèi)部及細(xì)胞與細(xì)胞之間相互作用增強(qiáng),細(xì)胞生長速度明顯加快,這種變化符合正常細(xì)胞的生長特性。
軟骨細(xì)胞的形成是通過軟骨細(xì)胞外基質(zhì)標(biāo)記性基因的表達(dá)及蛋白的合成作為其特征[26]。細(xì)胞外基質(zhì)是由一個復(fù)雜的網(wǎng)狀結(jié)構(gòu)分子組成,包括彈性蛋白、膠原蛋白和蛋白聚糖等多種成分,其通過眾多糖蛋白及生長因子、細(xì)胞因子及腺體等調(diào)節(jié)細(xì)胞粘附、遷移和發(fā)揮功能[27]。細(xì)胞外基質(zhì)可存在于細(xì)胞周圍、細(xì)胞內(nèi)及細(xì)胞間,在固體基質(zhì)內(nèi),50%~75%是膠原(包括I、II型膠原,但以II型膠原為主)、15%~30%是蛋白聚糖[28-29]。軟骨細(xì)胞的增殖、分化和自身穩(wěn)態(tài)同時受到細(xì)胞外基質(zhì)、可溶性介質(zhì)及組成這些細(xì)胞的基因相互作用調(diào)控影響[30]。軟骨細(xì)胞形成與轉(zhuǎn)錄因子SOX9、 COMP、蛋白聚糖和II型膠原(COL2A)等基因的表達(dá)上調(diào)有關(guān)[31]。評估軟骨細(xì)胞表型常用的2個分子標(biāo)志物是COL2A基因(編碼軟骨特異性的Ⅱ型膠原)與蛋白聚糖基因;且所有的軟骨及骨祖細(xì)胞都來源于SOX9表達(dá)的細(xì)胞,軟骨主要調(diào)控因子SOX9上調(diào)II型膠原的表達(dá),可促進(jìn)軟骨細(xì)胞的形成,并抑制軟骨細(xì)胞過度增生[32-33];在上呼吸道軟骨發(fā)育過程中,SOX9募集細(xì)胞向軟骨細(xì)胞系譜生長并表達(dá)軟骨細(xì)胞特異性基因如COL2A,對調(diào)節(jié)細(xì)胞向軟骨細(xì)胞系譜的表達(dá)及正常上呼吸道軟骨的發(fā)育具有重要作用[6, 18]。本實驗發(fā)現(xiàn)P1和P6新生兔氣管軟骨細(xì)胞分泌的I型膠原、II型膠原、SOX9和蛋白聚糖等細(xì)胞外基質(zhì)成分在mRNA和蛋白水平均有表達(dá),且以II型膠原和蛋白聚糖表達(dá)為主,這與文獻(xiàn)關(guān)于氣管軟骨細(xì)胞主要分泌II型膠原和蛋白聚糖等細(xì)胞外基質(zhì)成分的報道相一致[19-20, 29]。本實驗同時對軟骨細(xì)胞超微結(jié)構(gòu)觀察也顯示新生兔氣管軟骨細(xì)胞在培養(yǎng)中會出現(xiàn)偽足,孔隙較多,胞質(zhì)豐富,細(xì)胞表面見顆粒狀物質(zhì); 且細(xì)胞器發(fā)達(dá),有單個或成對的細(xì)胞核,胞質(zhì)中可見空泡;細(xì)胞內(nèi)可見大量蛋白分泌物,與文獻(xiàn)報道相符[34]。以上結(jié)果說明新生兔氣管軟骨細(xì)胞傳代至第6代時仍具有分泌細(xì)胞外基質(zhì)成分的生物學(xué)特性。
綜上所述,本研究通過酶消化單層培養(yǎng)法成功進(jìn)行新生兔氣管軟骨細(xì)胞體外分離、培養(yǎng),并對新生兔氣管軟骨細(xì)胞從形態(tài)學(xué)、超微結(jié)構(gòu)、mRNA表達(dá)以及蛋白水平等進(jìn)行了較全面的生物學(xué)特性的探討,初步認(rèn)為新生兔氣管軟骨細(xì)胞具有分泌細(xì)胞外基質(zhì)成分的生物學(xué)特性,可為組織工程氣管體外構(gòu)建提供一種供選擇的種子細(xì)胞。
致謝:感謝“十二五”國家科技支撐計劃及廣東省心血管病研究所研究生經(jīng)費(fèi)資助,感謝廣東省人民醫(yī)院醫(yī)學(xué)研究中心實驗室及工作人員提供支持和無私的幫助服務(wù)。
[1] Kalathur M, Baiguera S, Macchiarini P. Translating tissue-engineered tracheal replacement from bench to bedside[J]. Cell Mol Life Sci, 2010, 67(24):4185-4196.
[2] Toma M, Kamagata S, Hirobe S, et al. Modified slide tracheoplasty for congenital tracheal stenosis[J]. J Pediatr Surg, 2009, 44(10):2019-2022.
[3] Fiore AC, Brown JW, Weber TR, et al. Surgical treatment of pulmonary artery sling and tracheal stenosis[J]. Ann Thorac Surg, 2005,79(1):38-46.
[4] Liu KS, Liu YH, Peng YJ, et al. Experimental absorbable stent permits airway remodeling[J]. J Thorac Cardiovasc Surg, 2011, 141(2):463-468.
[5] Elliott M, Roebuck D, Noctor C, et al. The management of congenital tracheal stenosis[J]. Int J Pediatr Otorhinolaryngol, 2003, 67(11):S183-S192.
[6] Elluru RG, Thompson F, Reece A, et al. Fibroblast growth factor 18 gives growth and directional cues to airway cartilage[J]. Laryngoscope, 2009, 119(6):1153-1165.
[7] Elliott MJ, De Coppi P, Speggiorin S, et al. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study[J]. Lancet, 2012, 380(9846):994-1000.
[8] McCarthy HE, Bara JJ, Brakspear K, et al. The comparison of equine articular cartilage progenitor cells and bone marrow-derived stromal cells as potential cell sources for cartilage repair in the horse[J]. Vet J, 2012, 192(3):345-351.
[9] Henderson JH, Welter JF, Mansour JM, et al. Cartilage tissue engineering for laryngotracheal reconstruction: comparison of chondrocytes from three anatomic locations in the rabbit[J]. Tissue Eng, 2007, 13(4):843-853.
[10]Kojima K, Bonassar LJ, Roy AK, et al. A composite tissue-engineered trachea using sheep nasal chondrocyte and epithelial cells[J]. FASEB J, 2003,17(8):823-828.
[11]Komura M, Komura H, Tanaka Y, et al. Human tracheal chondrocytes as a cell source for augmenting stenotic tracheal segments: the first feasibility study in aninvivoculture system[J]. Pediatr Surg Int, 2008, 24(10):1117-1121.
[12]Kojima K, Bonassar LJ, Ignotz RA, et al. Comparison of tracheal and nasal chondrocytes for tissue engineering of the trachea[J]. Ann Thorac Surg, 2003, 76(6):1884-1888.
[13]陳 亮,何少茹,莊 建,等. 骨髓間充質(zhì)干細(xì)胞向軟骨細(xì)胞的分化[J]. 中國組織工程研究, 2013, 17(27):4951-4957.
[14]田 軍,王躍建,柯 暉,等. 成年比格犬骨髓間充質(zhì)干細(xì)胞體外軟骨方向分化的實驗研究[J]. 中國病理生理雜志, 2006, 22(8):1581-1585.
[15]Connelly JT, Wilson CG, Levenston ME, et al. Characterization of proteoglycan production and processing by chondrocytes and BMSCs in tissue engineered constructs[J]. Osteoarthritis Cartilage, 2008, 16(9):1092-1100.
[16]Erickson IE, Huang AH, Chung C, et al. Differential maturation and structure-function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels[J]. Tissue Eng, 2009, 15(5):1041-1052.
[17]Huang AH, Stein A, Mauck RL. Evaluation of the complex transcriptional topography of mesenchymal stem cell chondrogenes is for cartilage tissue engineering[J]. Tissue Eng, 2010, 16(9):2699-2708.
[18]Elluru RG, Whitsett JA. Potential role of SOX9 in patterning tracheal cartilage ring formation in an embryonic mouse model[J]. Arch Otolaryngol Head Neck Surg, 2004, 130(6):732-736.
[19]Moreira-Teixeira LS, Georgi N, Leijten J, et al. Cartilage tissue engineering[J]. Endocr Dev, 2011, 21:102-115.
[20]Keeney M, Lai JH, Yang F. Recent progress in cartilage tissue engineering[J]. Curr Opin Biotechnol, 2011, 22(5):734-740.
[21]Lin CH, Hsu SH, Huang CE, et al. A scaffold-bioreactor system for a tissue-engineered trachea[J]. Biomaterials, 2009, 30(25):4117-4126.
[22]Bai X, Li G, Zhao C, et al. BMP7 induces the differentiation of bone marrow-derived mesenchymal cells into chondrocytes[J]. Med Biol Eng Comput, 2011, 49(6): 687-692.
[23]Erickson IE, van Veen SC, Sengupta S, et al. Cartilage matrix formation by bovine mesenchymal stem cells in three-dimensional culture is age-dependent[J]. Clin Orthop Relat Res, 2011, 469(10):2744-2753.
[24]Kelly DJ, Jacobs CR. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells[J]. Birth Defects Res C Embryo Today, 2010, 90(1):75-85.
[25]Buckley CT, Vinardell T, Kelly DJ. Oxygen tension differentially regulates the functional properties of cartilaginous tissues engineered from infrapatellar fat pad derived MSCs and articular chondrocytes[J]. Osteoarthritis Cartilage, 2010, 18(10):1345-1354.
[26]Perrier E, Ronziere MC, Bareille R, et al. Analysis of collagen expression during chondrogenic induction of human bone marrow mesenchymal stem cells[J]. Biotechnol Lett, 2011, 33(10):2091-2101.
[27]Korpos E, Wu C, Sorokin L. Multiple roles of the extracellular matrix in inflammation[J]. Curr Pharm Des, 2009, 15(12):1349-1357.
[28]Schulz RM, Bader A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes[J]. Eur Biophys J, 2007, 36(4-5):539-568.
[29]Mahnoudifar N, Doran PM. Chondrogenesis and cartilage tissue engineering the longer road to technology development[J]. Trends Biotechnol, 2012, 30(3):166-176.
[30]Goessler UR, Hormann K, Riedel F. Tissue engineering with chondrocytes and function of the extracellular matrix (Review)[J]. Int J Mol Med, 2004, 13(4):505-513.
[31]Tan SL, Sulaiman S, Pingguan-Murphy B, et al. Human amnion as a novel cell delivery vehicle for chondrogenic mesenchymal stem cells[J]. Cell Tissue Bank, 2011, 12(1):59-70.
[32]Bobick BE, Chen FH, Le AM, et al. Regulation of the chondrogenic phenotype in culture[J]. Birth Defects Res C Embryo Today, 2009, 87(4):351-371.
[33]Quintana L, zur Nieden NI, Semino CE. Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering[J]. Tissue Eng Part B Rev, 2009, 15(1):29-41.
[34]Xu H, Shi HC, Zang WF, et al. An experimental research on cryopreserving rabbit trachea by vitrification[J]. Cryobiology, 2009, 58(2):225-231.
Biological characteristics of newborn rabbit tracheal chondrocytes
CHEN Liang1, ZHUANG Jian2, SUN Yun-xia1, LIANG Sui-xin1, LIU Yu-mei1, SUN Xin1, CHEN Yan-ling1, HE Shao-ru1
(1DepartmentofNeonatology,GuangdongGeneralHospital/GuangdongAcademyofMedicalSciences,2DepartmentofPediatricCardiacSurgery,GuangdongCardiovascularInstitute,Guangzhou510080,China.E-mail:hsr1605@126.com)
AIM: To investigate the biological characteristics of newborn rabbit tracheal chondrocytesinvitro. METHODS: Newborn rabbit tracheal chondrocytes were obtained by the method of enzyme digestion, and then cultured in monolayerinvitro. Morphological and growth observations were performed under inverted phase contrast microscope. The ultrastructures of the cells were observed under scanning electron microscope and transmission electron microscope. The biological characteristics of secreted extracellular matrix components were detected by real-time PCR, immunocytochemistry staining and toluidine blue staining. RESULTS: Newborn rabbit tracheal chondrocytes isolated and culturedinvitroshowed short triangular or irregular shapes, and adherent growth very well. The ultrastructures of the cells showed pore and abundant cytoplasm and organelles, with a lot of protein secretions in the cells. The chondrocytes expressed the mRNA of collagen I, collagen II and proteoglycans, mainly collagen II and proteoglycans. Immunocytochemistry staining showed collagen II and SOX9 positive, and collagen I weakly positive. Toluidine blue staining was also positive. CONCLUSION: Enzyme digestion and monolayer culture are suitable method to obtain newborn rabbit tracheal chondrocytes. These cells, secreting extracellular matrix components, are able to be selected as seed cells for tissue engineering of tracheainvitro, and used to study the therapeutic method for neonatal rabbit tracheal stenosis.
Newborn rabbits; Tracheal chondrocytes; Tracheal stenosis; Seed cells; Tissue-engineered trachea
1000- 4718(2014)12- 2294- 06
2014- 07- 02
2014- 09- 13
“十二五”國家科技支撐計劃(No.2011BAI11B22)
R329.2+1
A
10.3969/j.issn.1000- 4718.2014.12.033
△通訊作者 Tel: 020-83827812; E-mail: hsr1605@126.com