郭 榕 李 勇
·國家基金研究進(jìn)展綜述·
核不均一性核糖核蛋白的異常表達(dá)與腫瘤發(fā)生*
郭 榕①李 勇②
核不均一性核糖核蛋白(heterogeneous nuclear ribonucleoprotein,hnRNP)家族是一組調(diào)節(jié)前體mRNA(pre-mRNA)分子的選擇性剪接以及mRNA轉(zhuǎn)運(yùn)、翻譯和穩(wěn)定性等的多功能RNA結(jié)合蛋白。hnRNP A1和hnRNP A2是該家族中表達(dá)水平最高、研究最為廣泛的成員,兩者具有高度的序列同源型和功能相似性,在多種腫瘤組織中高表達(dá),通過調(diào)節(jié)多種腫瘤相關(guān)基因pre-mRNA選擇性剪接和mRNA穩(wěn)定性,參與調(diào)控了腫瘤細(xì)胞的增殖、凋亡、腫瘤相關(guān)的炎癥與免疫反應(yīng)、上皮-間質(zhì)轉(zhuǎn)換等多種細(xì)胞生物學(xué)過程,從而成為腫瘤發(fā)病分子機(jī)制以及腫瘤診斷和治療領(lǐng)域研究的熱點(diǎn)。
hnRNP A1基因 hnRNP A2基因 腫瘤 選擇性剪接
前體mRNA(pre-mRNA)分子的選擇性剪接是一個(gè)重要的轉(zhuǎn)錄后調(diào)節(jié)機(jī)制,通過選擇性剪接,單一基因可以產(chǎn)生多個(gè)轉(zhuǎn)錄本和蛋白。人類基因組包含大約30 000個(gè)基因并且超過90%的基因存在選擇性剪接[1]。由同一個(gè)pre-mRNA分子的不同剪接體編碼的蛋白分子可以展現(xiàn)出不同的分子構(gòu)象,從而具有不同甚至相反的生物學(xué)功能[2]。核不均一性核糖核蛋白(heterogeneous nuclear ribonucleoprotein,hnRNP)家族包括至少20個(gè)成員,命名從hnRNP A1到hnRNP U,參與調(diào)控了多種基因pre-mRNA分子的選擇性剪接以及mRNA轉(zhuǎn)運(yùn)、定位、穩(wěn)定和翻譯等[3-5]。hnRNP A1和hnRNP A2是hnRNP家族的重要成員,在多種腫瘤組織中表達(dá)水平增高,通過調(diào)控多種腫瘤相關(guān)基因的異常選擇性剪接可以產(chǎn)生致癌性的剪接體,后者通過影響細(xì)胞的增殖、凋亡敏感性、腫瘤相關(guān)的炎癥與免疫反應(yīng)及上皮-間質(zhì)轉(zhuǎn)換(epithelial-to-mesenchymal transition,EMT)等促進(jìn)腫瘤的發(fā)生和發(fā)展?,F(xiàn)就近年來有關(guān)hnRNP A1和hnRNP A2在惡性腫瘤中的異常表達(dá)情況以及與促進(jìn)腫瘤發(fā)生、發(fā)展的機(jī)制研究進(jìn)展做一綜述。
hnRNP蛋白家族成員大多具有共同的結(jié)構(gòu)域(均包含RNA結(jié)合結(jié)構(gòu)域RRM或KH),并具有核漿穿梭能力[3]。hnRNP蛋白主要作為pre-mRNA分子選擇性剪接的抑制因子發(fā)揮作用,可與定位于外顯子或內(nèi)含子中特異性的剪接沉默子序列(silencers in exons or introns,ESS or ISS)相結(jié)合以促使外顯子排除[5]。hnRNP A1和hnRNP A2均擁有共同的兩個(gè)N末端串聯(lián)RRM/RBD型RNA結(jié)合區(qū)和一個(gè)富含甘氨酸的C末端輔助區(qū),并具有高度的序列同源性和功能相似性,hnRNP A1和hnRNP A2識(shí)別的被調(diào)控基因pre-mRNA上的特異序列為UAGGG(A/U)[6]。hnRNP A1和hnRNP A2基因在胚胎發(fā)育期間呈高水平表達(dá),并以組織和細(xì)胞特異性表達(dá)方式受到嚴(yán)格調(diào)控,但在正常成體組織中表達(dá)水平顯著下降[7]。
多項(xiàng)研究報(bào)道hnRNP A1和hnRNP A2在多種腫瘤組織中高表達(dá),包括乳腺癌[8]、肺癌[9]、白血病[10]、結(jié)直腸癌[11]、肝癌[12]、膠質(zhì)母細(xì)胞瘤[13]、胃癌[14]等組織中均檢測到高表達(dá)。hnRNP A1和hnRNP A2的異常表達(dá)已被當(dāng)作多種腫瘤的早期腫瘤分子標(biāo)志物。2009年,Ma等[11]研究發(fā)現(xiàn),hnRNP A1的表達(dá)上調(diào)與結(jié)直腸癌的高惡性度、腫瘤復(fù)發(fā)以及預(yù)后差顯著相關(guān);結(jié)直腸癌患者血清中的hnRNP A1的表達(dá)水平也明顯高于健康人群;進(jìn)一步應(yīng)用RNA干擾技術(shù)下調(diào)結(jié)直腸癌細(xì)胞SW480中的hnRNP A1表達(dá)可抑制腫瘤細(xì)胞增殖。該研究結(jié)果提示,hnRNP A1可作為結(jié)直腸癌早期診斷、預(yù)后、檢測抗腫瘤治療效果的分子標(biāo)志物。2010年,Cui等[12]研究報(bào)道,在肝細(xì)胞癌去分化期間hnRNP A2總體表達(dá)量和定位于細(xì)胞胞漿中的hnRNP A2的量均增加,提示hnRNP A2的表達(dá)量和蛋白分子的亞細(xì)胞定位均呈現(xiàn)出與腫瘤進(jìn)展的相關(guān)性。
根據(jù)目前研究報(bào)道,hnRNP A1和hnRNP A2異常表達(dá)促進(jìn)腫瘤發(fā)生和發(fā)展的機(jī)制主要涉及如下幾個(gè)方面。
2.1 參與細(xì)胞凋亡與細(xì)胞增殖的調(diào)節(jié)
目前已有多項(xiàng)研究證實(shí)hnRNP A1和hnRNP A2可以通過調(diào)節(jié)凋亡相關(guān)基因的選擇性剪接或穩(wěn)定性而影響凋亡。2008年,Han等[15]通過在人非小細(xì)胞肺癌細(xì)胞A549中開展siRNA特異性干擾實(shí)驗(yàn)發(fā)現(xiàn),A549細(xì)胞的hnRNP A2表達(dá)下調(diào)后,G1期細(xì)胞增加而S期細(xì)胞減少,細(xì)胞凋亡明顯增加。2009年,He等[16]應(yīng)用微陣列技術(shù),檢測shRNA抑制hnRNP A2表達(dá)前后的人皮膚鱗狀細(xì)胞癌細(xì)胞Colo16的基因表達(dá)水平變化,在hnRNP A2表達(dá)下調(diào)的細(xì)胞中鑒定出123個(gè)基因的表達(dá)水平發(fā)生了改變,包括cyclin D2、p16、p21、IRF7、PSIP1、STAT1等參與了細(xì)胞周期和細(xì)胞增殖的調(diào)節(jié)。2013年,Babic等[17]在膠質(zhì)母細(xì)胞瘤中開展了活化EGFRvIII誘導(dǎo)的全基因組水平的剪接體篩查,研究發(fā)現(xiàn),hnRNP A1調(diào)控Max基因的剪接,增加了Delta Max的剪接體形式,而Delta Max與癌蛋白Myc相互作用增強(qiáng)了Myc誘導(dǎo)細(xì)胞惡性轉(zhuǎn)化的能力。2013年,Chettouh等[18]研究報(bào)道,EGFR/MAPK/ ERK通路經(jīng)誘導(dǎo)活化后,可上調(diào)肝癌細(xì)胞中hnRNP A1、hnRNP A2、hnRNP H等剪接因子的表達(dá),通過影響胰島素受體(Insulin receptor,IR)的剪接形式,提高IR-A:IR-B的比值,激活胰島素信號(hào)通路,發(fā)揮促進(jìn)腫瘤細(xì)胞增殖的作用。2014年,Shilo等[19]研究發(fā)現(xiàn),hnRNP A1和hnRNP A2過表達(dá)可誘導(dǎo)永生化肝細(xì)胞的惡性轉(zhuǎn)化,而下調(diào)hnRNP A1和hnRNP A2的表達(dá)則可以抑制肝癌細(xì)胞的體外生長和體內(nèi)致瘤能力;進(jìn)一步研究發(fā)現(xiàn),hnRNP A2通過調(diào)控A-Raf基因的剪接增加了功能性A-Raf基因的剪接體形式,進(jìn)而誘導(dǎo)激活Ras-MAPK-ERK通路,發(fā)揮刺激腫瘤細(xì)胞增殖的作用。
2.2 影響腫瘤相關(guān)的炎癥與免疫反應(yīng)
腫瘤微環(huán)境中的免疫和炎癥狀況參與影響了腫瘤的發(fā)生和進(jìn)程,并在決定疾病結(jié)局中發(fā)揮重要的作用。目前關(guān)于炎癥的促癌和抗癌活性均有許多證據(jù)支持。一方面,通過產(chǎn)生生物活性分子例如細(xì)胞因子、趨化因子、生長因子,慢性炎癥會(huì)刺激細(xì)胞增殖、侵襲、血管發(fā)生、轉(zhuǎn)移并抑制細(xì)胞凋亡[20]。另一方面,一些研究已經(jīng)揭示,通過募集免疫抑制性炎性細(xì)胞,如調(diào)節(jié)性T細(xì)胞(regulatory T cells,Tregs)和骨髓來源抑制細(xì)胞(myeloid-derived suppressor cells,MDSCs),腫瘤細(xì)胞能促進(jìn)抑制免疫的腫瘤微環(huán)境形成并最終促進(jìn)腫瘤進(jìn)展[21]。
目前已有多項(xiàng)研究報(bào)道,剪接調(diào)節(jié)因子可以通過調(diào)控多種炎性因子mRNA的選擇性剪接或mRNA穩(wěn)定性進(jìn)而影響腫瘤相關(guān)的炎癥和免疫反應(yīng)。2009年,Tauler等[22]總結(jié)相關(guān)文獻(xiàn)報(bào)道,包括hnRNP A2在內(nèi)的多種hnRNP家族成員通過影響GLUT1、cP4Ha、TNFα、IL-1β等炎性因子的mRNA穩(wěn)定性參與炎癥反應(yīng)的調(diào)節(jié),在慢性阻塞性肺病和肺癌的發(fā)生、發(fā)展過程中發(fā)揮重要調(diào)控作用。Egr-2(early growth response-2)是一個(gè)重要的T細(xì)胞功能調(diào)節(jié)因子,Rübsamen等[23]在egr-2 mRNA的5'-UTR區(qū)鑒定了幾個(gè)IRES(internal ribosome entry sites)順式反應(yīng)元件,并發(fā)現(xiàn)hnRNP A1和另一個(gè)hnRNP家族成員hnRNP I能夠直接與IRES元件結(jié)合并調(diào)控egr-2蛋白的翻譯表達(dá),而egr-2蛋白通過抑制IL-2的產(chǎn)生誘導(dǎo)T細(xì)胞耐受,進(jìn)而影響機(jī)體免疫和炎癥反應(yīng)。2013年,Guo等[2]研究發(fā)現(xiàn),hnRNP A1和hnRNP A2可以在人非小細(xì)胞肺癌中調(diào)節(jié)IRF-3(interferon regulatory factor-3)的pre-mRNA分子選擇性剪接,進(jìn)而影響IRF-3下游靶基因IFNβ和IP-10表達(dá),并影響與人非小細(xì)胞肺癌細(xì)胞共培養(yǎng)的炎性細(xì)胞的免疫調(diào)節(jié)功能。
2.3 促進(jìn)上皮-間質(zhì)轉(zhuǎn)換(epithelial-to-mesenchymal transition,EMT)
EMT是一個(gè)將組織上皮細(xì)胞轉(zhuǎn)變?yōu)閾碛虚g質(zhì)形態(tài)細(xì)胞的過程,在EMT過程中發(fā)生的頂-基底極性丟失、細(xì)胞-細(xì)胞連接解離和肌動(dòng)蛋白細(xì)胞骨架重塑使得組織上皮細(xì)胞具有了間質(zhì)細(xì)胞的特征,具有了遷移、游走和侵襲的特性[24]。EMT是胚胎發(fā)育的重要機(jī)制,在細(xì)胞惡性轉(zhuǎn)化過程中也發(fā)揮了重要的作用。大約90%的人類惡性疾病是上皮起源的腫瘤-癌癥,癌癥轉(zhuǎn)移的早期步驟通常與參與EMT的發(fā)育過程驚人的相似,發(fā)生EMT轉(zhuǎn)換的腫瘤細(xì)胞脫離腫瘤組織而侵襲周圍組織,在腫瘤微環(huán)境中的細(xì)胞和胞外基質(zhì)的引導(dǎo)下朝著血管或淋巴管遷移[25]。越來越多的研究工作涉及到腫瘤細(xì)胞侵襲和播散中的EMT樣機(jī)制。
hnRNP家族成員通過選擇性pre-mRNA剪接調(diào)控參與調(diào)節(jié)了胚胎干細(xì)胞和腫瘤細(xì)胞的EMT過程。2010年,Tauler等[26]研究發(fā)現(xiàn),hnRNP A2通過上調(diào)E-cadherin的表達(dá)促進(jìn)了肺癌細(xì)胞A549和H1703的EMT轉(zhuǎn)換和遠(yuǎn)處轉(zhuǎn)移。2013年,Bonomi等[27]研究報(bào)道,hnRNP A1和SRSF1共同參與了Ron酪氨酸激酶受體基因外顯子11的剪接調(diào)控,SRSF1通過與位于外顯子12上的剪接增強(qiáng)子序列結(jié)合,促進(jìn)外顯子11的剪接保留和ΔRon(一種持續(xù)活化的激酶形式)剪接體形式的產(chǎn)生,從而活化腫瘤細(xì)胞的EMT過程;hnRNP A1則通過與位于外顯子12上的剪接抑制子序列結(jié)合,抑制SRSF1與剪接增強(qiáng)子序列的結(jié)合,從而促進(jìn)外顯子11的剪接缺失,抑制了ΔRon剪接體形式的產(chǎn)生,活化了與EMT相反的過程。2013年,Choi等[28]研究發(fā)現(xiàn),hnRNP A2在未分化的人胚胎干細(xì)胞(human embryonic stem cells,hESCs)中高表達(dá),而下調(diào)hnRNP A2基因表達(dá)則誘導(dǎo)了hESCs的分化和EMT轉(zhuǎn)換,提示hnRNP A2在維持hESCs的未分化狀態(tài)和上皮細(xì)胞表型方面發(fā)揮了重要作用。
2.4 影響能量代謝
區(qū)別腫瘤細(xì)胞和正常細(xì)胞的一個(gè)重要特征是能量代謝的調(diào)節(jié)。在有氧情況下,絕大多數(shù)正常成體組織通過檸檬酸循環(huán)和氧化磷酸化,利用大部分養(yǎng)分做最大能量產(chǎn)出。而腫瘤細(xì)胞則是采用有氧糖酵解的途徑,即將葡萄糖轉(zhuǎn)化為乳酸的低效產(chǎn)能方式,通過該方式可以合成細(xì)胞生長所需的高分子物質(zhì)。丙酮酸激酶(pyruvate kinase,muscle,PKM)是糖酵解途徑的關(guān)鍵限速酶之一。由PKM基因轉(zhuǎn)錄體的選擇性剪接產(chǎn)生兩個(gè)異構(gòu)體—PKM1和PKM2,PKM1在有大量能量產(chǎn)生的成體組織如肌肉和腦中表達(dá),能夠有效地將磷酸烯醇式丙酮酸轉(zhuǎn)變?yōu)楸岵?yōu)先用于氧化磷酸化的產(chǎn)能過程中,而PKM2在有高核酸合成率的細(xì)胞例如胚胎細(xì)胞、干細(xì)胞和腫瘤細(xì)胞中表達(dá),并在有氧糖酵解中發(fā)揮關(guān)鍵作用[29]。在胚胎發(fā)育的組織分化期,PKM2被替換成組織特異性的異構(gòu)體。然而,在腫瘤發(fā)生期間PKM1消失而PKM2重新出現(xiàn)。2008年,Christofk等[30]研究發(fā)現(xiàn),用PKM1替換PKM2顯著地降低了腫瘤細(xì)胞中乳酸的產(chǎn)生和減小腫瘤的體積,而PKM2在腫瘤細(xì)胞中的重新表達(dá)則明顯促進(jìn)了腫瘤增殖。
2010年,David等[31]通過開展siRNA特異性干擾實(shí)驗(yàn)下調(diào)hnRNP A1和hnRNP A2表達(dá)水平,研究PKM1與PKM2分子之間選擇性剪接轉(zhuǎn)換的調(diào)控機(jī)制。研究發(fā)現(xiàn)hnRNP A1和hnRNP A2與PKM的外顯子9側(cè)翼的內(nèi)含子序列相結(jié)合,從而調(diào)控了PKM基因的選擇性剪接;研究進(jìn)一步證明,癌蛋白c-Myc通過上調(diào)hnRNP A1和hnRNP A2表達(dá)水平而維持PKM2/PKM1的高比率。2012年,Sun等[32]研究發(fā)現(xiàn),在結(jié)直腸癌細(xì)胞中以hnRNP A1和hnRNP A2為靶基因的microRNAs(miR-124,miR-137和miR-340)通過抑制hnRNP A1和hnRNP A2調(diào)控PKM基因的剪接方式,下調(diào)的PKM2/PKM1比率抑制了腫瘤細(xì)胞的有氧糖酵解代謝過程,從而抑制了腫瘤細(xì)胞的增殖。
hnRNP A1和hnRNP A2基因在多種腫瘤組織中過表達(dá),通過調(diào)節(jié)多種腫瘤相關(guān)基因pre-mRNA的選擇性剪接和mRNA穩(wěn)定性,參與調(diào)控了腫瘤細(xì)胞的多種細(xì)胞生物學(xué)過程。hnRNP A1和hnRNP A2在腫瘤組織中表達(dá)水平增高的分子機(jī)制以及細(xì)胞核漿定位的調(diào)控機(jī)制還有待于進(jìn)一步的探討。新近的研究報(bào)道,hnRNP A2通過與microRNAs序列中的特定模體結(jié)構(gòu)識(shí)別,引導(dǎo)microRNAs進(jìn)入細(xì)胞外吐小體(exosome),從而實(shí)現(xiàn)從供體細(xì)胞向受體細(xì)胞的傳輸,該研究提示可以選擇性的向腫瘤細(xì)胞內(nèi)運(yùn)輸具有調(diào)控功能的RNA以達(dá)到生物治療的目的[33]。相信隨著hnRNP A1和hnRNP A2所調(diào)控目的基因多樣性的不斷增加以及對靶基因剪接調(diào)控分子機(jī)制認(rèn)識(shí)的不斷深入,hnRNP A1和hnRNP A2基因在腫瘤的早期診斷、基因治療及其預(yù)后判斷方面將會(huì)有廣泛的應(yīng)用前景。
1 Wang ET,Sandberg R,Luo S,et al.Alternative isoform regulation in human tissue transcriptomes[J].Nature,2008,456(7221):470-476.
2 Guo R,Li Y,Ning J,et al.HnRNP A1/A2 and SF2/ASF proteins regulate alternative splicing of interferon regulatory factor-3 and effect immunomodulatory functions in human non-small cell lung cancer cells[J].Plos One,2013,8(4):1-13.
3 Huelga SC,Vu AQ,Arnold JD,et al.Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins[J].Cell Rep,2012,1(2):167-178.
4 Damiano F,Rochira A,Tocci R,et al.hnRNP A1 mediates the acti-vation of the IRES-dependent SREBP-1a mRNA translation in response to endoplasmic reticulum stress[J].Biochem J,2013,449(2):543-553.
5 He Y,Smith R.Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B[J].Cell Mol Life Sci,2009,66(7):1239-1256.
6 Burd CG,Dreyfuss G.RNA binding specificity of hnRNP A1:significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing[J].EMBO J,1994,13(5):1197-1204.
7 Goodarzi H,Najafabadi HS,Oikonomou P,et al.Systematic discovery of structural elements governing stability of mammalian messenger RNAs[J].Nature,2012,485(7397):264-268.
8 Zhou J,Allred DC,Avis I,et al.Differential expression of the early lung cancer detection marker,heterogeneous nuclear ribonucleoprotein-A2/B1(hnRNP-A2/B1)in normal breast and neoplastic breast cancer[J].Breast Cancer Res Tr,2001,66(3):217-224.
9 Pino I,Pio R,Toledo G,et al.Altered patterns of expression of members of the heterogeneous nuclear ribonucleoprotein(hnRNP) family in lung cancer[J].Lung Cancer,2003,41(2):131-143.
10 Wei Q,Li Y,Chen L,et al.Genes differentially expressed in responsive and refractory acute leukemia[J].Front Biosci,2006,11:977-982.
11 Ma YL,Peng JY,Zhang P,et al.Heterogeneous nuclear ribonucleoprotein A1 is identified as a potential biomarker for colorectal cancer based on differential proteomics technology[J].J Proteome Res, 2009,8(10):4525-4535.
12 Cui H,Wu F,Sun Y,et al.Up-regulation and subcellular localization of hnRNP A2 in the development of hepatocellular carcinoma [J].BMC Cancer,2010,10:356.
13 Golan-Gerstl R,Cohen M,Shilo A,et al.Splicing factor hnRNP A2 regulates tumor suppressor gene splicing and is an oncogenic driver in glioblastoma[J].Cancer Res,2011,71(13):4464-4472.
14 Jing GJ,Xu DH,Shi SL,et al.Aberrant expression and localization of hnRNP-A2/B1 is a common event in human gastric adenocarcinoma[J].J Gastroenterol Hepatol,2011,26(1):108-115.
15 Han J,Li WM,Tang FM,et al.Effects of hnRNP B1 on DNA-PK activity,cell cycle and apoptosis in human lung adenocarcinoma cell line A549[J].Sichuan Da Xue Xue Bao Yi Xue Ban,2008,39 (5):815-818.[韓 娟,李為民,唐鳳鳴,等.hnRNP B對人肺癌A549細(xì)胞DNA-PK活性及細(xì)胞周期、凋亡的影響[J].四川大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2008,39(5):815-818.]
16 He Y,Rothnagel JA,Epis MR,et al.Downstream targets of heterogeneous nuclear ribonucleoprotein A2 mediate cell proliferation[J]. Mol Carcinog,2009,48(2):167-179.
17 Babic I,Anderson ES,Tanaka K,et al.EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer[J].Cell Metab,2013,17(6):1000-1008.
18 Chettouh H,Fartoux L,Aoudjehane L,et al.Mitogenic insulin receptor-A is overexpressed in human hepatocellular carcinoma due to EGFR-mediated dysregulation of RNA splicing factors[J].Cancer Res,2013,73(13):3974-3986.
19 Shilo A,Ben Hur V,Denichenko P,et al.Splicing factor hnRNP A2 activates the Ras-MAPK-ERK pathway by controlling A-Raf splicing in hepatocellular carcinoma development[J].RNA,2014,20 (4):505-515.
20 Feig C,Gopinathan A,Neesse A,et al.The pancreas cancer microenvironment[J].Clin Cancer Res,2012,18(16):4266-4276.
21 Chew V,Chen J,Lee D,et al.Chemokine-driven lymphocyte infiltration:an early intratumoural event determining long-term survival in resectable hepatocellular carcinoma[J].Gut,2012,61(3):427-438.
22 Tauler J,Mulshine JL.Lung cancer and inflammation:interaction of chemokines and hnRNPs[J].Curr Opin Pharmacol,2009,9(4):384-388.
23 Rübsamen D,Blees JS,Schulz K,et al.IRES-dependent translation of egr2 is induced under inflammatory conditions[J].RNA,2012,18 (10):1910-1920.
24 Gao D,Vahdat LT,Wong S,et al.Microenvironmental regulation of epithelial-mesenchymal transitions in cancer[J].Cancer Res, 2012,72(19):4883-4889.
25 Tiwari N,Gheldof A,Tatari M,et al.EMT as the ultimate survival mechanism of cancer cells[J].Semin Cancer Biol,2012,22(3):194-207.
26 Tauler J,Zudaire E,Liu H,et al.hnRNP A2/B1 modulates epithelial-mesenchymal transition in lung cancer cell lines[J].Cancer Res, 2010,70(18):7137-7147.
27 Bonomi S,di Matteo A,Buratti E,et al.HnRNP A1 controls a splicing regulatory circuit promoting mesenchymal-to-epithelial transition[J].Nucleic Acids Res,2013,41(18):8665-8679.
28 Choi HS,Lee HM,Jang YJ,et al.Heterogeneous nuclear ribonucleoprotein A2/B1 regulates the self-renewal and pluripotency of human embryonic stem cells via the control of the G1/S transition[J]. Stem Cells,2013,31(12):2647-2658.
29 Mazurek S.Pyruvate kinase type M2:a key regulator of the metabolic budget system in tumor cells[J].Int J Biochem Cell Biol,2011, 43(7):969-980.
30 Christofk HR,Vander Heiden MG,Harris MH,et al.The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth[J].Nature,2008,452(7184):230-233.
31 David CJ,Chen M,Assanah M,et al.HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer[J]. Nature,2010,463(7279):364-368.
32 Sun Y,Zhao X,Zhou Y,et al.miR-124,miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect[J].Oncol Rep,2012,28(4):1346-1352.
33 Villarroya-Beltri C,Gutiérrez-Vázquez C,Sánchez-Cabo F,et al. Sumoylated hnRNP A2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs[J].Nat Commun,2013,4:2980.
(2014-08-26收稿)
(2014-10-23修回)
(本文編輯:鄭莉)
Correlation between abnormal heterogeneous nuclear ribonucleoprotein expression and tumors
Rong GUO1,Yong LI2
Yong LI;E-mail:yongli369@126.com
1The First Department of Thoracic Medical Oncology and2Department of Laboratory Animal,Peking University Cancer Hospital and Institute,Ministry of Education Key Laboratory of Carcinogenesis and Translational Research,Beijing 100142,China
This work was supported by The National Natural Science Foundation of China(No.30871366)
Heterogeneous nuclear ribonucleoprotein(hnRNP)is a family of multifunctional nuclear RNA-binding proteins that regulate the alternative splicing of pre-mRNA and the transport,translation,and stability of mRNA.The most abundant and best characterized proteins of this group are hnRNPA1 and hnRNPA2,which share a high degree of sequence homology and functional similarity. HnRNPA1 and hnRNPA2 are upregulated in multiple human tumors and modulate the alternative splicing and mRNA stability of various tumor-related genes critical to tumor cell growth,apoptosis,inflammatory and immune reactions,and epithelial-to-mesenchymal transition.Therefore,hnRNPA1 and hnRNPA2 have potential diagnostic,prognostic,and therapeutic values.
hnRNPA1 gene,hnRNPA2 gene,tumor,alternative splicing
10.3969/j.issn.1000-8179.20141459
①北京大學(xué)腫瘤醫(yī)院暨北京市腫瘤防治研究所胸部腫瘤內(nèi)一科,惡性腫瘤發(fā)病機(jī)制及轉(zhuǎn)化研究教育部重點(diǎn)實(shí)驗(yàn)室(北京市100142);②實(shí)驗(yàn)動(dòng)物室
*本文課題受國家自然科學(xué)基金項(xiàng)目(編號(hào):30871366)資助
李勇 yongli369@126.com
郭榕 專業(yè)方向?yàn)槁匝装Y和腫瘤免疫與非小細(xì)胞肺癌發(fā)生發(fā)展的相關(guān)性。
E-mail:qdguorong2008@126.com