• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      黃河三角洲新生濕地磷分布特征及吸附解吸規(guī)律

      2014-06-26 07:37:20孫軍娜邵宏波
      地球化學(xué) 2014年4期
      關(guān)鍵詞:磷素有機(jī)磷無(wú)機(jī)

      孫軍娜, 徐 剛, 邵宏波

      ?

      黃河三角洲新生濕地磷分布特征及吸附解吸規(guī)律

      孫軍娜1, 2, 徐 剛1*, 邵宏波1

      (1. 中國(guó)科學(xué)院 煙臺(tái)海岸帶研究所, 山東 煙臺(tái) 264003; 2. 中國(guó)科學(xué)院大學(xué), 北京 100049)

      采用改進(jìn)的Hedley磷分級(jí)方法研究了黃河三角洲新生濕地由河向海過(guò)渡帶表層土壤磷形態(tài)變化和分布特征, 并通過(guò)等溫吸附解吸實(shí)驗(yàn)闡明了沿程土壤對(duì)外源磷的持留能力和釋放風(fēng)險(xiǎn)。結(jié)果表明, 各樣點(diǎn)無(wú)機(jī)磷占總磷93%以上, 是磷的主要存在形態(tài)。土壤中有機(jī)磷含量較低, 可能與較低的有機(jī)質(zhì)含量有關(guān)。無(wú)機(jī)磷中稀鹽酸磷是最主要存在形態(tài), 與各樣點(diǎn)Ca/Al含量密切相關(guān)。有效磷含量在18.6~33.4 mg/kg之間, 僅占總磷的3.2%~5.9%, 可能會(huì)限制濕地植物的生長(zhǎng)。覆有植被的土壤中有效磷含量顯著高于河灘和海灘土壤, 說(shuō)明植被存在對(duì)有效磷的積累有一定促進(jìn)作用。由吸附解吸實(shí)驗(yàn)可知, 加入較低濃度(0.05~5 mg/L)的外源磷時(shí), 隨著初始磷濃度的升高, 土壤對(duì)磷的吸附量增加, 吸附率為70%~99%, 解吸率小于7%, 這說(shuō)明各樣點(diǎn)土壤的除磷能力較強(qiáng), 且流失風(fēng)險(xiǎn)較低。

      磷; Hedley分級(jí); 吸附; 解吸; 黃河三角洲

      0 引 言

      磷是植物生長(zhǎng)所必需的養(yǎng)分元素之一, 在濕地中往往成為一種主要的限制性養(yǎng)分。濕地土壤不同形態(tài)磷的相互轉(zhuǎn)化會(huì)影響磷的有效性, 從而影響著濕地植物的生長(zhǎng)[1], 因此研究濕地土壤各形態(tài)磷的分布特征對(duì)評(píng)價(jià)濕地土壤-植物系統(tǒng)磷的吸收轉(zhuǎn)化能力十分重要。傳統(tǒng)的Chang-Jackson磷分級(jí)方法及其改進(jìn)方法都存在很多缺陷[2–4], Hedley分級(jí)方法是目前被認(rèn)為較為合理, 能及時(shí)反映土壤中磷素形態(tài)的動(dòng)態(tài)變化, 且能兼顧無(wú)機(jī)磷和有機(jī)磷的分級(jí)方法[5–6]。后來(lái)Tissen.[7]對(duì)Hedley分級(jí)方法做了進(jìn)一步的修正使其可操作性更強(qiáng)。目前國(guó)內(nèi)利用改進(jìn)的Hedley分級(jí)方法對(duì)土壤磷分布特征進(jìn)行研究的較少,主要集中在三江平原濕地土壤[8–9]。

      濕地土壤對(duì)磷吸附解吸性能的也影響著濕地系統(tǒng)磷形態(tài)的轉(zhuǎn)化和植物磷素營(yíng)養(yǎng)[10–11]。另外, 黃河三角洲濕地地處下游, 上游工農(nóng)業(yè)廢水進(jìn)入濕地, 影響了濕地磷的循環(huán), 過(guò)多的磷會(huì)對(duì)水質(zhì)造成一定威脅。濕地土壤對(duì)磷的吸附作用能去除一定量的磷[12–13], 但其解吸也可能增加水體富營(yíng)養(yǎng)化的風(fēng)險(xiǎn)[14]。因而研究濕地土壤磷的形態(tài)及吸附解吸特性, 對(duì)農(nóng)業(yè)生產(chǎn)及磷循環(huán)等具有重要意義[10–11]。目前對(duì)濕地系統(tǒng)中磷素吸附與解吸附的研究相對(duì)較少[15–16]。本文將對(duì)黃河三角洲新生濕地由河向海過(guò)渡帶布點(diǎn), 研究各樣點(diǎn)土壤磷的形態(tài)分布及對(duì)磷的吸附解吸規(guī)律, 為評(píng)價(jià)濕地土壤磷形態(tài)變化趨勢(shì)及濕地對(duì)磷的去除能力提供理論依據(jù)。

      1 材料與方法

      1.1 供試土壤

      根據(jù)鹽分梯度和植被分布, 在黃河三角洲新生濕地由河向海過(guò)渡帶, 分別設(shè)置了S1至S5總共5個(gè)采樣點(diǎn) (各點(diǎn)經(jīng)緯度見(jiàn)表1)。S1為黃河河灘, S2植被為檉柳, S3植被為鹽地堿蓬, S4為檉柳和鹽地堿蓬, S5為海灘。在每個(gè)樣點(diǎn)利用三角形取樣法, 選取3個(gè)0~20 cm的土樣混合后形成這一樣點(diǎn)的代表性土壤, 風(fēng)干過(guò)10目篩備用。采用常規(guī)土壤農(nóng)化分析方法[17],測(cè)定土壤pH值、含鹽量 (Salinity)、總有機(jī)碳 (TOC)、Al/Fe/Ca金屬含量。土壤黏粒(Clay)、粉粒 (Slit)、沙粒(Sand)采用Marlvern Mastersizer 2000F激光粒度儀進(jìn)行測(cè)定。5個(gè)采樣點(diǎn)的物理化學(xué)性質(zhì)見(jiàn)表1。

      1.2 磷分級(jí)實(shí)驗(yàn)

      采用改進(jìn)的Hedley磷分級(jí)方法[4]連續(xù)提取穩(wěn)定性由弱到強(qiáng)的土壤各形態(tài)磷。稱取0.5 g樣品于50 mL離心管中, 加入30 mL不同提取液, 用鉬銻抗方法[15]測(cè)定提取液中的磷。主要步驟為: (1) 樹(shù)脂交換磷(Resin-P): 提取劑為水和樹(shù)脂, 主要提取土壤溶液中的無(wú)機(jī)磷; (2) NaHCO3提取態(tài)磷: 提取劑為0.5 mol/L NaHCO3溶液, 主要提取吸附在土壤表面的無(wú)機(jī)磷(NaHCO3-Pi)和有機(jī)磷(NaHCO3-Po); (3) NaOH提取態(tài)磷: 提取劑為0.1 mol/L NaOH, 主要提取土壤鐵鋁化合物表面的無(wú)機(jī)磷(NaOH-Pi)和有機(jī)磷(NaOH-Po); (4) 稀鹽酸提取態(tài)磷(Dil.HCl-P): 提取液為1 mol/L HCl, 主要提取部分閉蓄態(tài)磷; (5) 濃鹽酸提取態(tài)磷: 提取劑為濃鹽酸, 主要提取殘留的部分無(wú)機(jī)磷(Conc.HCl-Pi)和有機(jī)磷(Conc.HCl-Po); (6)殘留態(tài)磷(Residual-P): 提取劑為H2SO4和H2O2, 主要提取一般條件下極難被植物利用的那部分磷。土壤中總磷含量為各形態(tài)磷的加和, 其中Resin-P、NaHCO3-Pi、NaHCO3-Po為有效磷(Available-P, AP), NaOH-Pi、NaOH-Po為中等活性磷, Dil.HCl-P、Conc.HCl-Pi、Conc.HCl-Po為中穩(wěn)態(tài)磷, Residual-P為穩(wěn)態(tài)磷。

      表1 各采樣點(diǎn)物理化學(xué)性質(zhì)

      1.3 吸附和解吸實(shí)驗(yàn)

      稱取各點(diǎn)土樣1.0 g于50 mL已知質(zhì)量的離心管中, 分別加入10 mL含磷量為0.05 mg/L、0.1 mg/L、0.5 mg/L、1 mg/L、2 mg/L、5 mg/L (用KH2PO4配制)的0.01 mol/L的KCl溶液, 在(27±2) ℃振蕩器上震蕩24 h后, 取出離心(5000 轉(zhuǎn)/min, 10 min), 過(guò)濾。取上清液用鉬銻鈧比色法測(cè)定濾液中磷的含量, 同時(shí)做空白實(shí)驗(yàn), 由吸附前后磷含量變化計(jì)算吸附量, 所有實(shí)驗(yàn)處理均重復(fù)3次。

      在吸附實(shí)驗(yàn)完成后, 將含磷量為0.05 mg/L和1 mg/L的離心管中的上清液倒掉, 稱量離心管、土及殘留液的質(zhì)量(扣除土壤間隙殘留磷對(duì)磷解吸量計(jì)算的影響)。然后向離心管內(nèi)各加入10 mL的0.01 mol/L KCl溶液, 在(27±2) ℃振蕩器上震蕩24 h后, 取出離心 (5000 轉(zhuǎn)/min, 10 min)。用鉬銻鈧比色法測(cè)定濾液中磷的含量, 計(jì)算磷解吸量。

      1.4 數(shù)據(jù)分析及處理

      磷的吸附率為吸附濃度與初始濃度的比值, 解吸率(des)由吸附量與解吸量比值求得; 分配系數(shù)(d)為達(dá)到吸附平衡時(shí), 磷在固液兩相中濃度的比值;d值高表明土壤顆粒對(duì)磷的吸附能力強(qiáng)[18–19]。實(shí)驗(yàn)數(shù)據(jù)由Microsoft Excel 2010、OriginPro 7.5和Spss 13.0軟件進(jìn)行分析處理。

      2 結(jié)果與討論

      2.1 土壤各形態(tài)磷含量

      各點(diǎn)土樣中總磷(TP)含量為558.5~702.3 mg/kg (表2), 其中S5點(diǎn)TP含量最高。各樣點(diǎn)有機(jī)磷(OP) 含量較低, 僅為18.6~33.4 mg/kg。無(wú)機(jī)磷(IP)是各點(diǎn)磷的主要存在形態(tài), 占TP的93%~98% (表2)。以往研究發(fā)現(xiàn)三江平原濕地[20]及向海濕地[21]磷主要以有機(jī)磷為主, 杭州灣濕地[22]磷含量主要以無(wú)機(jī)磷為主, 這與濕地土壤母質(zhì)、成土作用和耕作施肥密切相關(guān)[23–25]。

      由表2可知, 各樣點(diǎn)AP含量在18.4~25 mg/kg之間, 僅占TP的3.2%~5.9%。按照全國(guó)第2次土壤普查分級(jí)標(biāo)準(zhǔn), 各樣點(diǎn)中可被植物利用的磷約為3級(jí), 含量較低。這可能由于黃河三角洲土壤主要來(lái)源于黃河上游土壤, 連續(xù)的沖刷作用造成了有效磷的大量流失。中等活性磷含量和穩(wěn)態(tài)磷含量也較低, 分別為6.8~18.1 mg/kg和28.6~58.4 mg/kg。中穩(wěn)態(tài)磷含量較高為454.4~498.5 mg/kg, 其中Dil.HCl-P含量最高, 平均占TP的61.5%~83.6%, 這說(shuō)明各樣點(diǎn)磷主要以中穩(wěn)態(tài)形式存在。另外我們發(fā)現(xiàn), 有效磷含量在覆有植被的S2、S3點(diǎn)比較高, 其中S3點(diǎn)有效磷含量比海邊S5點(diǎn)高82%, 因此, 我們推斷植被(如鹽地堿蓬和檉柳)的存在有利于植物有效磷的形成。這與前人的研究結(jié)果一致, Tuchman.[26]研究發(fā)現(xiàn), 香蒲、青岡的入侵使?jié)竦赝寥烙行Я椎暮吭黾?。Chen.[27]也發(fā)現(xiàn)了輻射松的存在有利于土壤有機(jī)磷的礦化。但同樣覆有植被的S4樣點(diǎn)有效磷含量卻較低, 這可能由于該樣點(diǎn)植被量較少且離海較近, 漲落潮淋洗會(huì)損失大量有效磷。

      2.2 磷的吸附及解吸

      從表3可知, 各樣點(diǎn)對(duì)磷的吸附量隨著初始加入磷濃度的升高而增加。各樣點(diǎn)對(duì)磷的吸附較強(qiáng), 特別是在0.05~0.5 mg/L區(qū)域內(nèi), 吸附率達(dá)到99%。雖然隨著初始濃度的增加, 各樣點(diǎn)對(duì)磷的吸附率逐漸降低, 但仍在70%以上。因此當(dāng)攜帶大量磷的污水進(jìn)入濕地系統(tǒng)時(shí), 濕地土壤可以通過(guò)吸附作用除去大量的磷, 這與Sakadevan.[1]、黃樹(shù)輝[28]等的研究結(jié)果一致。通過(guò)計(jì)算可知, 各采樣點(diǎn)d均值的順序?yàn)? S3 (837) > S2 (666) > S5 (551) > S4 (486) > S1 (389)。這說(shuō)明S3樣點(diǎn)土壤對(duì)磷的吸附能力最強(qiáng), S1點(diǎn)最弱。

      表2 不同采樣點(diǎn)各形態(tài)磷的含量 (mg/kg)

      表3 各樣點(diǎn)在不同濃度下吸附磷量(mg/kg)

      從表4可知, 在吸附-解吸動(dòng)態(tài)平衡過(guò)程中, 解吸率隨著磷加入量的增加而增加, 但土壤對(duì)磷的吸附作用強(qiáng)于解吸作用。如處理濃度為1 mg/L時(shí), 各樣點(diǎn)中超過(guò)90%的磷留在土壤固相中, 這可能由于實(shí)驗(yàn)設(shè)定濃度范圍下, 土壤對(duì)磷的吸附大多以共價(jià)鍵的化學(xué)性吸附為主[29–31], 很難被解吸下來(lái), 這也減少了吸附在土壤中的磷發(fā)生遷移的風(fēng)險(xiǎn)。

      表4 各樣點(diǎn)在不同濃度下磷解吸率Pdes (%)

      2.3 相關(guān)性分析

      土壤理化性質(zhì)與土壤磷形態(tài)及吸附解吸參數(shù)的相關(guān)關(guān)系見(jiàn)表5。通過(guò)相關(guān)分析發(fā)現(xiàn), 各樣點(diǎn)OP含量與土壤中TOC含量有關(guān) (< 0.01)。這可能由于黃河三角洲成土?xí)r間短, 土壤含鹽量高造成植被生物量少, 因此土壤中有機(jī)磷含量較低。Dil.HCl-P受Ca/Al含量影響較大, 因?yàn)镈il.HCl-P主要提取磷灰石型磷及部分閉蓄態(tài)磷[5]。AP含量與各樣點(diǎn)有機(jī)質(zhì)、黏粒含量顯著正相關(guān) (< 0.01), 這與前人研究一致[32–33]。與其他樣點(diǎn)相比, 覆有植被的S2、S3點(diǎn)Dil.HCl-P較低, AP較高, 這說(shuō)明植被的存在可能有利于穩(wěn)態(tài)磷向生物可利用磷轉(zhuǎn)化[34]。各樣點(diǎn)對(duì)磷的吸附解吸能力與土壤黏粒含量密切相關(guān) (< 0.01)。S3點(diǎn)黏粒含量較高, 因此吸附量遠(yuǎn)大于S1點(diǎn)。這主要由于黏粒表面有較大的表面積[35], 能夠迅速吸附磷素于土壤顆粒外表面的吸附點(diǎn)位上。

      3 結(jié) 論

      各樣點(diǎn)土壤中總磷含量為558.5~702.3 mg/kg, 有效磷含量?jī)H占TP的3.2%~5.9%。各樣點(diǎn)中無(wú)機(jī)磷占總磷的93%~97%, 有機(jī)磷含量較低, 這與土壤植被生物量少有機(jī)質(zhì)含量低有關(guān)。無(wú)機(jī)磷中Dil.HCl-P含量最高, 平均占總磷的75.8%, 是各樣點(diǎn)磷的主要存在形態(tài), 與各樣點(diǎn)Ca/Al含量密切相關(guān)。在吸附解吸實(shí)驗(yàn)中設(shè)定的濃度范圍內(nèi), 土壤對(duì)磷的吸附能力較高, 吸附率在70%~99%之間。吸附磷的解吸量較低, 在處理濃度為1 mg/L時(shí), 解吸率僅為2.5%~6.1%, 吸附解吸特性與土壤物理化學(xué)性質(zhì)密切相關(guān)。因此我們推斷, 實(shí)驗(yàn)選取的濕地各樣點(diǎn)土壤中較低的有效磷含量可能成為濕地植物生長(zhǎng)的限制性因子, 植被的存在有利于有效磷的積累, 采樣點(diǎn)土壤對(duì)外源磷的輸入有一定的吸附能力且釋放風(fēng)險(xiǎn)較低。

      注: *和**分別代表顯著性水平為0.05和0.01,= 15。

      [1] Sakadevan K, Bavor H J. Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems [J]Water Res, 1998, 32(2): 393–399.

      [2] Fife C V. An evaluation of ammonium fluoride as a selective extractant for aluminum-bound soil phosphate: II. Preliminary studies on soils [J]Soil Sci, 1959, 87(2): 83–88.

      [3] Petersen G W, Corey R B. A modified chang and Jackson procedure for routine fractionation of inorganic soil phosphates [J]Soil Sci Soc Am J, 1966, 30(5): 563–565.

      [4] Syers J K, Smillie G W, Williams J D H. Calcium fluoride formation during extraction of calcareous soils with fluoride: I. Implications to inorganic P fractionation schemes [J]Soil Sci Soc Am J, 1972, 36(1): 20–25.

      [5] Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations [J]Soil Sci Soc Am J, 1982, 46(5): 970–976.

      [6] Potter R L, Jordan C F, Guedes R M, Batmanian G J, Han X G. Assessment of a phosphorus fractionation method for soils: Problems for further investigation [J]Agr Ecosyst Environ, 1991, 34(1–4): 453–463.

      [7] Tiessen H, Moir J O. Characterization of available P by sequential extraction [M]//Carter M R. Soil Sampling and Methods of Analysis. Boca Raton: CRC Press, 1993: 75–86.

      [8] 秦勝金, 劉景雙, 王國(guó)平, 王金達(dá). 三江平原濕地土壤磷形態(tài)轉(zhuǎn)化動(dòng)態(tài)[J]生態(tài)學(xué)報(bào), 2007, 27(9): 3844–3851. Qin Sheng-jin, Liu Jing-shuang, Wang Guo-ping, Wang Jin-da. Seasonal changes of soil phosphorus fractions underwetlands in Sanjiang Plain, China [J]. Acta Ecol Sinica, 2007, 27(9): 3844–3851 (in Chinese with English abstract).

      [9] Wang Guo-ping, Liu Jing-shuang, Wang Jin-da, Yu Jun-bao. Soil phosphorus forms and their variations in depressional and riparian freshwater wetlands (Sanjiang Plain, Northeast China) [J]Geoderma, 2006, 132(1/2): 59–74.

      [10] Hieltjes A H M, Lijklema L. Fractionation of inorganic phosphates in calcareous sediments [J]J Environ Qual, 1980, 9(3): 405–407.

      [11] Lin Chunye, Wang Zhigang, He Mengchang, Li Yanxia, Liu Ruimin, Yang Zhifeng. Phosphorus sorption and fraction characteristics in the upper, middle and low reach sediments of the Daliao river systems, China [J]J Hazard Mater, 2009, 170(1): 278–285.

      [12] Dunne E J, Culleton N, O’Donovan G, Harrington R, Daly K. Phosphorus retention and sorption by constructed wetland soils in Southeast Ireland [J]Water Res, 2005, 39(18): 4355–4362.

      [13] Haggard B E, Soerens T S. Sediment phosphorus release at a small impoundment on the Illinois River, Arkansas and Oklahoma, USA [J]Ecol Eng, 2006, 28(3): 280–287.

      [14] Heredia O S, Fernandez Cirelli A. Environmental risks of increasing phosphorus addition in relation to soil sorption capacity [J]Geoderma, 2007, 137(3): 426–431.

      [15] Liu Wenzhi, Liu Guihua, Li Siyue, Zhang Quanfa. Phosphorus sorption and desorption characteristics of wetland soils from a subtropical reservoir [J]Mar Freshw Res, 2010, 61(5): 507–512.

      [16] Lair G J, Zehetner F, Khan Z H, Gerzabek M H. Phosphorus sorption-desorption in alluvial soils of a young weathering sequence at the Danube River [J]Geoderma, 2009, 149(1/2): 39–44.

      [17] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京: 中國(guó)農(nóng)業(yè)科技出版社, 2000: 638p. Lu Ru-kun. Analytical Methods of Soil Agrochemistry [M]. Beijing: China Agricultural Science and Technology Press, 2000: 638p (in Chinese).

      [18] O’Connor D J, Connolly J P. The effect of concentration of adsorbing solids on the partition coefficient [J]Water Res, 1980, 14(10): 1517–1523.

      [19] Wang Shengrui, Jin Xiangcan, Bu Qingyun, Zhou Xiaoning, Wu Fengchang. Effects of particle size, organic matter and ionic strength on the phosphate sorption in different trophic lake sediments [J]J Hazard Mater, 2006, 128(2): 95–105.

      [20] 秦勝金, 劉景雙, 王國(guó)平, 周旺明. 三江平原不同土地利用方式下土壤磷形態(tài)的變化[J]環(huán)境科學(xué), 2007, 28(12): 2777–2782. Qin Sheng-jin, LIU Jing-shuang, WANG Guo-ping, ZHOU Wang-ming. Phosphorus fractions under different land uses in Sanjiang Plain [J]. Environ Sci, 2007, 28(12): 2777–2782 (in Chinese with English abstract).

      [21] 白軍紅, 余國(guó)營(yíng), 張玉霞. 向海濕地土壤中無(wú)機(jī)磷酸鹽的存在形態(tài)研究[J]水土保持學(xué)報(bào), 2001, 15(1): 98–101. Bai Jun-hong, Yu Guo-ying, Zhang Yu-xia. Existing forms of soil inorganic phosphorus in Xianghai Wetland [J]. J Soil Water Conserv, 2001, 15(1): 98–101 (in Chinese with English abstract).

      [22] 梁威, 邵學(xué)新, 吳明, 李文華, 葉小齊, 蔣科毅. 杭州灣濱海濕地不同植被類型沉積物磷形態(tài)變化特征[J]生態(tài)學(xué)報(bào), 2012, 32(16): 5025–5033. Liang Wei, Shao Xue-xin, Wu Ming, Li Wen-hua, Ye Xiao-qi , Jiang Ke-yi. Phosphorus fraction in the sediments from different vegetation type in hangzhou bay coastal wetlands [J]. Acta Ecol Sinica, 2012, 32(16): 5025–5033 (in Chinese with English abstract).

      [23] Tiessen H, Stewart J W B, Cole C V. Pathways of phosphorus transformations in soils of differing pedogenesis [J]Soil Sci Soc Am J, 1984, 48(4): 853–858.

      [24] Soon Y K, Arshad M A. Effects of cropping systems on nitrogen, phosphorus and potassium forms and soil organic carbon in a Gray Luvisol [J]Biol Fertil Soil, 1996, 22(1/2): 184–190.

      [25] 向萬(wàn)勝, 童成立, 吳金水, 李學(xué)垣. 濕地農(nóng)田土壤磷素的分布、形態(tài)與有效性及磷素循環(huán)[J]生態(tài)學(xué)報(bào), 2001, 21(12): 2067–2073. Xiang Wan-sheng, Tong Cheng-li, Wu Jin-shui, Li Xue-yuan. Chemical forms, availability and cycling of soil phosphorus in wetland farming systems[J]. Acta Ecol Sinica, 2001, 21(12): 2067–2073 (in Chinese with English abstract).

      [26] Tuchman N C, Larkin D J, Geddes P, Wildova R. Patterns of environmental change associated withinvasion in a Great Lakes coastal wetland [J]Wetlands, 2009, 29(3): 964–975.

      [27] Chen C R, Condron L M, Sinaj S, Davis M R, Sherlock R R, Frossard E. Effects of plant species on phosphorus availability in a range of grassland soils [J]Plant Soil, 2003, 256(1): 115–130.

      [28] 黃樹(shù)輝, 曾光輝, 黃宏. 濕地沉積物磷的吸附與解吸研究[J]水土保持學(xué)報(bào), 2008, 22(2): 187–190. Huang Shu-hui, Zeng Guang-hui, Huang Hong. Desorption and sorption of phosphorus by wetland sediments [J]. J Soil Water Conserv, 2008, 22(2): 187–190 (in Chinese with English abstract).

      [29] Syers J K, Browman M G, Smillie G W, Corey R B. Phosphate sorption by soils evaluated by the Langmuir adsorption equation [J]. Soil Sci Soc Am Proc, 1973, 37(3): 358–363.

      [30] Hartono A, Funakawa S, Kosaki T. Phosphorus sorption-desorption characteristics of selected acid upland soils in Indonesia [J]Soil Sci Plant Nutrit, 2005, 51(6): 787–799.

      [31] Villapando R R, Graetz D A. Phosphorus sorption and desorption properties of the spodic horizon from selected Florida Spodosols [J]Soil Sci Soc Am J, 2001, 65(2): 331–339.

      [32] 彭佩欽, 張文菊, 童成立, 仇少君, 張文超. 洞庭湖濕地土壤碳、氮、磷及其與土壤物理性狀的關(guān)系[J]應(yīng)用生態(tài)學(xué)報(bào), 2005, 16(10): 1872–1878. Peng Pei-qin, Zhang Wen-ju, Tong Cheng-li, Qiu Shao-jun, Zhang Wen-shao. Soil C, N and P contents and their relation-ships with soil physical properties in wetlands of Dongting Lake floodplain [J]. Chinese J Appl Ecol, 2005, 16(10): 1872–1878 (in Chinese with English abstract).

      [33] Cross A F, Schlesinger W H. Biological and geochemical controls on phosphorus fractions in semiarid soils [J]Biogeochemistry, 2001, 52(2): 155–172.

      [34] 羅先香, 敦萌, 閆琴. 黃河口濕地土壤磷素動(dòng)態(tài)分布特征及影響因素[J]水土保持學(xué)報(bào), 2011, 25(5): 154–160. Huang Xian-xiang, Dun Meng, Yan Qin. Dynamic distribution and influence factors of soil phosphorus in Yellow River Estuary Wetland [J]. J Soil Water Conserv, 2011, 25(5): 154–160 (in Chinese with English abstract).

      [35] Wang Shengrui, Jin Xiangcan, Pang Yan, Zhao Haichao, Zhou Xiaoning, Wu Fengchang. Phosphorus fractions and phos-phate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of Yangtze River region, China [J]J Colloid Interface Sci, 2005, 289(2): 339–346.

      Fractionation and adsorption-desorption characteristics of phosphorus in newly formed wetland soils of Yellow River Delta, China

      SUN Jun-na1, 2, XU Gang1*and SHAO Hong-bo1

      1. Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China

      A modified Hedley phosphorus (P) fractionation was used to study the P distribution seaward in the newly formed wetlands soils of Yellow River Delta. In addition, the adsorption-desorption experiments were performed to evaluate the ability of P retention and release in the sampled soils. The results showed that inorganic P remained the largest portion of total P (TP), accounting for more than 93% of TP. Due to the lower content of organic matter, the organic P was relatively low in these soils. Among the inorganic P, Dilute HCl-P was the dominated form, related with the content of Ca in soils. The content of available P was 18.6~33.4 mg/kg, accounting for only 3.2%~5.9% of TP in soils, which might restrict the growth of plants in the wetland system. Furthermore, it was found that the content of available P in the sampling site covered with plants was higher than that in the beach soils, indicating that the vegetation cover may enhance the accumulation of soil available P. According to the adsorption-desorption experiments, when the concentration of initial P addition was in the range of 0.05~5 mg/L, the P adsorption increased with the increase of initial P concentration. Moreover, the percentage of adsorption was 70%~99% while desorption rate was less than 7%. It could be concluded that in these soils, the capacity of P retention was high and the release potential was relatively low.

      phosphorus; Hedley fractionation; adsorption; desorption; Yellow River Delta

      P595; X142

      A

      0379-1726(2014)04-0346-06

      2013-12-14;

      2014-04-02;

      2014-04-08

      國(guó)家自然科學(xué)基金項(xiàng)目(41001137, 41171216); 中國(guó)科學(xué)院煙臺(tái)海岸帶研究所“一三五”發(fā)展規(guī)劃項(xiàng)目(Y254021031); 中國(guó)科學(xué)院創(chuàng)新團(tuán)隊(duì)國(guó)際合作伙伴計(jì)劃(KZCX2-YW-T14)

      孫軍娜(1984–), 女, 博士研究生, 環(huán)境科學(xué)專業(yè)。E-mail: jnsun@yic.ac.cn

      XU Gang, E-mail: gxu@yic.ac.cn , Tel: +86-535-2109169

      猜你喜歡
      磷素有機(jī)磷無(wú)機(jī)
      磷素添加對(duì)土壤水分一維垂直入滲特性的影響
      無(wú)機(jī)滲透和促凝劑在石材防水中的應(yīng)用
      石材(2020年9期)2021-01-07 09:30:04
      加快無(wú)機(jī)原料藥產(chǎn)品開(kāi)發(fā)的必要性和途徑
      有機(jī)磷化工廢水治理方法探討
      有機(jī)磷改性納米SiO2及其在PP中的應(yīng)用
      有機(jī)心不如無(wú)機(jī)心
      山東青年(2016年2期)2016-02-28 14:25:31
      有機(jī)磷中毒致周圍神經(jīng)損害的電生理研究
      固相萃取填料對(duì)有機(jī)磷農(nóng)殘萃取效率
      Fe2(SO4)3氧化脫除煤中無(wú)機(jī)硫的研究
      作物高效利用土壤磷素的研究進(jìn)展
      土壤與作物(2013年4期)2013-03-11 18:47:35
      老河口市| 白水县| 新巴尔虎右旗| 乐安县| 株洲市| 崇礼县| 丹东市| 舞阳县| 安西县| 巫山县| 旺苍县| 清涧县| 咸阳市| 华池县| 宜州市| 治多县| 耿马| 八宿县| 马尔康县| 太白县| 连城县| 陈巴尔虎旗| 砀山县| 霍林郭勒市| 遵化市| 华宁县| 临泉县| 门头沟区| 安塞县| 九江市| 黔东| 新和县| 民权县| 封丘县| 莱州市| 桓仁| 岳阳县| 绥芬河市| 措美县| 呼和浩特市| 都兰县|