• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cs取代對Ni-H3PW12O40/SiO2催化劑結(jié)構(gòu)性質(zhì)和催化性能的影響

    2014-06-23 06:50:14孫曉丹吳義志孫素華杰朱慧紅伊?xí)詵|方維平
    物理化學(xué)學(xué)報 2014年3期
    關(guān)鍵詞:醇醚撫順物理化學(xué)

    金 浩 孫曉丹 董 澍 吳義志 孫素華 劉 杰朱慧紅 楊 光 伊?xí)詵| 方維平

    (1中國石油化工股份有限公司撫順石油化工研究院,遼寧撫順113001;2廈門大學(xué)化學(xué)化工學(xué)院,固體表面物理化學(xué)國家重點實驗室,醇醚酯化工清潔生產(chǎn)國家工程實驗室,福建廈門361005;3中國石油撫順石化公司石油二廠,遼寧撫順113004)

    1 Introduction

    Hydrocracking is a catalytic petroleum refining process that is commonly applied to convert the heavier petroleum fractions such as vacuum distillates into gasoline or middle distillates.1,2As the growing demand for high quality middle distillates and more stringent specifications,hydrocracking becomes a strategic process in a modern refinery.3

    Hydrocracking catalysts are bifunctional,i.e.,the acid sites which provide the cracking function and metal sites with a hydrogenation-dehydrogenation function.4-7The typical acidic supports are amorphous oxides,mixtures of oxides,zeolites,and silicoaluminaphosphates.The metals most commonly used are Pt,Pd or bimetallic systems(i.e.,NiW,NiMo,and CoMo).The balance between the acidity of the support-concentration of acidic sites and their strength-hydro/dehydrogenation activity of the metal is of primary importance in determining the selectivity of hydroisomerization and distribution of cracking products.

    Heteropolyacids(HPAs)with Keggin structure and their salts have been widely investigated as catalysts in many oxidation and acid-catalyzed reactions due to their strong acidity,high oxidation potential,and redox character.8-12The tungstophosphoric acid(H3PW12O40)(HPW)is among the most extensively studied,13-15since it possesses the highest Br?nsted acidity.Nevertheless,the main drawback of such materials for catalytic application is their low specific surface area(<10 m2·g-1).Therefore,for many catalytic applications,they are usually impregnated on different porous materials with high surface area.Among these carriers,silica has been widely favored as the supporting material for HPA,since it interacts weakly with the Keggin anions and thus preserves their structure.16,17Yet in reactions that involve polar media,true heterogenization of H3PW12O40could not be achieved on silica,and the acid leached out into the reaction mixture.18,19

    Heteropolyacid salts are prepared by exchanging part of the protons of HPA with cations with higher ionic radii,like Cs+and NH4+.20,21They have higher surface area(up to 150 m2·g-1compared to 10 m2·g-1of HPA)and improved thermal stability than their parent acids.In addition,they are known to be insoluble even in liquids as polar as water.Consequently,HPA salts should be better suited for practical applications that might involve polar reagents in harsh operating conditions.However,these salts tend to form colloidal suspensions in polar media,resulting in difficulties in the catalyst separation.22Moreover,their small particle size(unit inμm)limits their application for use as catalysts in commercial fixed bed or slurry type reactors.23

    An obvious solution as often applied in industrial practice is to support these HPA salts on a larger particle size(unit in mm)carrier.Unfortunately,the insolubility of HPA salts with big cation makes conventional aqueous impregnation on different supports impossible.Consequently,the catalysts were prepared by sequential impregnation andin situreaction on different types of supports,as reported in previous literature.24-28

    In our previous work,16we reported that non-sulfided supported Ni-H3PW12O40/SiO2catalysts exhibited high hydrocracking activity ofn-decane.But H3PW12O40has an excessive acidity and an overhigh cracking activity,which increases the probability to undergo secondary reactions.We also studied hydrogen spillover on Ni-CsxH3-xPW12O40(x=0,1,2)double-function hydrocracking catalysts by temperature programmed desorption and thermodynamics calculation.29The results show that the hydrogen adsorption amount on the two-component Ni-CsxH3-xPW12O40(x=0,1,2)catalysts is much greater than that on single-component catalysts,such as nickel,tungstophosphoric acid,and its cesium salts.Moreover,the Cs salts of H3PW12O40overcome these disadvantages,which have a more widely tunable acidity,a higher thermal stability,and much lower water solubility.21

    Recently,we30also reported that non-sulfided supported Ni-CsxH3-xPW12O40/SiO2catalysts prepared by direct synthesis using tetraethyl orthosilicate as SiO2source.Taking into account the thermal stability of CsxH3-xPW12O40and the strong interaction between CsxH3-xPW12O40and support by direct synthesis,the calcination temperature of the catalyst could not be too high.The properties of support were restricted by calcination temperature and the pore size of the support was about 4 nm.

    In the present paper,the Ni-CsxH3-xPW12O40/SiO2catalysts were prepared by two-step impregnation andin situreaction on the SiO2support.It avoided the restriction of support properties due to calcination temperature and the strong interaction between CsxH3-xPW12O40and support by direct synthesis.The catalysts were characterized by N2adsorption(BET),inductively coupled plasma atomic emission spectrometry(ICP),X-ray diffraction(XRD),Raman,in situXRD,NH3-temperature programmed desorption(NH3-TPD),H2-temperature programmed reduction(H2-TPR),H2-TPD,and Fourier transform infrared(FTIR)spectra of pyridine adsorption.The influence of Cs substitution on catalytic performance of the catalysts for hydrocracking ofn-decane was investigated.

    2 Experimental

    2.1 Preparation of catalysts

    The catalysts were prepared by two-step impregnation andinsitureaction on the SiO2support.Typical procedures for the preparation of Ni-CsxH3-xPW12O40/SiO2catalysts are as follows:SiO2support(Qingdao Haiyang Chemical Co.,specific surface area(378 m2·g-1),40-60 mesh)was impregnated with a solution containing the desired quantities of Ni(NO3)2(Shanghai Hengxin Chemical Reagent Co.,analyzed grade)and Cs2CO3(Sinopharm Chemical Reagent Co.,3N).Impregnated samples were dried overnight at 110 °C and then calcined in air at 400 °C for 3 h.Then the samples were impregnated with a solution containing the desired quantities of H3PW12O40(Sinopharm Chemical Reagent Co.,analyzed grade).After impregnation,samples were dried overnight at 110°C without calcination.

    Samples prepared with 8%amount of nickel and 50%amount of CsxH3-xPW12O40were labeled as 8%Ni-50%CsxH3-xPW/SiO2,wherein“x”stands for the molar of replaced by Cs inthe CsxH3-xPW12O40(x=0-3),while CsxH3-xPW stands for the CsxH3-xPW12O40.

    2.2 Characterization

    The chemical composition of the samples was determined using an IRIS Intrepid II XSP ICP atomic emission spectrometer(Thermo,USA).

    The surface area(BET)and pore volume of the catalysts were determined by means of nitrogen adsorption at-196°C on an adsorption automatic instrument(Micromeritics Tristar 3020,USA).The samples were pretreated at 300°C for 3 h in a vacuum.

    Powder X-ray diffraction(XRD)characterization was carried out on a Panalytical(NetherLands)X2 Pert PRO automatic powder diffractometer operated at 40 kV and 30 mA,using CuKα(λ=0.15406 nm)monochromatized radiation in all cases.Each step of 0.0167°was measured for 10 s from 10°to 90°(2θ).JCPDS file database was used for peak identification.

    Raman spectra were recorded with a Renishaw(UK)inVia Raman System equipped with a charge-coupled device(CCD)detector at room temperature.The 532 nm of diode laser was used as the exciting source with a power of 22 mW.

    In situXRD was performed under the 5%H2/Ar mixture atmosphere.The first spectrum was recorded at room temperature(25°C).The temperature was then raised up to 300,350,400,450,500,550,600,650,700,750,and 800°C,maintained at each value for 0.5 h before recording a new spectrum.

    Acid properties were determined by ammonia temperatureprogrammed desorption in a Micromeritics AutoChem II 2920 analyzer(USA).0.2 g of catalyst sample was filled in a U-shaped quartz reactor tube and a thermocouple was placed onto the top of the sample.All samples were pretreated inAr(20 mL·min-1)at 400 °C for 2 h then in H2(20 mL·min-1)for 1 h.After cooling down to 100°C,10%NH3/Ar was passed over the samples for 30 min.Then,the samples were swept with Ar for 60 min and finally the desorption step was performed from 100 to 700 °C at a heating rate of 10 °C·min-1and 30 mL·min-1of Ar total flow.The desorbed products were monitored by thermal conductivity detector(TCD)and mass spectrometry(MS)equipment simultaneously.

    The H2-temperature programmed reduction experiments were performed with a gas chromatography(GC)-TPR apparatus.The samples(50 mg)were treated in a flow of Ar(20 mL·min-1)at 300 °C for 30 min and then cooled to 50 °C.The samples were subsequently switched to a flow of 5%H2/Ar mixture(20 mL·min-1)and heated from 50 to 900 °C at a rate of 10 °C·min-1.The effluent gas mixture was passed through a cold trap at 0°C to remove water.Hydrogen consumption was monitored by an on-line gas chromatograph equipped with a TCD.

    H2-TPD measurements were done in a Micromeritics Auto-Chem II 2920 analyzer.0.2 g of catalyst sample was filled in a U-shaped quartz reactor tube and a thermocouple was placed onto the top of the sample.All samples were pretreated in Ar(20 mL·min-1)at 400 °C for 2 h then in H2(20 mL·min-1)for 1 h.After cooling down to 50°C,the samples were swept with Ar for 60 min and finally the desorption step was performed from 50 to 700 °C at a heating rate of 10 °C·min-1and 30 mL·min-1ofAr total flow.

    FTIR spectra of pyridine adsorption were recorded using a Thermo Nicolet Nexus spectrometer equipped with a liquidnitrogen-cooled mercury cadmium telluride(MCT)detector.The samples were pressed into self-supporting wafers and treated in H2at 400°C in an IR cell for 1 h followed by evacuation at 400°C for 5 min to remove the gas phase H2.After cooling to 100°C,the samples were exposed to pyridine vapor for 10 min.Then the spectra were recorded after evacuation at high temperatures.The IR spectra were recorded in the spectral range of 1700 to 1400 cm-1with 32 scans and at a resolution of 4 cm-1.

    2.3 Catalytic studies

    n-Decane used in the present study was purchased from Tianjin Kermel Chemical Reagent Co.(analyzed Grade)without further purification.

    The catalytic performance of the catalysts was measured in a down flow fixed-bed quartz tube reactor cased in a stainless steel tube(inner diameter(id)=8 mm;50 cm in length)at 2.0 MPa,T=300°C,liquid hourly space velocity(LHSV)=2.92 h-1and H2/n-decane volume ratio of 1500.Prior to reaction,all the catalysts were reduced by a flow of H2at 400°C for 1 h.0.5 g of the catalyst was used in each experiment.n-Decane was introduced into the reactor using a micro pump(2ZB-1L10).The products were collected and identified when the reaction had begun for 4 h.The activity data were usually obtained after 10 h reaction.The products were directly analyzed on-line in a gas chromatograph with an OV-101 capillary column(30 m)and flame ionization detector(FID).

    For comparison,an industrial hydrocracking catalyst FC-16(NiW/USY zeolite)was also measured for hydrocracking ofndecane under the same conditions.The industrial catalyst was obtained from FuShun Research Institute of petroleum and petrochemicals,SINOPEC.

    3 Results and discussion

    3.1 Catalysts characterization

    The structural information,pore size distribution,and composition of the catalysts are presented in Table 1 and Table 2.The determined chemical composition from ICP is as expected,indicating that the results of chemical analysis of the catalysts are in good agreement with desired stoichiometries for Ni and CsxH3-xPW.It can be observed that the surface area and pore volume of SiO2after supporting Ni and CsxH3-xPW decrease remarkably,while the pore size increases slightly.This may be due to Ni and CsxH3-xPW blocking the micropores of the SiO2support,therefore,the surface area and pore volume decrease,the pore size increases slightly.However,the surface area and pore volume of the 8%Ni-50%CsxH3-xPW/SiO2catalysts increase with increasing the proportion of Cs in CsxH3-xPW.This may be due to the much higher surface area of CsxH3-xPW with increasing proportion of Cs in CsxH3-xPW,which makes the surface area of the catalysts become higher.

    The XRD patterns of 8%Ni-50%CsxH3-xPW/SiO2and CsxH3-xPW catalysts are presented in Fig.1.It is clear that the intensity of the diffraction peaks of the 8%Ni-50%CsxH3-xPW/SiO2catalysts decreased compared to the CsxH3-xPW due to the interaction of CsxH3-xPW with Ni species and SiO2support.The 8%Ni-50%H3PW/SiO2catalyst shows the presence of characteristic peaks of NiO(37.0°,43.1°,and 62.6°)and Keggin structure of H3PW.27It is interesting to notice that the diffraction peaks of the Keggin structure of CsxH3-xPW(18.2°,23.7°,25.9°,29.9°,35.4°,43.2°,54.3°,and 62.2°)appeared and the intensities of these peaks increased with increasing the proportion of Cs in CsxH3-xPW on the catalysts.This could be attributed to the interaction of CsxH3-xPW with Ni species and SiO2support.

    Fig.1 XRD patterns of 8%Ni-50%CsxH3-xPW/SiO2catalysts

    The Raman spectra of the 8%Ni-50%CsxH3-xPW/SiO2catalysts are presented in Fig.2.Raman scattering spectroscopy is an effective method to study the structure of the supported CsxH3-xPW because it is extremely sensitive to the Keggin unit,and the support has no significant interference on the Raman signals originating from the Keggin unit.All the 8%Ni-50%CsxH3-xPW/SiO2catalysts display similar Raman spectra.The sharp and intense peak at 1009 cm-1can be assigned to stretching vibrations of P―O bond of P―O4,whereas peaks at lower wavenumbers can be assigned to W=O(990 cm-1)and W―O―W(905 cm-1)stretching vibrations.31,32The strong interaction between H3PW and SiO2support reduces the symmetry of Keggin unit.Furthermore,it can be speculated that the intro-duction of Cs also will weaken the interaction between CsxH3-xPW and the SiO2support becomes weaker,reducing the influence on Keggin unit′s symmetry.Therefore,the intensity of these peaks increases with increasing the proportion of Cs in CsxH3-xPW on the catalysts.The Raman results are consistent with XRD characterization.

    Table 1 Chemical composition and textural information of the catalysts

    Table 2 Pore size distribution of the catalysts

    Fig.2 Raman spectra of 8%Ni-50%CsxH3-xPW/SiO2catalysts

    The thermal stabilities of 8%Ni-50%Cs1.5H1.5PW/SiO2and 8%Ni-50%H3PW/SiO2catalysts under the hydrogen atmosphere were studied byin situXRD and the patterns are shown in Fig.3.When the temperature is lower than 500°C,the XRD patterns of the 8%Ni-50%Cs1.5H1.5PW/SiO2catalyst only present the characteristic peaks of the Keggin structure.Compared with the XRD pattern of the catalyst at 25°C,the characteristic diffraction peaks of the catalyst calcined at higher temperature have no change.In the XRD patterns of the catalyst calcined at temperature higher than 500°C,the new intense diffraction peaks of H0.5WO3(23.5°,34°)and Cs0.3WO3(44°)are observed.While for the 8%Ni-50%H3PW/SiO2catalyst calcined at 500°C,the new intense diffraction peak of H0.5WO3(23.5°)is observed.The 8%Ni-50%Cs1.5H1.5PW/SiO2catalyst has improved thermal stability than 8%Ni-50%H3PW/SiO2catalyst.These results indicate that Cs1.5H1.5PW decomposes when the calcination temperature exceeds 500°C.

    Fig.3 In situ XRD patterns of the catalysts calcined at different temperatures under the 5%H2/Ar mixture atmosphere

    The acidity of the 8%Ni-50%CsxH3-xPW/SiO2catalysts was characterized by NH3-TPD and the FTIR of pyridine adsorption.The NH3-TPD profiles of the 8%Ni-50%CsxH3-xPW/SiO2catalysts are shown in Fig.4.All the catalysts show two desorption peaks of ammonia near 170 and 540°C,respectively.It is evident from Fig.4 that the amount of NH3desorbed of the catalysts decreases with increasing the proportion of Cs in CsxH3-xPW.

    In other words,the acid amount of the catalysts decreases with decreasing the H+content in CsxH3-xPW on the catalysts.The 8%Ni-50%CsxH3-xPW/SiO2catalysts show relatively higher acidity compared to the industrial catalyst.

    The FTIR spectra of pyridine adsorbed on reduced 8%Ni-50%CsxH3-xPW/SiO2catalysts are shown in Fig.5.The use of IR spectroscopy to detect the adsorbed pyridine enables to distinguish different acid sites.The band at 1446 cm-1is due to the pyridine adsorbed on the Lewis acid sites.On the other hand,the band at 1538 cm-1is due to the pyridine adsorbed on the Br?nsted acid sites.The band at 1488 cm-1is due to the contributions of Lewis and Br?nsted acid sites.33,34The characteristic absorption bands of pyridine adsorbed on Lewis acid sites and Br?nsted acid sites were observed for 8%Ni-50%CsxH3-xPW/SiO2catalysts.The IR results show that the intensities of absorption bands for Br?nsted acid sites(1538 cm-1)and Lewis acid sites(1446 cm-1)decrease with increasing the proportion of Cs in CsxH3-xPW,and relative amount of Lewis acid sites is higher than that of Br?nsted acid sites.The results are consistent with NH3-TPD characterization.

    Fig.4 NH3-TPD profiles of reduced catalysts

    Fig.5 FTIR spectra of pyridine adsorbed and desorbed on reduced catalysts

    The H2-TPR profiles of the 8%Ni-50%CsxH3-xPW/SiO2catalysts are shown in Fig.6.The 8%Ni-50%H3PW/SiO2catalyst displays three reduction peaks.The first reduction peak near 400°C corresponds to the reduction of NiO species,which had weak interaction with the H3PW.Thein situXRD results showed that the CsxH3-xPW begins to decompose when the calcinations temperature exceeds 500°C.The second reduction peak near 580°C is mainly attributed to the reduction of NiO species,which had strong interaction with the W species of the catalysts.The third reduction peak near 700°C corresponds to the reduction of W species.However,the 8%Ni-50%CsxH3-xPW/SiO2(x=0.5,1,1.5,2)catalysts show two reduction peaks.The first reduction peak near 400°C corresponds to the reduction of NiO species and the peak area becomes larger.The second reduction peak near 690°C corresponds to the reduction of W species.This may be due to the interaction between NiO and CsxH3-xPW gradually weakened with increasing the proportion of Cs in CsxH3-xPW.The reduction peak(580°C)shifts to lower temperature(400 °C)and the peak area(around 400 °C)becomes larger.The phenomenon is consistent with the result of Raman characterization.

    The H2-TPD profiles of the 8%Ni-50%CsxH3-xPW/SiO2catalysts are shown in Fig.7.All the catalysts present two H2-desorbed peaks near 160 and 450°C,respectively.The amount of H2desorbed decreases with increasing the proportion of Cs in CsxH3-xPW.In other words,the amount of H2desorbed increases with increasing content of H+in the CsxH3-xPW on the catalysts.

    This phenomenon may be explained by the hydrogen spillover,which has been found in our past work.16,17,27,35The dissociated hydrogen molecule on the metal Ni can spill to the acid sites(CsxH3-xPW)and combine with the H+.Both the dissociated molecule hydrogen and the H+of the CsxH3-xPW are highly reactive hydrogen species,which will produce the relatively stable species Hn+.It seems that there is a balance on the surface of the CsxH3-xPW,that is

    Fig.6 H2-TPR profiles of the catalysts

    Fig.7 H2-TPD profiles of the catalysts

    As the concentration of Hn+species on the surface of CsxH3-xPW increases,the reactive hydrogen species H·can reversely spill over back to the Ni0sites.This process can form a reactive hydrogen species layer covering the catalyst′s surface.The CsxH3-xPW can not only act as the acid sites but also act as the hydro-dehydrogenation sites.This is a non-classical bifunctional mechanism which was reported in some papers.16,27,35,36

    3.2 Catalytic activity

    The activity of the 8%Ni-50%CsxH3-xPW/SiO2catalysts for hydrocracking ofn-decane is shown in Table 3,wherein the conversion ofn-decane and the C+5selectivity were taken to express the activity of the catalyst.The catalytic performance of the prepared catalysts was compared with that of a typical NiW/zeolite industrial catalyst.It is evident from Table 3 that the 8%Ni-50%CsxH3-xPW/SiO2catalysts and the industrial catalyst all exhibit high activity for the hydrocracking ofn-decane.Among the catalysts tested,8%Ni-50%H3PW/SiO2catalyst shows highest conversion ofn-decane and lower C5+selectivity.Moreover,after the introduction of Cs species,the conversion ofndecane decreases while the C5+selectivity is improved for 8%Ni-50%CsxH3-xPW/SiO2catalysts.Furthermore,the 8%Ni-50%CsxH3-xPW/SiO2catalysts show higher activity compared to the industrial catalyst.

    With increasing the proportion of Cs in CsxH3-xPW,the conversion ofn-decane decreases from 99.2%to 89.5%for 8%Ni-50%CsxH3-xPW/SiO2catalysts.The reduced 8%Ni-50%H3PW/SiO2catalyst shows the highest activity,superior to the 8%Ni-50%CsxH3-xPW/SiO2(x≠0)catalyst and the industrial catalyst.Combined with the results of H2-TPD and H2-TPR characterization,it can be inferred that the hydrogenation ability of the catalysts is gradually weakened with increasing the proportion of Cs in CsxH3-xPW.

    With increasing the proportion of Cs in CsxH3-xPW,the C5+selectivity of the catalysts increases from 74.1%to 85.2%.The reduced 8%Ni-50%Cs2HPW/SiO2shows the highest C5+selectivity,superior to the 8%Ni-50%H3PW/SiO2catalyst and the industrial catalyst.Based on the results of NH3-TPD and FTIR spectra of pyridine adsorption,it can be concluded that the acidity of the 8%Ni-50%CsxH3-xPW/SiO2catalysts is in line with their C5+selectivity,which is ascribed to the gradually lower cracking activity of the catalysts with increasing the proportion of Cs in CsxH3-xPW owing to their weaker acidity.According to bifunctional reaction scheme,37the hydroisomerization and hydrocracking go through the formation of carbonium ions,the lower the acid strength of the acid sites,the lower will be the average lifetime of the carbonium ions on the acid sites.This will decrease the probability to undergo secondary reactions.In addition,the pore size of the 8%Ni-50%CsxH3-xPW/SiO2catalysts increases slightly with increasing the proportion of Cs in CsxH3-xPW.Indeed,it is well-known that the micropore of zeolite is beneficial for secondary reactions.Therefore,it can be expected that large pore size of the 8%Ni-50%CsxH3-xPW/SiO2catalysts would favor the diffusion of liquid products while decreasing the probability of secondary reactions.Moreover,the 8%Ni-50%Cs1.5H1.5PW/SiO2catalyst shows the highest C5+yield of 80.3%in the 8%Ni-50%CsxH3-xPW/SiO2catalysts,which is much higher than the yield of 73.5%on the 8%Ni-50%H3PW/SiO2catalyst and the yield of 62.1%on the industrial catalyst.

    Table 3 Catalytic performance of the catalysts for n-decane hydrocracking

    4 Conclusions

    The results obtained in the present work indicate that the 8%Ni-50%CsxH3-xPW/SiO2catalysts?acidityviaNH3-TPD and FTIR spectra of pyridine adsorption,and hydrogenation-dehydrogenation functionviaH2-TPR and H2-TPD decrease with Cs gradual substituting in CsxH3-xPW.The conversion ofn-decane decreases slightly and the C5+selectivity of the catalysts increases with increasing the proportion of Cs in CsxH3-xPW.The best result was obtained on the 8%Ni-50%Cs1.5H1.5PW/SiO2catalyst with the C5+selectivity of 83.8%at then-decane conversion of 95.8%,which is much higher than that of the industrial catalyst.

    (1) Morawski,I.;Mosio-Mosiewski,J.Fuel Process.Technol.2006,87,659.doi:10.1016/j.fuproc.2006.01.006

    (2) Ancheyta,J.;Sánchez,S.;Rodríguez,M.A.Catal.Today2005,109,76.doi:10.1016/j.cattod.2005.08.015

    (3) Roussel,M.;Lemberton,J.L.;Guisnet,M.;Cseri,T.;Benazzi,E.J.Catal.2003,218,427.doi:10.1016/S0021-9517(03)00164-7

    (4) Calemma,V.;Peratello,S.;Perego,C.Appl.Catal.A:Gen.2000,190,207.doi:10.1016/S0926-860X(99)00292-6

    (5)Ren,X.T.;Li,N.;Cao,J.Q.;Wang,Z.Y.;Liu,S.Y.;Xiang,S.H.Appl.Catal.A:Gen.2006,298,144.doi:10.1016/j.apcata.2005.09.031

    (6) Zeng,S.Q.;Blanchard,J.;Breysse,M.;Shi,Y.H.;Su,X.T.;Nie,H.Appl.Catal.A:Gen.2005,294,59.doi:10.1016/j.apcata.2005.07.015

    (7) Roussel,M.;Norsic,S.;Lemberton,J.L.;Guisnet,M.;Cseri,T.;Benazzi,E.Appl.Catal.A:Gen.2005,279,53.doi:10.1016/j.apcata.2004.10.011

    (8) Timofeeva,M.N.Appl.Catal.A:Gen.2003,256,19.doi:10.1016/S0926-860X(03)00386-7

    (9)Zhang,Q.D.;Tan,Y.S.;Yang,C.H.;Han,Y.Z.J.Mol.Catal.A:Chem.2007,263,149.doi:10.1016/j.molcata.2006.08.044

    (10) Zhang,P.;Huang,M.;Chu,W.;Luo,S.Z.;Li,T.Acta Phys.-Chim.Sin.2013,29,770.[張 坡,黃 明,儲 偉,羅仕忠,李 通.物理化學(xué)學(xué)報,2013,29,770.]doi:10.3866/PKU.WHXB201301152

    (11) Gu,L.Y.;Gao,B.J.;Fang,X.L.Acta Phys.-Chim.Sin.2013,29,191.[顧來沅,高保嬌,房曉琳.物理化學(xué)學(xué)報,2013,29,191.]doi:10.3866/PKU.WHXB201210266

    (12) Yuan,C.Y.;Chen,J.Chin.J.Catal.2011,32,1191.doi:10.1016/S1872-2067(10)60236-7

    (13) Kumar,G.S.;Vishnuvarthan,M.;Palanichamy,M.;Murugesan,V.J.Mol.Catal.A:Chem.2006,260,49.doi:10.1016/j.molcata.2006.07.050

    (14) Yang,X.K.;Chen,L.F.;Wang,J.A.;Nore?a,L.E.;Novaro,O.Catal.Today2009,148,160.doi:10.1016/j.cattod.2009.03.022

    (15) Wang,J.A.;Chen,L.F.;Nore?a,L.E.;Navarrete,J.Appl.Catal.A:Gen.2009,357,223.doi:10.1016/j.apcata.2009.01.023

    (16)Qiu,B.;Yi,X.D.;Lin,L.;Fang,W.P.;Wan,H.L.Catal.Today2008,131,464.doi:10.1016/j.cattod.2007.10.095

    (17) Qiu,B.;Yi,X.D.;Lin,L.;Fang,W.P.;Wan,H.L.Catal.Commun.2009,10,1296.doi:10.1016/j.catcom.2009.02.007

    (18) Vazquez,P.;Pizzio,L.;Romanelli,G.;Autino,J.;Caceres,C.;Blanco,M.Appl.Catal.A:Gen.2002,235,233,doi:10.1016/S0926-860X(02)00266-1

    (19) Haber,J.;Pamin,K.;Matachowski,L.;Mucha,D.Appl.Catal.A:Gen.2003,256,141.doi:10.1016/S0926-860X(03)00395-8

    (20)Narasimharao,K.;Brown,D.R.;Lee,A.F.;Newman,A.D.;Siril,P.F.;Tavener,S.J.;Wilson,K.J.Catal.2007,248,226.doi:10.1016/j.jcat.2007.02.016

    (21)Luzgin,M.V.;Kazantsev,M.S.;Volkova,G.G.;Wang,W.;Stepanov,A.G.J.Catal.2011,277,72.doi:10.1016/j.jcat.2010.10.015

    (22) Okuhara,T.;Kimura,M.;Kawai,T.;Xu,Z.;Nakato,T.Catal.Today1998,45,73.doi:10.1016/S0920-5861(98)00251-X

    (23) Choi,S.;Wang,Y.;Nie,Z.;Liu,J.;Peden,C.H.F.Catal.Today2000,55,117.doi:10.1016/S0920-5861(99)00231-X

    (24) Soled,S.;Miseo,S.;McVicker,G.;Gates,W.E.;Gutierrez,A.;Paes,J.Catal.Today1997,36,441.doi:10.1016/S0920-5861(96)00235-0

    (25) Yang,W.;Billy,J.;Taarit,Y.B.;Védrine,J.C.;Essayem,N.Catal.Today2002,73,153.doi:10.1016/S0920-5861(01)00508-9

    (26)Gao,R.H.;Chen,H.;Le,Y.Y.;Dai,W.L.;Fan,K.N.Appl.Catal.A:Gen.2009,352,61.doi:10.1016/j.apcata.2008.09.031

    (27) Jin,H.;Yi,X.D.;Sun,S.H.;Liu,J.;Yang,G.;Zhu,H.H.;Fang,W.P.Fuel Process.Technol.2012,97,52.doi:10.1016/j.fuproc.2012.01.011

    (28) Popa,A.;Sasca,V.;Holclajtner-Antunovi,I.Microporous Mesoporous Mat.2012,156,127.doi:10.1016/j.micromeso.2012.02.030

    (29)Yuan,S.H.;Ji,N.H.;Xia,W.S.;Yi,X.D.;Fang,W.P.React.Kinet.Mech.Catal.2012,106,475.doi:10.1007/s11144-012-0448-y

    (30) Jin,H.;Guo,D.Y.;Sun,X.D.;Sun,S.H.;Liu,J.;Zhu,H.H.;Yang,G.;Yi,X.D.;Fang,W.P.Fuel2013,112,134.doi:10.1016/j.fuel.2013.05.007

    (31) Rocchiccioli-Deltcheff,C.;Fournier,M.;Franck,R.;Thouvenot,R.Inorg.Chem.1983,22,207.doi:10.1021/ic00144a006

    (32)Qu,X.S.;Guo,Y.H.;Hu,C.W.J.Mol.Catal.A:Chem.2007,262,128.doi:10.1016/j.molcata.2006.08.026

    (33) Chen,L.F.;Nore?a,L.E.;Wang,J.A.;Zhou,X.L.;Navarrete,J.;Hernández,I.;Montoya,A.;Pérez Romo,P.;Salas,P.;Castella Pergher,S.Catal.Today2008,133-135,331.

    (34) Varisli,D.;Dogu,T.;Dogu,G.Ind.Eng.Chem.Res.2008,47,4071.doi:10.1021/ie800192t

    (35) Jin,H.;Yi,X.D.;Sun,X.D.;Qiu,B.;Fang,W.P.;Weng,W.Z.;Wan,H.L.Fuel2010,89,1953.doi:10.1016/j.fuel.2009.11.031

    (36) Kuba,S.;Lukinskas,P.;Grasselli,R.K.;Gates,B.C.;Kn?zinger,H.J.Catal.2003,216,353.doi:10.1016/S0021-9517(02)00125-2

    (37) Corma,A.;Martinez,A.;Pergher,S.;Peratello,S.;Perego,C.;Bellusi,G.Appl.Catal.A:Gen.1997,152,107.doi:10.1016/S0926-860X(96)00338-9

    猜你喜歡
    醇醚撫順物理化學(xué)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    撫順平頂山慘案紀念館
    仲烷基醇醚及其在濃縮洗衣液中的應(yīng)用性能研究
    圖說撫順琥珀(六)
    中國寶玉石(2018年3期)2018-07-09 03:14:02
    Chemical Concepts from Density Functional Theory
    異構(gòu)醇醚在超濃縮洗衣液中的應(yīng)用探索
    兩種乙氧基化技術(shù)及其對醇醚性能的影響
    《農(nóng)用醇醚柴油燃料》行業(yè)標準近期有望出臺
    河南化工(2014年1期)2014-04-03 12:09:27
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    欧美zozozo另类| 久久久久久人妻| 亚洲三级黄色毛片| 欧美区成人在线视频| 国产精品无大码| 欧美少妇被猛烈插入视频| 国内精品宾馆在线| 亚洲三级黄色毛片| 亚洲激情五月婷婷啪啪| 久久久国产一区二区| 最后的刺客免费高清国语| 亚洲精品456在线播放app| 日韩电影二区| 在线观看av片永久免费下载| 亚洲国产欧美在线一区| 婷婷色综合www| 99热这里只有精品一区| 人人妻人人澡人人爽人人夜夜| 日本色播在线视频| 啦啦啦视频在线资源免费观看| 啦啦啦啦在线视频资源| 伊人久久精品亚洲午夜| 日韩不卡一区二区三区视频在线| 国模一区二区三区四区视频| 高清在线视频一区二区三区| 肉色欧美久久久久久久蜜桃| 日日撸夜夜添| 国模一区二区三区四区视频| 免费少妇av软件| 最近中文字幕2019免费版| 免费播放大片免费观看视频在线观看| 国产高清有码在线观看视频| 晚上一个人看的免费电影| 高清视频免费观看一区二区| 日韩中字成人| 亚洲色图综合在线观看| 熟妇人妻不卡中文字幕| 女性生殖器流出的白浆| 亚洲综合色惰| 精品久久久精品久久久| videos熟女内射| 夫妻性生交免费视频一级片| 亚州av有码| 18禁裸乳无遮挡免费网站照片| 丝瓜视频免费看黄片| 岛国毛片在线播放| 日本vs欧美在线观看视频 | 久久午夜福利片| 亚洲精品456在线播放app| 国产精品99久久久久久久久| 久久人妻熟女aⅴ| 亚洲精品,欧美精品| 丰满人妻一区二区三区视频av| 国产亚洲午夜精品一区二区久久| 三级国产精品片| 久久久欧美国产精品| 亚洲av中文av极速乱| 成人特级av手机在线观看| 水蜜桃什么品种好| 国产毛片在线视频| 久久精品久久久久久噜噜老黄| 亚洲色图综合在线观看| 亚洲不卡免费看| 国产白丝娇喘喷水9色精品| 日韩中字成人| 久久国产精品男人的天堂亚洲 | 国内精品宾馆在线| 久久这里有精品视频免费| 欧美精品一区二区大全| 亚洲欧洲日产国产| 色视频www国产| 人人妻人人爽人人添夜夜欢视频 | 日韩精品有码人妻一区| 亚洲精品国产av成人精品| 少妇精品久久久久久久| 亚洲激情五月婷婷啪啪| 一级毛片电影观看| 嘟嘟电影网在线观看| 国产成人freesex在线| 一区在线观看完整版| 午夜免费鲁丝| 亚洲人成网站在线播| 少妇高潮的动态图| 久久久久视频综合| 欧美xxxx性猛交bbbb| 免费看不卡的av| 汤姆久久久久久久影院中文字幕| 超碰av人人做人人爽久久| 免费在线观看成人毛片| 久久久久久人妻| 国产精品久久久久久久久免| 简卡轻食公司| 欧美 日韩 精品 国产| av线在线观看网站| 国产成人一区二区在线| 亚洲av中文av极速乱| 色哟哟·www| 嫩草影院入口| 2021少妇久久久久久久久久久| 国产精品蜜桃在线观看| videos熟女内射| 99国产精品免费福利视频| 日日摸夜夜添夜夜添av毛片| 精品国产露脸久久av麻豆| 中文欧美无线码| 久久精品久久久久久噜噜老黄| 国产成人精品婷婷| 97热精品久久久久久| 亚洲精品日本国产第一区| 亚洲四区av| 国产爽快片一区二区三区| 国产午夜精品一二区理论片| 免费av不卡在线播放| 大香蕉久久网| 亚洲中文av在线| 精品国产一区二区三区久久久樱花 | 简卡轻食公司| a 毛片基地| 欧美 日韩 精品 国产| 美女中出高潮动态图| 黑丝袜美女国产一区| 性高湖久久久久久久久免费观看| 赤兔流量卡办理| 亚洲精品一区蜜桃| 欧美97在线视频| 女人久久www免费人成看片| 日韩av在线免费看完整版不卡| 成人国产麻豆网| 成人特级av手机在线观看| 丰满少妇做爰视频| 欧美3d第一页| 亚洲三级黄色毛片| 五月开心婷婷网| 欧美亚洲 丝袜 人妻 在线| 免费大片18禁| 国产 一区 欧美 日韩| 纵有疾风起免费观看全集完整版| 久久99热这里只频精品6学生| 熟妇人妻不卡中文字幕| 日韩一本色道免费dvd| 色视频在线一区二区三区| 亚洲精品乱码久久久v下载方式| 九九在线视频观看精品| 国产高清国产精品国产三级 | 日韩伦理黄色片| 亚洲国产最新在线播放| 久久亚洲国产成人精品v| 黄片wwwwww| 一区二区三区乱码不卡18| 成人综合一区亚洲| 欧美日韩精品成人综合77777| 欧美日韩国产mv在线观看视频 | 天堂8中文在线网| 国产91av在线免费观看| 永久免费av网站大全| 国产精品精品国产色婷婷| 久久久久久久大尺度免费视频| 亚洲中文av在线| 亚洲精品乱码久久久久久按摩| 中文天堂在线官网| 99久久精品热视频| 国产黄片视频在线免费观看| 亚洲精品第二区| 乱码一卡2卡4卡精品| 国产精品一区二区三区四区免费观看| av播播在线观看一区| 又粗又硬又长又爽又黄的视频| 亚洲欧美清纯卡通| 99热这里只有是精品50| 男女免费视频国产| 色吧在线观看| 亚洲欧美清纯卡通| 免费黄网站久久成人精品| 欧美 日韩 精品 国产| 国产伦精品一区二区三区四那| 男女免费视频国产| 久久人人爽人人爽人人片va| 春色校园在线视频观看| 国产精品久久久久久精品古装| 男人爽女人下面视频在线观看| a级毛色黄片| av视频免费观看在线观看| 哪个播放器可以免费观看大片| videossex国产| 免费大片黄手机在线观看| 街头女战士在线观看网站| 一区二区三区免费毛片| 亚洲国产精品999| 日日撸夜夜添| 晚上一个人看的免费电影| 成年美女黄网站色视频大全免费 | 22中文网久久字幕| 好男人视频免费观看在线| 大又大粗又爽又黄少妇毛片口| 一区二区三区精品91| 精品久久久久久久末码| 色5月婷婷丁香| 99热网站在线观看| 国产精品久久久久久精品古装| 国产黄片美女视频| 伦理电影免费视频| 国产精品久久久久久精品古装| 你懂的网址亚洲精品在线观看| 99九九线精品视频在线观看视频| 青春草视频在线免费观看| 亚洲精品日韩av片在线观看| 黄色视频在线播放观看不卡| 欧美区成人在线视频| 中国国产av一级| 亚洲av在线观看美女高潮| 亚洲激情五月婷婷啪啪| 一本一本综合久久| 亚洲经典国产精华液单| 国产精品女同一区二区软件| 亚洲av成人精品一区久久| 国产一区二区三区av在线| 插阴视频在线观看视频| 日日摸夜夜添夜夜添av毛片| 日本猛色少妇xxxxx猛交久久| 中文字幕亚洲精品专区| 午夜福利网站1000一区二区三区| 免费观看无遮挡的男女| 精品99又大又爽又粗少妇毛片| 亚洲av成人精品一区久久| 国产伦理片在线播放av一区| 成人高潮视频无遮挡免费网站| 不卡视频在线观看欧美| av天堂中文字幕网| 亚洲av成人精品一二三区| 国产免费视频播放在线视频| 九九爱精品视频在线观看| 三级经典国产精品| 亚洲av成人精品一二三区| 舔av片在线| 欧美丝袜亚洲另类| 国产又色又爽无遮挡免| 久久久午夜欧美精品| 18禁在线播放成人免费| 久久精品久久久久久久性| 久久久久久久久久成人| 色哟哟·www| 国产在线一区二区三区精| 男人舔奶头视频| 国产在视频线精品| 国产成人freesex在线| 2018国产大陆天天弄谢| 国产高清三级在线| 日韩伦理黄色片| 亚洲欧美日韩另类电影网站 | 99九九线精品视频在线观看视频| 久久久精品免费免费高清| 99久久精品热视频| 性色av一级| 男女免费视频国产| 一本久久精品| h日本视频在线播放| 伦理电影免费视频| 日韩一区二区视频免费看| 日韩av不卡免费在线播放| 欧美一区二区亚洲| 18+在线观看网站| 亚洲真实伦在线观看| 国产高清有码在线观看视频| 伦精品一区二区三区| 国产精品人妻久久久影院| 亚洲av不卡在线观看| 久久精品人妻少妇| 国产精品一区www在线观看| 波野结衣二区三区在线| 啦啦啦视频在线资源免费观看| 国产成人午夜福利电影在线观看| 多毛熟女@视频| av在线老鸭窝| 色吧在线观看| 久久精品国产鲁丝片午夜精品| av播播在线观看一区| 下体分泌物呈黄色| 我的老师免费观看完整版| 观看美女的网站| 一个人免费看片子| 亚洲综合色惰| 99久久人妻综合| 国产 一区精品| 狂野欧美白嫩少妇大欣赏| 精品国产露脸久久av麻豆| 一区二区三区四区激情视频| 国产伦在线观看视频一区| 国产国拍精品亚洲av在线观看| 精品亚洲乱码少妇综合久久| 日韩精品有码人妻一区| 久久久久久久国产电影| 久久精品国产自在天天线| 建设人人有责人人尽责人人享有的 | 精品久久久久久电影网| 在线亚洲精品国产二区图片欧美 | 我的老师免费观看完整版| av国产久精品久网站免费入址| 亚洲在久久综合| 国产精品一区二区在线不卡| 午夜免费男女啪啪视频观看| 亚洲欧洲日产国产| 久久这里有精品视频免费| 国产精品国产三级国产av玫瑰| 欧美高清性xxxxhd video| 国产精品成人在线| 啦啦啦啦在线视频资源| 91aial.com中文字幕在线观看| 乱系列少妇在线播放| 制服丝袜香蕉在线| 老司机影院成人| 99精国产麻豆久久婷婷| 插阴视频在线观看视频| 你懂的网址亚洲精品在线观看| 天天躁日日操中文字幕| 三级经典国产精品| 亚洲成人手机| 夫妻性生交免费视频一级片| av国产久精品久网站免费入址| 免费大片黄手机在线观看| 少妇裸体淫交视频免费看高清| 中文字幕久久专区| 国产爱豆传媒在线观看| 国产精品一及| 丰满乱子伦码专区| 久久久色成人| 午夜免费男女啪啪视频观看| 少妇丰满av| 国产精品熟女久久久久浪| 极品教师在线视频| 中国美白少妇内射xxxbb| 精品人妻偷拍中文字幕| 国产亚洲午夜精品一区二区久久| 特大巨黑吊av在线直播| 日韩成人伦理影院| 制服丝袜香蕉在线| 成人特级av手机在线观看| 久久久久久久国产电影| 国产成人精品久久久久久| 在线观看美女被高潮喷水网站| 久久热精品热| 久久久久久久久大av| 性色avwww在线观看| 亚洲人成网站高清观看| 美女脱内裤让男人舔精品视频| 乱系列少妇在线播放| .国产精品久久| 校园人妻丝袜中文字幕| 亚洲av中文字字幕乱码综合| 丰满人妻一区二区三区视频av| 极品教师在线视频| 久久久久久九九精品二区国产| 免费观看性生交大片5| 成人一区二区视频在线观看| 亚洲美女视频黄频| 久久久久性生活片| 国产免费一级a男人的天堂| 亚洲成人手机| 岛国毛片在线播放| 成人漫画全彩无遮挡| 国产成人精品一,二区| 在线观看一区二区三区| 热re99久久精品国产66热6| 日韩av不卡免费在线播放| 日本欧美国产在线视频| 欧美激情极品国产一区二区三区 | 亚洲av男天堂| 韩国av在线不卡| 国产精品.久久久| 国产精品欧美亚洲77777| 国产久久久一区二区三区| 交换朋友夫妻互换小说| 在线观看免费高清a一片| 国产欧美日韩精品一区二区| 七月丁香在线播放| 国产欧美日韩一区二区三区在线 | 18禁动态无遮挡网站| 成人亚洲欧美一区二区av| 国产亚洲最大av| 国产人妻一区二区三区在| 国产精品一区www在线观看| 夜夜看夜夜爽夜夜摸| 六月丁香七月| 日韩一区二区视频免费看| 最新中文字幕久久久久| 午夜激情福利司机影院| av.在线天堂| 高清不卡的av网站| 免费少妇av软件| 3wmmmm亚洲av在线观看| 久久久久国产精品人妻一区二区| 99re6热这里在线精品视频| 亚洲欧洲日产国产| 老女人水多毛片| 国产精品偷伦视频观看了| 亚洲欧美中文字幕日韩二区| 亚洲在久久综合| 一本色道久久久久久精品综合| 天堂俺去俺来也www色官网| 身体一侧抽搐| 成人无遮挡网站| 欧美人与善性xxx| 欧美日韩精品成人综合77777| 在线 av 中文字幕| 人妻制服诱惑在线中文字幕| 大片电影免费在线观看免费| 久久久久久人妻| av在线观看视频网站免费| 亚洲精品日本国产第一区| 全区人妻精品视频| 国产av国产精品国产| 熟女av电影| 国产亚洲欧美精品永久| 欧美日韩亚洲高清精品| 亚洲国产高清在线一区二区三| 91在线精品国自产拍蜜月| 久久这里有精品视频免费| 少妇人妻久久综合中文| 亚洲欧美日韩另类电影网站 | 在线播放无遮挡| 26uuu在线亚洲综合色| 国内精品宾馆在线| 小蜜桃在线观看免费完整版高清| 国产真实伦视频高清在线观看| 精品一区二区三区视频在线| 精品国产一区二区三区久久久樱花 | 亚洲电影在线观看av| 日本猛色少妇xxxxx猛交久久| 最近的中文字幕免费完整| 欧美激情国产日韩精品一区| 国内揄拍国产精品人妻在线| 精品一区二区三区视频在线| 成人免费观看视频高清| 亚洲色图综合在线观看| 午夜视频国产福利| 国产成人精品婷婷| 久久久久久久大尺度免费视频| 日韩一本色道免费dvd| 亚洲成人手机| 亚洲国产精品999| 久久久久久久久大av| 免费看日本二区| 国产免费一级a男人的天堂| 毛片一级片免费看久久久久| 人妻一区二区av| 亚洲国产精品一区三区| 美女中出高潮动态图| 美女主播在线视频| 秋霞在线观看毛片| 亚洲欧美精品自产自拍| 欧美成人a在线观看| 黄色日韩在线| 国产免费一区二区三区四区乱码| 美女中出高潮动态图| 涩涩av久久男人的天堂| 在线播放无遮挡| 中文精品一卡2卡3卡4更新| 欧美成人精品欧美一级黄| freevideosex欧美| 麻豆乱淫一区二区| 亚洲精品,欧美精品| 国产精品99久久99久久久不卡 | 97超视频在线观看视频| 国产精品久久久久久久久免| 这个男人来自地球电影免费观看 | 美女视频免费永久观看网站| 99视频精品全部免费 在线| 日本爱情动作片www.在线观看| 亚洲第一av免费看| 大陆偷拍与自拍| 777米奇影视久久| 国产v大片淫在线免费观看| 这个男人来自地球电影免费观看 | 婷婷色av中文字幕| 黄色日韩在线| 丰满迷人的少妇在线观看| 男女无遮挡免费网站观看| 黄片wwwwww| 国产中年淑女户外野战色| 午夜福利在线观看免费完整高清在| 免费观看性生交大片5| 日日摸夜夜添夜夜添av毛片| 97超视频在线观看视频| 久久久久久久久久久丰满| 精品国产三级普通话版| 久久精品国产亚洲网站| 交换朋友夫妻互换小说| 日本一二三区视频观看| 国产av码专区亚洲av| av国产久精品久网站免费入址| 亚洲国产毛片av蜜桃av| 3wmmmm亚洲av在线观看| 久久99热6这里只有精品| 一级毛片黄色毛片免费观看视频| 六月丁香七月| 欧美人与善性xxx| 国产高清国产精品国产三级 | 日韩精品有码人妻一区| 久热久热在线精品观看| 大话2 男鬼变身卡| 精品久久久精品久久久| 精品酒店卫生间| 视频中文字幕在线观看| 欧美高清成人免费视频www| 七月丁香在线播放| 极品少妇高潮喷水抽搐| 成人黄色视频免费在线看| 久久久久性生活片| 亚洲av欧美aⅴ国产| 成年人午夜在线观看视频| 网址你懂的国产日韩在线| 久久久久久久精品精品| 欧美高清成人免费视频www| 97在线视频观看| 午夜免费观看性视频| 日韩av免费高清视频| 国产免费又黄又爽又色| 精品久久久久久久久av| 97超碰精品成人国产| 高清日韩中文字幕在线| av在线app专区| 国产欧美另类精品又又久久亚洲欧美| 观看免费一级毛片| 99久久中文字幕三级久久日本| 中文在线观看免费www的网站| 美女国产视频在线观看| 国产日韩欧美亚洲二区| 亚洲国产av新网站| 国产深夜福利视频在线观看| 成人国产av品久久久| 老司机影院成人| 国产免费福利视频在线观看| 性色avwww在线观看| 老司机影院毛片| 六月丁香七月| 免费观看在线日韩| 麻豆成人午夜福利视频| 欧美精品人与动牲交sv欧美| 久久久久性生活片| 日韩一本色道免费dvd| 免费看av在线观看网站| 少妇人妻 视频| 国产久久久一区二区三区| 亚洲国产欧美在线一区| 欧美一级a爱片免费观看看| 日韩强制内射视频| 免费大片黄手机在线观看| 啦啦啦中文免费视频观看日本| 三级经典国产精品| 亚洲四区av| 日日啪夜夜撸| 极品教师在线视频| 99久久精品热视频| 久久国产精品男人的天堂亚洲 | 啦啦啦视频在线资源免费观看| 你懂的网址亚洲精品在线观看| 成年人午夜在线观看视频| 日产精品乱码卡一卡2卡三| 欧美成人精品欧美一级黄| 国内揄拍国产精品人妻在线| 亚洲av在线观看美女高潮| 久久久久久久久大av| 精品一区二区三卡| 国产精品爽爽va在线观看网站| 在线观看一区二区三区激情| 爱豆传媒免费全集在线观看| 在线观看一区二区三区激情| 激情五月婷婷亚洲| 色5月婷婷丁香| 国产精品久久久久久av不卡| 99视频精品全部免费 在线| 大香蕉97超碰在线| 免费观看在线日韩| 免费观看的影片在线观看| 中文字幕av成人在线电影| 亚洲精品456在线播放app| 亚洲怡红院男人天堂| 亚洲丝袜综合中文字幕| 一级毛片久久久久久久久女| 欧美激情极品国产一区二区三区 | 亚洲精品国产av蜜桃| 七月丁香在线播放| 久久久欧美国产精品| 美女福利国产在线 | 免费不卡的大黄色大毛片视频在线观看| 精品久久久噜噜| 久久影院123| h日本视频在线播放| 日韩免费高清中文字幕av| 国内少妇人妻偷人精品xxx网站| 国产无遮挡羞羞视频在线观看| 久久精品国产自在天天线| 亚洲精品乱码久久久v下载方式| 七月丁香在线播放| 免费黄频网站在线观看国产| av又黄又爽大尺度在线免费看| 国产成人午夜福利电影在线观看| 国产视频首页在线观看| 一个人看视频在线观看www免费| av卡一久久| av在线蜜桃| 国产精品一二三区在线看| 久久精品久久久久久噜噜老黄| 久久久久久人妻| 啦啦啦在线观看免费高清www| 国产精品不卡视频一区二区| 日日摸夜夜添夜夜爱| 大话2 男鬼变身卡| 国产精品一二三区在线看| 久久精品久久久久久噜噜老黄| 一级爰片在线观看| 激情 狠狠 欧美| 亚洲色图av天堂| 老司机影院成人| 欧美日韩在线观看h| 国产乱人偷精品视频|