• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    酸催化及競爭吸附對CeY分子篩吸附脫硫性能的影響

    2014-06-23 06:50:20秦玉才高雄厚段林海范躍超于文廣張海濤宋麗娟
    物理化學學報 2014年3期
    關(guān)鍵詞:文廣林海物理化學

    秦玉才 高雄厚 段林海 范躍超于文廣 張海濤 宋麗娟,*

    (1中國石油大學(華東)化學化工學院,山東青島266426;2遼寧石油化工大學,遼寧省石油化工催化科學與技術(shù)重點實驗室,遼寧撫順113001;3中國石油天然氣股份有限公司,石油化工研究院,北京100007)

    1 Introduction

    Selectively adsorption desulfurization(SADS),based on the selectively adsorption capability for organosulfur compounds of zeolite adsorbents,is considered to be a promising approach for producing clean fuels.1Many attempts have been made to develop these adsorbents for desulfurization of liquid fuels.So far,a variety of adsorbents such as metal oxides,2-5active carbon,6-8mesoporous materials9-12and zeolites13-24have been studied for deep desulfurization.Among them,ion-exchanged zeolites are more promising and less expensive adsorbents being utilized for SADS.

    Yang and coworkers13,15-19reported a series ofπ-complexation sorbents for selective adsorption desulfurization.Transitionmetal ion(Cu+,Ag+,Ni2+,Zn2+)exchanged Faujasite(FAU)zeolites were used to selectively remove organosulfur molecules from commercial fuels depending on theπ-complexation interaction.These interactions of sulfur compound molecules with transition-metal ions are stronger than those of aromatic and olefinic compounds.Theseπ-complexation sorbents,therefore,are effective for sulfur removal from transportation fuels.However,competitive adsorption of aromatics and olefines seems an inevitable drawback,which affects the selective adsorption of sulfur compounds by theπ-complexation interaction,because of the coexistence of large amounts of these compounds in liquid fuels.

    Then,one kind of sulfur-metal(S-M)interaction sorbents was developed for selective adsorption desulfurization.Song and co-workers14reported that the Ce-exchanged Y(CeY)zeolite adsorbents present higher adsorption selectivity for sulfur compounds than for aromatics ascribed to the direct S-M interaction between the sulfur compound and the metal cation in the zeolite.Lin and co-worker24also demonstrated that CeY zeolites performed the best adsorption capacity for thiophenic sulfur among various Y zeolites.Herein,CeY zeolites are considered as one kind of ideal adsorbents for SADS from transportation fuels.However,the sulfur removal capability of CeY zeolites is influenced by the aromatic and olefinic compounds.Our previous work21,25,26focused on the effects of olefines on adsorptive deep desulfurization of gasoline over CeY zeolites,and confirmed that the adsorption capability for thiophene decreases significantly as the concentration of 1-octene increases.Tian and coworkers27explored the effects of toluene on thiophene adsorption over CeY zeolites,and convinced that the thiophene removal over CeY zeolites decreases with the increase of toluene concentration in model gasoline,however,the decline tendency on CeY zeolites is much smoother than that of NaY zeolites.It can be concluded that both olefines and aromatics can depress the capability of CeY zeolites for the selective adsorption of sulfur compounds.

    Moreover,although many reports have demonstrated the suitability of CeY zeolites as adsorbents for the desulfurization of liquid fuel,no attention has been given to the effect of the acidic properties of rare earth cation exchanged zeolites which have been very well studied as acid catalysts in petrochemical processes.28Catalytic reaction of thiophene have been found due to Br?nsted acidic site on zeolite even under mild condition,29-31but the influence of this reaction on the adsorption performance of sulfur compounds has rarely been reported.It is necessary therefore to study whether the catalytic reaction promoting or impeding the capability of adsorbents for SADS.

    In the present work,the acid properties are measured by NH3temperature-programmed desorption(NH3-TPD)method andin-situpyridine-Fourier transform infrared(Py-FTIR)technique.The desulfurization capability and the effects of olefines or aromatics on thiophene removal over CeY zeolites are studied by fixed-bed adsorption/breakthrough experiments at room temperature(RT)with model gasoline.Thein-situFTIR technique is utilized to measure adsorption,co-adsorption or/and catalytic reaction of thiophene,benzene,and cyclohexene in CeY zeolites.

    2 Experimental

    2.1 Sorbent preparation

    NaY zeolite(the molar ratio of Si and Al is 2.55),in powder form,was used as the starting material.The CeY zeolites were prepared by liquid phase ion exchange(LPIE)technique.In order to obtain the sorbents with higher Ce ion loading,the ionexchanged experiments were repeated.

    2.2 Sorbent characterization

    X-ray powder diffraction(XRD)patterns were collected in a 2θrange of 5.00°-59.98°using a D/MAXRB XRD instrument(Rigaku,Japan)equipped with CuKαradiation.The transmission electron microscopy(TEM)images were taken with a JEOL-2200 EX microscope operating at 400 kV(Jeol,Japan).Chemical compositions of the ion-exchanged zeolites were determined by inductively coupled plasma(ICP)elemental analysis using a high-resolution magnetic sector ICP-mass spectroscopy(MS)spectrometer(Thermo Elemental,USA).The BETsurface area and total pore volume were measured using a Micromeritics ASAP 2020 surface area and porosity analyzer(Micromeritics,USA).The surface acidity was monitored by thein-situPy-FTIR technique,with a Perkin-Elmer Spectrum TM GX spectrometer(Perkin-Elmer,USA)coupled to a conventional high vacuum system.NH3-TPD experiments were performed on a Micromeritics Auto Chem II Chemisorption Analyzer(Micromeritics,USA)with a thermal conductivity detector.The samples were treated in He gas flow at 600°C for 1 h.

    2.3 Adsorption desulfurization experiments

    Model gasolines were used to evaluate the desulfurization performance of the sorbents,with the model compounds,such as thiophene,benzene,1-octene,1-hexene,cyclohexene,and 1,5-hexadiene,dissolved inn-nonane according to certain proportions.The various model gasolines are listed in Table 1.All thiophene,benzene,1-octene,1-hexene,cyclohexene,1,5-hexadiene,andn-nonane were purchased from J&K Ltd.and were used without further purification.

    All breakthrough experiments were performed in a vertical custom made quartz adsorber equipped on a setup consisted of a low-flow liquid pump,feed tanks,and a heating element.The quartz adsorber has a 500-mm length with an internal diameter of 6.0 mm to accommodate 1 g of sorbents.Initially,the sorbents(in powder form)were loaded inside the adsorber,and heatedin-situusing dry gases to eliminate the moisture.All the fuel samples collected during the breakthrough experiments were analyzed using a WK-2D microcoulommeter(Jiangfen Electroanalytical instrument Co.,Ltd.,China).The concentration of sulfur at 1 μg · g-1in outlet is defined as the breakthrough point.

    2.4 In-situ FTIR study on the interaction between adsorbent and adsorbate

    FTIR spectra of adsorbed thiophene,cyclohexene,benzene,and co-adsorbed thiophene and benzene,thiophene and cyclohexene on NaY and CeY zeolites were recorded using a Perkin-Elmer Spectrum TM GX spectrometer.Anin-situIR cell coupled to a conventional high vacuum system was utilized allowing the sample wafers can be heated under vacuum or exposed to vapor-phase probe molecules.The sorbents were pressed into thin wafers(12-15 mg·cm-2)and activated at 400 °C under vacuum(10-3Pa)for 4 h.Then,the wafers were exposed to the vapors of thiophene,benzene,cyclohexene,and the mixed vapors of thiophene and benzene,or thiophene and cyclohexene,respectively,at room temperature.The spectra were recorded between 4000 and 400 cm-1with 4 cm-1spectral resolution and 64 scans after desorbed at room temperature under vacuum.

    3 Results and discussion

    The results of XRD patterns of CeY zeolites have been reported in our previous study,25which reveal that the CeY zeolites retain the original FAU zeolite structure,and have no diffractions due to CeO2structure emerging.The TEM images(not shown in this paper)show that the samples maintain a perfect aperture and topology structure of the FAU zeolite,and no CeO2cluster species arise in the aperture or over the surface of the zeolite crystal.26The structure and composition data of the NaY and the CeY zeolites are presented in Table 2,showing that the Ce ion exchange degree of the CeY zeolites achieves 94%.The decrease of pore volume and specific surface area of CeY zeolites is ascribed to reduce of the crystallinity of the zeolites during the process of liquid cerium ion-exchanged.

    Fig.1 shows the breakthrough curves of thiophene in a series of model gasolines with CeY sorbents.The treated volumes of model fuel at breakthrough point are about 10.5,7.5,and 2.0 cm3corresponding to MG-1,MG-2,and MG-3 to MG-6,respectively.These results display that olefines and aromatics in model gasolines depress the capacity of thiophene removal of CeY sorbents.Besides,the effect of olefines is more significant than aromatics.The different slopes of the breakthrough curves of MG-3 to MG-6 indicate that the effect of different olefines is unequal.It is not reasonable to explain the effect of different olefines and aromatic hydrocarbons only by the mode of interaction between adsorption sites and adsorbate molecules.

    Fig.2 presents the photographs of NaY and CeY zeolite powders in model gasolines.The NaY zeolite powders remain white color(the NaY zeolites′color)after the samples are exposed to the four kinds of model gasolines.But for the CeY zeolites,the color of the samples becomes deep yellow,black,brown,and gray inn-nonane,MG-1,MG-2,and MG-5 instead of light yellow(the CeY zeolites′color).The phenomenon of“coke”(black color)is observed on the CeY zeolites in the MG-1(see Fig.2b′),indicating that some other processes should also take place during the selective adsorptive desulfurization process on the adsorbents.The gas chromatography(Clarus500)with sulfur chemiluminescence detection(SIEVERS 355)(GCSCD)profiles display that more than one signal was detected in the compounds trapped on the CeY zeolites(Fig.3c),indicat-ing that new macromolecular sulfur compounds generate in the adsorbents exposed to the MG-1.It can be speculated that the Br?nsted acids on the adsorbents could lead to protonatic catalytic reaction of thiophene molecules,and then thiophene oligomers generate by electrophilic addition reaction.32However,the color of the samples only became brown and gray due to competitive adsorption of olefinic or aromatic molecules which cover the Br?nsted acid sites.

    Table 1 Composition of model gasoline

    Table 2 Structure and composition data for NaY and CeY zeolites

    Fig.1 Breakthrough curves of thiophene in a fixed-bed adsorber with CeY adsorbents,with a model gasoline containing 300 μg·g-1 S of thiophene or mixed with 30000 μg·g-1benzene,1-octene,1-hexene,cyclohexene,and 1,5-hexadiene in n-octane respectively,at room temperature

    Fig.2 Photographs of NaY(a,b,c,d)and CeY(a',b',c',d')in model gasoline

    The NH3-TPD spectra of NaY and CeY samples are depicted in Fig.4.The results show that strong peaks in the range of 100-300°C are all present in the NH3-TPD spectra of NaY and CeY,indicating that numerous weak acid sites exist in the two samples.The peaks in the range of 300-450°C and 500-600°C in the NH3-TPD curve of the CeY can be assigned to the medium strong acid sites and the strong acid sites,respectively.These results indicate that the plentiful medium strong and strong acid sites arise in the prepared process of CeY zeolites by LPIE method.

    Fig.3 GC-SCD profiles of MG-1(a)and compounds trapped on the NaY(b)and CeY(c)zeolites exposed to the MG-1

    Fig.4 NH3-TPD spectra of NaY(a)and CeY(b)samples

    Fig.5 shows the FTIR spectra of OH groups and pyridine adsorbed in NaY and CeY zeolites.Only one band at 3695 cm-1assigned to hydroxyls(Al―OH)in defect sites is observed in NaY zeolite(Fig.5A,left).33However,there are bands of the external Si―OH at 3740 cm-1,Si―OH―Al at 3639,3580 cm-1,and Ce―OH at 3527 cm-1in the FTIR spectra of CeY zeolites(Fig.5B,left).34-36Numerous Lewis acidic sites attributed to Na+identified by IR band of 1440 cm-1are present in NaY zeolite(Fig.5A,right).Plentiful Br?nsted acid sites generate in the preparation process of CeY zeolites by LPIE method,according to IR band of 1543 cm-1(Fig.5B,right).

    The FTIR spectra of thiophene,benzene,and cyclohexene adsorbed in the NaY and CeY zeolites at RT are shown in Fig.6.The bands at 3110 cm-1(C―H stretching vibrations)and at 1396 cm-lwere detected in the spectra of thiophene adsorbed in NaY(see Fig.6A(b)).The band at 1396 cm-1was assigned to the perturbed fundamental ring stretching vibration(ν5),which was assigned to be 14 cm-lshifted to the lower wavenumber compared with the band of thiophene adsorbed in SiO2.37Thus,all bands observed in Fig.6A(b)are attributed to modes of vibration of thiophene molecules strongly interacting with the Na+cations.The appearance of the new infrared bands at 1449 and 1439 cm-1in the IR spectra of thiophene adsorbed in theCeY zeolites(see Fig.6B(b))are assigned to the deformation vibrations of CH2groups close to a sulfur atom(*CH2―S―)or close to a double bond(*CH2―(CH=CH2)).38-40Besides,the broadening of the band in the range of 2990-2890 cm-1is attributed to the generation of saturated C―H species.These results indicate that protonization reactions of thiophene occurred as thiophene molecules adsorbed in the CeY zeolites.The band at 1504 cm-l(ring stretching fundamentalν14)related to the thiophene oligomers implies that oligomerizations of thiophene molecules take place in the CeY zeolites.The FTIR spectra of adsorbed thiophene in the NaY and CeY zeolites are different,indicating that the adsorption mechanism of thiophene on the two samples must be not the same.

    Fig.5 FTIR spectra of OH groups and pyridine adsorbed in the NaY(A)and CeY(B)zeolites

    Fig.6(c)gives the FTIR spectra of cyclohexene adsorbed in the NaY and CeY zeolites.The bands appearing at 3002,1449,and 1439 cm-1(Fig.6A(c))indicate that the nature of cyclohexene adsorbed in NaY is weak/physical adsorption.The formation of alkenyl carbenium ions related to the band at 1520 cm-1and the disappearance of the band at 3002 cm-1(Fig.6B(c))suggest that cyclohexene can be activated by protonizations on the Br?nsted acidic sites in the CeY zeolites.41The FTIR spectra in Fig.6(d)display that the modes of benzene adsorbed on NaY and CeY are both weak/physical adsorption.42

    Fig.6 FTIR spectra of the fresh NaY(A)and CeY(B)samples(a),and adsorbed thiophene(b),cyclohexene(c),benzene(d),thiophene/cyclohexene(665 Pa/665 Pa)(e),and thiophene/benzene(665 Pa/665 Pa)(f)in NaY(A)and CeY(B)at RT for 1 h and then evacuating at RT for 0.5 h

    The FTIR spectra of co-adsorption of thiophene and cyclohexene on the NaY and CeY zeolites are shown in Fig.6(e).The bands assigned to adsorbed cyclohexene and adsorbed thiophene are both exhibited in the spectra of co-adsorption of the two adsorbate on NaY(Fig.6A(e)),but the bands of the former are more prominent than that of the latter,implying that the adsorption intensity of cyclohexene is stronger than thiophene in NaY zeolites.This result suggests that NaY zeolites are not the ideal adsorbents for SADS from a gasoline containing olefines.The FTIR spectra of co-adsorption of cyclohexeneand thiophene in CeY(Fig.6B(e))show that the prior adsorption and the protonizations of olefin molecules on the Br?nsted acid sites hinder the adsorption of thiophene molecules.This result illustrates that the coexisting olefinic compounds can depress the capability of removing thiophenic compounds of the CeY zeolites.

    The results of co-adsorption of thiophene and benzene in NaY and CeY are shown in Fig.6(f).The strength of bands assigned to adsorbed benzene and thiophene are similar(Fig.6A(f)),implies that very strongly competitive adsorption between benzene and thiophene is present in NaY zeolites.But,from Fig.6B(f),it can be seen that the adsorption of thiophene is prior on the CeY sorbents rather than benzene,indicating that CeY zeolites are one kind of ideal sorbents for SADS technique for liquid fuels containing aromatics.

    4 Conclusions

    The results reported in this paper indicate that the desulfurization performance of CeY zeolites is affected both by competitive adsorption from aromatics and oligomerization reactions of olefinic and thiophenic compounds due to the strong Br?nsted acidity on the surface of the adsorbents.

    (1)The olefinic and aromatic hydrocarbons depress the desulfurization ability of CeY zeolites,but the effect mechanism is different.Besides,the effect of olefines is more significant than aromatics.

    (2)The protonizations of olefinic or thiophenic molecules and oligomerizations due to the strong Br?nsted acid sites in CeY zeolites are the unfavorable factor influencing the desulfurization capability of the adsorbents.

    (3)The adsorption modes of thiophene on CeY zeolites are“direct coordinationviaS atoms”and“π-complexation mechanism”,but the former is the master one attributing to SADS.

    (1)Yang,R.T.;Hernández-Maldonado,A.J.;Yang,F.H.Science2003,301(5629),79.doi:10.1126/science.1085088

    (2)Velu,S.;Ma,X.L.;Song,C.S.;Namazian,M.;Sethuraman,S.;Venkataraman,G.Energy Fuels2005,19(3),1116.doi:10.1021/ef049800b

    (3) Jeevanandam,P.;Klabunde,K.J.;Tetzler,S.H.Microporous Mesoporous Mat.2005,79(1),101.

    (4) Nair,S.;Tatarchuk,B.J.Fuel2010,89(11),3218.doi:10.1016/j.fuel.2010.05.006

    (5) Santos,A.L.;Reis,R.A.;Rossa,V.;Reis,M.M.;Costa,A.L.H.;Veloso,C.O.;Henriques,C.A.;Zotin,F.M.Z.;Paredes,M.L.L.;Silveira,E.B.;Chiaro,S.S.X.Mater.Lett.2012,83,158.doi:10.1016/j.matlet.2012.06.011

    (6) Marín-Rosas,C.;Ramírez-Verduzco,L.F.;Murrieta-Guevara,F.R.;Hernández-Tapia,G.;Rodríguez-Otal,L.M.Ind.Eng.Chem.Res.2010,49(9),4372.doi:10.1021/ie901756b

    (7) Seredych,M.;Bandosz,T.J.Fuel Process.Technol.2010,91(6),693.doi:10.1016/j.fuproc.2010.01.019

    (8) Fallah,R.N.;Azizian,S.Fuel Process.Technol.2012,93(1),45.doi:10.1016/j.fuproc.2011.09.012

    (9) Park,J.G.;Ko,C.H.;Yi,K.B.;Park,J.;Han,S.;Cho,S.;Kim,J.Appl.Catal.B:Environ.2008,81(3),244.

    (10) Subhan,F.;Liu,B.;Zhang,Y.;Li,X.Fuel Process.Technol.2012,97,71.doi:10.1016/j.fuproc.2012.01.016

    (11)Shao,X.C.;Duan,L.H.;Wu,Y.Y.;Qin,Y.C.;Yu,W.G.;Wang,Y.;Li,H.L.;Sun,Z.L.;Song,L.J.Acta Phys.-Chim.Sin.2012,28,1467.[邵新超,段林海,武玉葉,秦玉才,于文廣,王 源,李懷雷,孫兆林,宋麗娟.物理化學學報,2012,28,1467.]doi:10.3866/PKU.WHXB201203312

    (12)Shao,X.C.;Zhang,X.T.;Yu,W.G.;Wu,Y.Y.;Qin,Y.C.;Sun,Z.L.;Song,L.J.Appl.Surf.Sci.2012,263,1.doi:10.1016/j.apsusc.2012.07.142

    (13) Yang,R.T.;Takahashi,A.;Yang,F.H.Ind.Eng.Chem.Res2001,40(26),6236.doi:10.1021/ie010729w

    (14) Velu,S.;Ma,X.L.;Song,C.S.Ind.Eng.Chem.Res.2003,42(21),5293.doi:10.1021/ie020995p

    (15) Hernández-Maldonado,A.J.;Yang,R.T.Ind.Eng.Chem.Res.2003,42(1),123.doi:10.1021/ie020728j

    (16) Hernández-Maldonado,A.J.;Yang,R.T.J.Am.Chem.Soc.2004,126(4),992.

    (17) Hernández-Maldonado,A.J.;Yang,R.T.Ind.Eng.Chem.Res.2004,43(4),1081.doi:10.1021/ie034206v

    (18) Yang,R.T.;Hernández-Maldonado,A.J.Catal.Rev.-Sci.Eng.2004,46(2),111.doi:10.1081/CR-200032697

    (19) Hernández-Maldonado,A.J.;Yang,F.H.;Qi,G.;Yang,R.T.Appl.Catal.B:Environ.2005,56(1),111.

    (20) Tang,K.;Song,L.J.;Duan,L.H.;Li,X.Q.;Gui,J.Z.;Sun,Z.L.Fuel Process.Technol.2008,89(1),1.doi:10.1016/j.fuproc.2007.06.002

    (21) Wang,H.G.;Jiang,H.;Xu,J.;Sun,Z.L.;Zhang,X.T.;Zhu,H.L.;Song,L.J.Acta Phys.-Chim.Sin.2008,24,1714.[王洪國,姜 恒,徐 靜,孫兆林,張曉彤,朱赫禮,宋麗娟.物理化學學報,2008,24,1714.]doi:10.3866/PKU.WHXB20080933

    (22) Ju,X.F.;Jin,L.L.;Ma,T.;Chen,X.L.;Song,L.J.Acta Phys.-Chim.Sin.2009,25,2256.[鞠秀芳,靳玲玲,馬 濤,陳曉陸,宋麗娟.物理化學學報,2009,25,2256.]doi:10.3866/PKU.WHXB20091024

    (23)Wang,W.Y.;Pan,M.X.;Qin,Y.C.;Wang,L.T.;Song,L.J.Acta Phys.-Chim.Sin.2011,27,1176.[王旺銀,潘明雪,秦玉才,王凌濤,宋麗娟.物理化學學報,2011,27,1176.]doi:10.3866/PKU.WHXB20110442

    (24) Lin,L.;Zhang,Y.;Zhang,H.;Lu,F.J.Colloid Interface Sci.2011,360,753.doi:10.1016/j.jcis.2011.04.075

    (25) Wang,H.G.;Song,L.J.;Jiang,H.;Xu,J.;Jin,L.L.;Zhang,X.T.;Sun,Z.L.Fuel Process.Technol.2009,90(6),835.doi:10.1016/j.fuproc.2009.03.004

    (26)Duan,L.H.;Gao,X.H.;Meng,X.H.;Zhang,H.T.;Wang,Q.;Qin,Y.C.;Zhang,X.T.;Song,L.J.J.Phys.Chem.C2012,116(49),25748.doi:10.1021/jp303040m

    (27) Shi,Y.C.;Yang,X.J.;Tian,F.P.;Jia,C.Y.;Chen,Y.Y.J.Nat.Gas Chem.2012,21(4),421.doi:10.1016/S1003-9953(11)60385-X

    (28) Chen,N.Y.;Mitchell,T.O.;Olson,D.H.;Pelrine,B.P.Ind.Eng.Chem.Prod.Res.Dev.1977,16(3),247.doi:10.1021/i360063a012

    (29) Garcia,C.;Lercher,J.J.Phys.Chem.1992,96(6),2669.doi:10.1021/j100185a050

    (30) Chica,A.;Strohmaier,K.;Iglesia,E.Langmuir2004,20(25),10982.doi:10.1021/la048320+

    (31) Richardeau,D.;Joly,G.;Canaff,C.;Magnoux,P.;Guisnet,M.;Thomas,M.;Nicolaos,A.Appl.Catal.A:Gen.2004,263(1),49.doi:10.1016/j.apcata.2003.11.039

    (32) Deangelis,B.A.;Appierto,G.J.Colloid Interface Sci.1975,53(1),14.doi:10.1016/0021-9797(75)90029-6

    (33) Datka,J.;Sulikowski,B.;Gil,B.J.Phys.Chem.1996,100(27),11242.doi:10.1021/jp951523+

    (34) Gil,B.;MierzyDska,K.;SzczerbiDska,M.;Datka,J.Microporous Mesoporous Mat.2007,99(3),328.doi:10.1016/j.micromeso.2006.09.025

    (35) Rabo,J.A.;Angell,C.L.;Kasai,P.H.;Schoemaker,V.Discuss.Faraday Soc.1966,41,328.doi:10.1039/df9664100328

    (36) Ward,J.W.J.Phys.Chem.1968,72(12),4211.doi:10.1021/j100858a046

    (37) Layman,K.A.;Bussell,M.E.J.Phys.Chem.B2004,108(40),15791.doi:10.1021/jp047882z

    (38) Garcia,C.L.;Lercher,J.A.J.Phys.Chem.1992,96(6),2669.doi:10.1021/j100185a050

    (39) Zhang,X.T.;Yu,W.G.;Qin,Y.C.;Dong,S.W.;Pei,T.T.;Wang,L.;Song,L.J.Acta Phys.-Chim.Sin.2013,29,1273.[張曉彤,于文廣,秦玉才,董世偉,裴婷婷,王 琳,宋麗娟.物理化學學報,2013,29,1273.]doi:10.3866/PKU.WHXB201303183

    (40)Qin,Y.C.;Mo,Z.S.;Yu,W.G.;Dong,S.W.;Duan,L.H.;Gao,X.H.;Song,L.J.Appl.Surf.Sci.2014,292,5.doi:10.1016/j.apsusc.2013.11.036

    (41) Yang,S.;Kondo,J.N.;Domen,K.Catal.Today2002,73(1),113.

    (42) Kukulska-Zajac,E.;Kozyra,P.;Datka,J.Appl.Catal.A:Gen.2006,307(1),46.doi:10.1016/j.apcata.2006.03.005

    猜你喜歡
    文廣林海物理化學
    送給媽媽的賀卡
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    Chemical Concepts from Density Functional Theory
    Practice Makes Perfect吸煙有害
    歡 沁
    琴童(2017年10期)2017-10-31 06:43:07
    冬陽
    琴童(2017年9期)2017-10-16 16:47:03
    林海
    寶藏(2017年6期)2017-07-20 10:01:06
    摸鯊魚牙齒
    郝林海的水彩畫與俳意
    中華奇石(2016年11期)2017-03-16 07:59:49
    免费电影在线观看免费观看| 欧美一级毛片孕妇| 亚洲性夜色夜夜综合| 搡女人真爽免费视频火全软件 | 久久久久精品国产欧美久久久| 欧美成人a在线观看| 久久久久久久午夜电影| 丰满的人妻完整版| 欧美日韩亚洲国产一区二区在线观看| 国产成人影院久久av| 免费人成视频x8x8入口观看| 精品久久久久久,| 熟妇人妻久久中文字幕3abv| 1024手机看黄色片| 免费大片18禁| 久久精品综合一区二区三区| 精品乱码久久久久久99久播| 色噜噜av男人的天堂激情| 成人国产一区最新在线观看| 麻豆成人av在线观看| 中文资源天堂在线| 午夜精品一区二区三区免费看| 成年免费大片在线观看| 男人和女人高潮做爰伦理| 久久天躁狠狠躁夜夜2o2o| 久久久久久久精品吃奶| 亚洲av日韩精品久久久久久密| 高清日韩中文字幕在线| 久久国产乱子伦精品免费另类| 久久精品91蜜桃| 免费无遮挡裸体视频| 搡老熟女国产l中国老女人| 亚洲av成人精品一区久久| 亚洲av电影不卡..在线观看| 色视频www国产| 真人一进一出gif抽搐免费| 成人无遮挡网站| 亚洲国产精品成人综合色| 香蕉丝袜av| 色综合站精品国产| 久久久久久久久大av| avwww免费| 国产成人系列免费观看| 色在线成人网| 12—13女人毛片做爰片一| 欧美区成人在线视频| 国产精品亚洲美女久久久| 久久久久久久亚洲中文字幕 | 国产精品爽爽va在线观看网站| 国产精品久久久人人做人人爽| 日本与韩国留学比较| 日本与韩国留学比较| ponron亚洲| 熟女电影av网| 又黄又爽又免费观看的视频| 国产成+人综合+亚洲专区| 成人欧美大片| 级片在线观看| 日韩欧美在线二视频| 免费看日本二区| 女人被狂操c到高潮| 久久久国产成人精品二区| 国产美女午夜福利| 午夜精品在线福利| 91久久精品国产一区二区成人 | 亚洲精品久久国产高清桃花| а√天堂www在线а√下载| 天美传媒精品一区二区| 99国产综合亚洲精品| 噜噜噜噜噜久久久久久91| 麻豆国产97在线/欧美| 长腿黑丝高跟| 天堂√8在线中文| 亚洲av美国av| 美女黄网站色视频| 色综合亚洲欧美另类图片| 精品乱码久久久久久99久播| 97碰自拍视频| 午夜福利高清视频| 亚洲专区中文字幕在线| 麻豆久久精品国产亚洲av| 麻豆久久精品国产亚洲av| 动漫黄色视频在线观看| 波野结衣二区三区在线 | 日韩人妻高清精品专区| 999久久久精品免费观看国产| 亚洲国产高清在线一区二区三| 黄色成人免费大全| 99视频精品全部免费 在线| 国产黄片美女视频| 欧美日韩精品网址| 国产亚洲精品久久久久久毛片| 婷婷精品国产亚洲av| av专区在线播放| 日本三级黄在线观看| 亚洲成人久久爱视频| 桃红色精品国产亚洲av| 亚洲国产色片| 美女高潮的动态| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美性感艳星| 黄色视频,在线免费观看| 欧美性猛交黑人性爽| 叶爱在线成人免费视频播放| 母亲3免费完整高清在线观看| 亚洲av免费高清在线观看| 国产美女午夜福利| 国产精品亚洲av一区麻豆| 亚洲男人的天堂狠狠| 黄色丝袜av网址大全| 一级毛片女人18水好多| 在线播放无遮挡| 欧美乱色亚洲激情| 国产免费男女视频| 亚洲精品一卡2卡三卡4卡5卡| 久久精品91蜜桃| 此物有八面人人有两片| 精品久久久久久,| 一进一出好大好爽视频| 久久久国产精品麻豆| 亚洲av一区综合| 免费看十八禁软件| 亚洲成人久久爱视频| 亚洲第一欧美日韩一区二区三区| svipshipincom国产片| 亚洲人成网站高清观看| 午夜免费男女啪啪视频观看 | 一个人看视频在线观看www免费 | 少妇裸体淫交视频免费看高清| 欧美激情在线99| 免费观看的影片在线观看| 久99久视频精品免费| 在线看三级毛片| 丰满人妻熟妇乱又伦精品不卡| 成人欧美大片| 伊人久久精品亚洲午夜| 亚洲人成网站在线播放欧美日韩| 悠悠久久av| 亚洲美女黄片视频| 国产精品av视频在线免费观看| 欧美黑人欧美精品刺激| a级毛片a级免费在线| 日韩av在线大香蕉| 日本 欧美在线| 女警被强在线播放| 又爽又黄无遮挡网站| 亚洲国产精品久久男人天堂| 日本在线视频免费播放| 国产久久久一区二区三区| 一本精品99久久精品77| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美黄色片欧美黄色片| 99热只有精品国产| 色综合亚洲欧美另类图片| 床上黄色一级片| 极品教师在线免费播放| 久久6这里有精品| 久久精品91无色码中文字幕| 亚洲精品影视一区二区三区av| 免费搜索国产男女视频| 男人的好看免费观看在线视频| 亚洲成av人片免费观看| x7x7x7水蜜桃| 欧美成人免费av一区二区三区| 免费在线观看成人毛片| e午夜精品久久久久久久| aaaaa片日本免费| 国产高清videossex| 午夜精品一区二区三区免费看| 无限看片的www在线观看| 亚洲中文字幕一区二区三区有码在线看| 2021天堂中文幕一二区在线观| 亚洲精品成人久久久久久| 婷婷六月久久综合丁香| 亚洲18禁久久av| 国产精品三级大全| 少妇裸体淫交视频免费看高清| 精品久久久久久久末码| 午夜精品在线福利| 久99久视频精品免费| 色视频www国产| 午夜福利成人在线免费观看| 亚洲av一区综合| 精品免费久久久久久久清纯| 欧美成人a在线观看| 国产欧美日韩一区二区精品| 精品无人区乱码1区二区| 少妇人妻精品综合一区二区 | 伊人久久精品亚洲午夜| 亚洲电影在线观看av| 成人国产一区最新在线观看| 国产一区二区在线观看日韩 | 九色国产91popny在线| 亚洲国产欧美网| 99视频精品全部免费 在线| 精品国产亚洲在线| 国产男靠女视频免费网站| 久久99热这里只有精品18| 亚洲精品美女久久久久99蜜臀| 九色成人免费人妻av| 一夜夜www| 女警被强在线播放| 久久久久精品国产欧美久久久| 看黄色毛片网站| 在线天堂最新版资源| 久久国产乱子伦精品免费另类| 国产黄a三级三级三级人| 夜夜爽天天搞| 成年免费大片在线观看| 一级毛片女人18水好多| 黄色日韩在线| 免费看a级黄色片| 国产91精品成人一区二区三区| 噜噜噜噜噜久久久久久91| 亚洲最大成人手机在线| 免费观看的影片在线观看| 色av中文字幕| 国产午夜精品论理片| 在线观看av片永久免费下载| 九九久久精品国产亚洲av麻豆| 国产精品三级大全| 夜夜爽天天搞| 三级毛片av免费| 蜜桃久久精品国产亚洲av| 中文资源天堂在线| 一进一出抽搐gif免费好疼| 美女免费视频网站| 精品久久久久久久毛片微露脸| 给我免费播放毛片高清在线观看| 久久草成人影院| 中文资源天堂在线| ponron亚洲| 亚洲av免费在线观看| 最近最新免费中文字幕在线| 日本撒尿小便嘘嘘汇集6| 怎么达到女性高潮| 精品一区二区三区视频在线观看免费| 少妇丰满av| 黄色视频,在线免费观看| 一本一本综合久久| av黄色大香蕉| 国产黄片美女视频| 一级a爱片免费观看的视频| 综合色av麻豆| 一本一本综合久久| 精品人妻一区二区三区麻豆 | 法律面前人人平等表现在哪些方面| 9191精品国产免费久久| 日韩欧美 国产精品| 日韩欧美精品v在线| 国产精品自产拍在线观看55亚洲| 久99久视频精品免费| 精品一区二区三区av网在线观看| 欧美日韩精品网址| 亚洲成人精品中文字幕电影| 国产精品爽爽va在线观看网站| 久久午夜亚洲精品久久| 日韩欧美国产在线观看| 国产精品国产高清国产av| 十八禁网站免费在线| 一边摸一边抽搐一进一小说| 一本一本综合久久| 国产黄色小视频在线观看| 欧美乱色亚洲激情| 久久天躁狠狠躁夜夜2o2o| 欧美+日韩+精品| 搡老岳熟女国产| 夜夜躁狠狠躁天天躁| 免费一级毛片在线播放高清视频| 成人国产综合亚洲| 亚洲乱码一区二区免费版| 久久精品国产亚洲av香蕉五月| 丰满乱子伦码专区| 精品一区二区三区视频在线 | 欧美又色又爽又黄视频| 国产私拍福利视频在线观看| 久久久精品欧美日韩精品| 亚洲国产色片| xxx96com| 精品不卡国产一区二区三区| 久久精品国产自在天天线| 在线观看美女被高潮喷水网站 | 亚洲18禁久久av| 十八禁人妻一区二区| 国产精品久久电影中文字幕| 国产午夜精品论理片| 日本免费一区二区三区高清不卡| 国产精品一及| 男插女下体视频免费在线播放| 久久伊人香网站| 婷婷亚洲欧美| 国产精品香港三级国产av潘金莲| 一夜夜www| 久久久国产成人精品二区| 91在线观看av| 日本免费一区二区三区高清不卡| 亚洲av成人av| 成人av一区二区三区在线看| 成人国产一区最新在线观看| www.999成人在线观看| 免费看十八禁软件| 国产久久久一区二区三区| 久久久久国产精品人妻aⅴ院| 在线视频色国产色| 制服丝袜大香蕉在线| 熟女少妇亚洲综合色aaa.| 国产亚洲精品一区二区www| av在线蜜桃| 19禁男女啪啪无遮挡网站| 国产欧美日韩一区二区精品| xxx96com| 久久精品91蜜桃| 97超视频在线观看视频| 美女cb高潮喷水在线观看| 久久人妻av系列| 一区二区三区激情视频| 免费电影在线观看免费观看| 91久久精品国产一区二区成人 | 日韩av在线大香蕉| 俺也久久电影网| 国产美女午夜福利| 国产69精品久久久久777片| 亚洲av不卡在线观看| 淫妇啪啪啪对白视频| 亚洲国产欧美网| 欧美日韩瑟瑟在线播放| 精品国产超薄肉色丝袜足j| 亚洲精品在线观看二区| 久久国产乱子伦精品免费另类| 少妇丰满av| 国产私拍福利视频在线观看| 18禁国产床啪视频网站| 黄片小视频在线播放| 床上黄色一级片| 香蕉丝袜av| 国模一区二区三区四区视频| 久久久国产成人免费| 国产97色在线日韩免费| 在线免费观看的www视频| 免费av毛片视频| 免费看美女性在线毛片视频| 美女高潮的动态| 好看av亚洲va欧美ⅴa在| 美女大奶头视频| 99国产精品一区二区蜜桃av| 人妻久久中文字幕网| 老熟妇乱子伦视频在线观看| 99久久精品热视频| 嫁个100分男人电影在线观看| 国产精品,欧美在线| 欧美在线一区亚洲| 高清在线国产一区| 亚洲专区国产一区二区| 色综合亚洲欧美另类图片| 久久九九热精品免费| 国产又黄又爽又无遮挡在线| 三级男女做爰猛烈吃奶摸视频| 午夜免费观看网址| 18禁裸乳无遮挡免费网站照片| 精品一区二区三区av网在线观看| 老熟妇仑乱视频hdxx| www.999成人在线观看| 1024手机看黄色片| 日日夜夜操网爽| 日韩精品青青久久久久久| 女生性感内裤真人,穿戴方法视频| 久99久视频精品免费| 亚洲午夜理论影院| 女人高潮潮喷娇喘18禁视频| 18禁在线播放成人免费| 国产美女午夜福利| 亚洲无线观看免费| 搡女人真爽免费视频火全软件 | 在线免费观看的www视频| 欧美日韩一级在线毛片| 国产伦一二天堂av在线观看| 国产一区二区在线观看日韩 | 在线播放国产精品三级| 不卡一级毛片| 国产精品自产拍在线观看55亚洲| 亚洲一区高清亚洲精品| 白带黄色成豆腐渣| 99热只有精品国产| 99在线视频只有这里精品首页| 免费在线观看日本一区| 日本五十路高清| 天天躁日日操中文字幕| 国产在线精品亚洲第一网站| 国产乱人视频| 欧美一区二区国产精品久久精品| 欧美黄色淫秽网站| 国语自产精品视频在线第100页| 宅男免费午夜| 国产真实乱freesex| 午夜视频国产福利| 日本五十路高清| 亚洲欧美一区二区三区黑人| 99久久综合精品五月天人人| 激情在线观看视频在线高清| 国产精品久久久人人做人人爽| 禁无遮挡网站| 色综合婷婷激情| 丁香欧美五月| 久久天躁狠狠躁夜夜2o2o| 啦啦啦观看免费观看视频高清| 大型黄色视频在线免费观看| 久久久久久大精品| xxxwww97欧美| 亚洲天堂国产精品一区在线| 欧美+日韩+精品| 亚洲中文字幕一区二区三区有码在线看| 免费看a级黄色片| 一二三四社区在线视频社区8| 一夜夜www| aaaaa片日本免费| 很黄的视频免费| 亚洲第一电影网av| 久久久久免费精品人妻一区二区| 国产毛片a区久久久久| 每晚都被弄得嗷嗷叫到高潮| www日本黄色视频网| 俄罗斯特黄特色一大片| 久久性视频一级片| 亚洲avbb在线观看| 一级毛片高清免费大全| 99视频精品全部免费 在线| 在线视频色国产色| 最后的刺客免费高清国语| 精品久久久久久久人妻蜜臀av| 啦啦啦免费观看视频1| www.www免费av| 少妇熟女aⅴ在线视频| 女生性感内裤真人,穿戴方法视频| 老司机午夜福利在线观看视频| 欧美最新免费一区二区三区 | 黄色日韩在线| 亚洲精品粉嫩美女一区| 久久草成人影院| 999久久久精品免费观看国产| 天天添夜夜摸| 亚洲国产精品久久男人天堂| 每晚都被弄得嗷嗷叫到高潮| 69av精品久久久久久| 国产欧美日韩精品一区二区| 国产不卡一卡二| 亚洲最大成人手机在线| 搞女人的毛片| 久久久成人免费电影| 亚洲人成电影免费在线| 欧美绝顶高潮抽搐喷水| 岛国视频午夜一区免费看| 美女高潮的动态| 欧美日韩黄片免| 岛国在线免费视频观看| 国产精品 欧美亚洲| 黑人欧美特级aaaaaa片| 亚洲精品一区av在线观看| 欧美xxxx黑人xx丫x性爽| 在线国产一区二区在线| 久久久久久久久久黄片| 蜜桃亚洲精品一区二区三区| 亚洲一区二区三区色噜噜| 亚洲欧美日韩卡通动漫| 看免费av毛片| 男人舔女人下体高潮全视频| 可以在线观看的亚洲视频| 在线观看66精品国产| 制服丝袜大香蕉在线| 中文字幕久久专区| 色综合亚洲欧美另类图片| 国产亚洲欧美98| 三级国产精品欧美在线观看| 狠狠狠狠99中文字幕| av专区在线播放| 欧美午夜高清在线| 国产精品久久久久久久久免 | 精品久久久久久久久久免费视频| 少妇人妻一区二区三区视频| 久久久国产成人免费| 99视频精品全部免费 在线| 51午夜福利影视在线观看| 国产av麻豆久久久久久久| 搡女人真爽免费视频火全软件 | 欧美一区二区国产精品久久精品| svipshipincom国产片| 神马国产精品三级电影在线观看| 国产亚洲av嫩草精品影院| 免费看光身美女| 丰满乱子伦码专区| 国产又黄又爽又无遮挡在线| 日韩欧美精品v在线| 别揉我奶头~嗯~啊~动态视频| 国产毛片a区久久久久| 亚洲无线在线观看| 男女那种视频在线观看| avwww免费| 欧美黄色淫秽网站| 在线观看av片永久免费下载| 男人的好看免费观看在线视频| 欧美日韩瑟瑟在线播放| 露出奶头的视频| 国内精品久久久久精免费| 国产精品久久久久久精品电影| 日本黄色片子视频| 伊人久久大香线蕉亚洲五| 黄片大片在线免费观看| 精品福利观看| 18禁在线播放成人免费| av专区在线播放| 久久精品影院6| 亚洲av成人精品一区久久| 亚洲美女视频黄频| 99久国产av精品| 国产亚洲5aaaaa淫片| 男人爽女人下面视频在线观看| 三级经典国产精品| 日本av手机在线免费观看| 欧美变态另类bdsm刘玥| 亚洲熟妇中文字幕五十中出| 亚洲久久久久久中文字幕| 婷婷色麻豆天堂久久| 老司机影院成人| 国产精品久久久久久久电影| 国产av国产精品国产| 日韩成人伦理影院| 男女边吃奶边做爰视频| 极品少妇高潮喷水抽搐| 成人国产麻豆网| 又爽又黄无遮挡网站| 日韩精品青青久久久久久| 中文乱码字字幕精品一区二区三区 | 免费黄频网站在线观看国产| av国产免费在线观看| 人妻少妇偷人精品九色| 午夜福利在线观看免费完整高清在| 六月丁香七月| 黄色一级大片看看| 精品一区在线观看国产| 欧美97在线视频| 七月丁香在线播放| 久久久久久久久久久丰满| 3wmmmm亚洲av在线观看| 干丝袜人妻中文字幕| 国产又色又爽无遮挡免| 亚洲欧洲国产日韩| 嘟嘟电影网在线观看| 街头女战士在线观看网站| 亚洲四区av| 久久久久久久久久人人人人人人| 国产av国产精品国产| 亚洲在久久综合| 偷拍熟女少妇极品色| 国产精品人妻久久久久久| 狂野欧美激情性xxxx在线观看| 美女被艹到高潮喷水动态| 免费观看a级毛片全部| 日韩一区二区三区影片| 亚洲av中文av极速乱| 日本欧美国产在线视频| 肉色欧美久久久久久久蜜桃 | 超碰av人人做人人爽久久| 国产又色又爽无遮挡免| 亚洲av成人av| 51国产日韩欧美| 久久热精品热| 国产精品一区www在线观看| 成人毛片a级毛片在线播放| 国产亚洲av嫩草精品影院| 在线天堂最新版资源| 插阴视频在线观看视频| 国产精品一区二区在线观看99 | 99热这里只有是精品在线观看| 国产永久视频网站| 男人爽女人下面视频在线观看| 精品一区二区三区人妻视频| 一本一本综合久久| 日本黄大片高清| 免费观看的影片在线观看| 在线天堂最新版资源| 午夜免费激情av| 亚洲国产高清在线一区二区三| 99久国产av精品国产电影| 欧美日韩综合久久久久久| 亚洲国产最新在线播放| 夜夜看夜夜爽夜夜摸| 五月天丁香电影| ponron亚洲| 少妇熟女欧美另类| av播播在线观看一区| 亚洲精品成人av观看孕妇| 久久久午夜欧美精品| 少妇熟女欧美另类| 街头女战士在线观看网站| 国产精品蜜桃在线观看| 又大又黄又爽视频免费| 国产在线一区二区三区精| 久久久久久伊人网av| 精品人妻一区二区三区麻豆| www.色视频.com| videos熟女内射| 国产精品人妻久久久影院| 真实男女啪啪啪动态图| 国产精品人妻久久久影院| 青春草视频在线免费观看| 国产一区二区亚洲精品在线观看| 精品久久久久久久人妻蜜臀av| 噜噜噜噜噜久久久久久91| 中国美白少妇内射xxxbb| 久久97久久精品| 国产精品1区2区在线观看.| 好男人视频免费观看在线| 国产av码专区亚洲av| 国产老妇伦熟女老妇高清| 日韩av在线免费看完整版不卡| 亚洲国产色片|