• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Rule of Spatial Sampling on Cylindrical Shells for Predicting Radiated Acoustic Field

    2014-06-07 07:53:32
    船舶力學 2014年9期
    關鍵詞:階次周向上海交通大學

    (School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    A Rule of Spatial Sampling on Cylindrical Shells for Predicting Radiated Acoustic Field

    WANG Bin,TANG Wei-lin,FAN Jun

    (School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Structural borne acoustic radiation can be determined solely by the surface velocity distribution which is measured more easily than other physical quantities.The sampling intervals should be chosen carefully to ensure the prediction precision and reduce the system cost at the same time.In this paper,the prediction error with respect to the sampling intervals for the simply supported cylindrical shells is formulated as a mathematical problem,in which the sampling intervals needed in axis and in circumference can be studied separately.The rules for the determination of the sampling intervals to satisfy certain predetermined criteria are put forward.The sampling interval in axis is just determined by the axial order of the mode and a dimensionless quantity;in circumference it is mainly decided by the circumferential order and another dimensionless quantity.In the cases of finite circumferential modes,the number of the sampling points in circumference is only determined by the highest order of these modes.

    structural borne sound;radiation prediction;sampling interval

    Biography:WANG Bin(1981-),male,Ph.D.student of Shanghai Jiao Tong University.

    1 Introduction

    In an infinite fluid,the structural borne acoustic radiation can be solely determined by the surface velocity distribution.Considering it can be measured easier than other physical quantities,people have devoted themselves to the numerical methods[1-2]based on the surface velocity distribution,among which Boundary Element Method(BEM)is most widely used.In order to improve prediction precision and calculation speed,people pay attention mainly to improving the numerical methods[3-4].All of them assume the surface velocity distribution is known.However,this simple assumption requires the vibration sensors be distributed on the whole surface,which is very difficult or even impossible to be implemented in most practical applications.

    Besides the coarse requirement of six samples per acoustic wavelength in BEM[5],these are few open papers discussing the surface spatial sampling interval in predicting the structural borne acoustic radiation.Ref.6 discussed the rule for the determination of sampling interval on rectangular plates with respect to the analyzing frequency,the error range,the mode order,and the observer elevation.Considering cylindrical shells are more representative than rectangular plates in analogy with actual underwater vehicles,the rule for the determination of sampling intervals satisfying the prediction error requirement for simply supported baffled cylindrical shells is discussed in this paper.

    2 Radiation theory based on simply supported baffled cylindrical shells

    Considering a simply supported cylindrical shell with length L,radius a and semi-infinite rigid cylindrical baffles at the ends as shown in Fig.1,the normal velocity on the surface of the cylindrical shell can be expressed as a sum of many modes[7]

    where m is the axial order and n is the circumferential order of these modes.

    The assumption of semi-infinite cylindrical baffles endows the acoustic field of the finite cylindrical radiators with an analytical expression.Transformed from the cylindrical coordinates to the spherical coordinates and calculated with the stationary phase method,the acoustic pressure for a remote observer point R,θ,( )φ radiated from each moden,( )m can be expressed analytically as[8]

    in the above equations,ρ0is the density of the fluid,c0is sound speed in the fluid,k0is wave number,(·) is the first derivative of the first kind of nth order Hankel function and the time dependence is always assumed as e-jωt.

    3 An efficient prediction method for radiated acoustic field

    Nowadays,BEM is the most widely used numerical method and available for arbitrary boundary geometries theoretically.Another efficient numerical method is adopted here,which is easier to be implemented than BEM in evaluating the prediction error with respect to the sampling intervals.

    Suppose the number of the sampling points in axis is M and that in circumference is N,and then the acoustic pressure radiated by a single mode n,( )m can be written as

    where zj=(2j - 1) L/2M,φi=(2i - 1) 2π/2N are the axial coordinate and the circumferential coordinate of the (i, j ) th sampling point respectively, υnm(zj, φi)is the normal velocity at the(i, j ) th sampling point

    and pij(R ,θ ,φ )denotes the acoustic pressure at the observer point(R ,θ ,φ )radiated by the baffled conformal piston centered at the (i, j ) th sampling point and vibrating in unit velocity[8]

    where 2L0=L/M is the axial length of the piston,2α0=2π/N is the circumferential angle of the piston and j0(·) is the zero-order spherical Bessel function.When the piston is very small compared to the cylindrical shell,these two factors j0(k0L0cos θ)and j0(tα0)in Eq.6 can be approximated as 1.

    Eq.4 can be rewritten as

    Considering the cases of M→∞,N→∞,the limits of Eqs.8 and 9 can be obtained,

    So,it can be proved that Eq.7 is convergent to the analytical expression with the number of sampling points trending to infinity

    that is,the sampling intervals in axis and in circumference are fine enough.The prediction error is formulated as the same as that in Ref.[6]

    This is a complicated function which is related with the order of the mode,the sampling intervals,the observer orientation and the analyzing frequency.According to Eq.7,the prediction error can be rewritten as

    Given an intended error,the number of sampling points needed in axis is just decided by the axial order,and the dimensionless quantity k0Lcosθ,and that in circumference is determined by the circumferential order,the dimensionless quantity k0asinθ,and the observer azimuth φ.

    In the above,the prediction error with respect to the sample intervals for the simply supported cylindrical shells has been formulated as a mathematical problem,that is,the balance between the number of the integral points and the integral precision for these two functions in Eqs.8 and 9.It is notable that there is a great difference between these two functions in form.It can be directly explained that the axial curvature and the circumferential curvature are quite different from each other.Besides that,the non-zero curvature makes the rule of spatial sampling on cylindrical shells quite different from that on rectangular plates,especially squarelike plates which can be sampled equally in the directions parallel with the sides[6].

    4 Spatial sampling for the simply supported cylindrical shell

    It is impossible to reveal the relationships between the number of the integral points and the integral precision for these two functions f1(M,m,k0Lcos θ) and f2(N,n,k0asinθ,φ )analytically.So numerical analysis is adopted in this section.The rules for the determination of the sampling intervals in axis and in circumference to satisfy certain predetermined criteria are investigated separately.

    4.1 Spatial sampling in axis

    The form of function f1(M,m,k0Lcos θ)reveals that prediction error with respect to sampling number M in axis is just determined by the axial order m and the dimensionless quantity k0Lcosθ decided by the observer point and the analyzing frequency.Assuming the intended error is 0.1dB,the relationships between the number of sampling points needed and the dimensionless quantity k0Lcosθ are shown in Fig.2.

    It can be seen that there is a dimensionless critical frequency Fafor each mode as that in case of plates[6],which is related with the axial order.When the observer point and the analyzing frequency satisfy k0Lcosθ≤Fa,the number of sampling points needed changes slowly with the dimensionless quantity k0Lcosθ.When Fais exceeded,the number of sampling points needed increases with k0Lcosθ,the linear slope nearly independent of the axial order m.Therefore,this dimensionless critical frequency Faplays an important role in lessening the sampling points and ensuring the prediction precision at the same time.It is necessary to find out the relationship between the exact values of Faand the axial orders m.The relevant results are shown in Fig.3 with the intended error 0.1dB.

    It is obvious that the dimensionless critical frequency Fafor each mode increases linearly with the axial order and can be approximated as

    This approximation is not obtained occasionally and has been explained in Eq.8 implicitly.The wavenumber spectrum of the discrete spatial sampling is a result of periodic superposition of the spectrum of the analogous spatial signal.The prediction error defined in Eq.15 is decided by the relative error of the aliasing interference at the specific argument k0cosθ.With a fixed sampling interval,the aliasing interference is weakened to the utmost extent at the wavenumber of the spectrum peak.In other words,given a fixed intended error,the number of sampling points needed is the most least when this specific argument k0cosθ approaches the wavenumber of the spectrum peak.

    To make clear of the explanations for Figs.2 and 3,a certain axial mode is taken as an example.The wavenumber spectrum can be expressed as

    and shown in Fig.4,together with the spectrum of the discrete spatial sampling.

    The axial order m and the number of the sampling points M are set as 6 and 12 respectively.And the amplitudes of spectrum and the wavenumber are both normalized with L/2π.It can be seen that the spectrum peak is in the neighborhood of the wavenumber K1=mπ/L.When the observer point and the analyzing frequency satisfy k0cosθ≈K1,that is k0Lcosθ≈mπ,the number of the sampling points in axis is the most least for a fixed intended error.With the disparity between k0Lcosθ and mπ increasing,the aliasing interference becomes stronger as a result of the wavenumber spectrum descending,and the number of sampling points in axis has to be increased to satisfy the fixed intended error.

    In some fields,the observer elevation θ close to 90°often catches more attentions than other observer elevations,which is called as beam aspect.The numbers of the sampling points in axis required by the different intended errors for k0Lcosθ→0 are shown in Fig.5.

    It is obvious that the number of the sampling points needed in axis is proportional to the axial mode,the linear slope increasing with the prediction precision.The number of the sampling points can be approximated as the integer close to

    where A0erris a coefficient related with the prediction precision and listed in Tab.1 with the fitting method.

    Tab.1 Fitting values of A0errwith respect to the intended errors

    In the case of the observer point and the analyzing frequency satisfying k0Lcosθ>>Fa,the number of the sampling points needed in axis versus the dimensionless quantity k0Lcosθ is discussed in Fig.6,with the axial order m=2.For the linear slope changes little with the axial order m,the conclusions drawn in Fig.6 are also correct for other axial orders m≠2.

    In Fig.6,the linear slope of the number of the sampling points in axis versus k0Lcosθ de-pends on the intended errors strongly which can be approximately presented as

    where Aerris a coefficient increasing with the prediction precision.In other words,the sampling interval in axis to satisfy the intended error can be expressed as

    where λ0is wavelength of sound in fluid.The fitting values of Aerrwith respect to the intended errors are listed in Tab.2.

    Tab.2 Fitting values of Aerrversus the intended errors

    For the observer point near the ends of cylindrical shellscosθ→()1,the requirement of

    the sampling interval in axis is strictest

    4.2 Spatial sampling in circumference

    The form of function f2(N,n,k0asinθ,φ )indicates that the prediction error with respect to the circumferential sampling is determined not only by the circumferential order n and the dimensionless quantity k0asinθ,but also by the observer azimuth φ.Given a further consideration on Eq.15,it can be obtained that

    that is,the prediction error with respect to the observer azimuth φ is periodic with.When N is large enough,the dependence on the observer azimuth φ can be neglected and the prediction error is mainly determined by the circumferential order n and the dimensionless quantity k0asinθ.

    Assuming the intended error is 0.1dB and the observer azimuth φ=0,the numbers of the sampling points needed in circumference versus the dimensionless quantity k0asinθ are shown in Fig.7.

    It can be seen that the number of the sampling points in circumference is just decided by the circumference order n

    and independent of the dimensionless quantity k0asinθ.Another surprise is that the prediction error defined in Eq.16 is 0dB.On another view,this result can be understood easily.In the cases of finite modes in circumference,all the information of these modes can be recovered precisely from the spatial sampling as long as the number of the sampling points in circumference is higher than the highest order of these modes two times,and then the acoustic radiation can also be known.

    However,it must be born in mind that the prediction error with respect to the sampling interval in circumference is no longer 0dB in the cases where there are infinite modes in circumference,such as a patch excitation considered.And the number of the sampling points needed in circumference is also related with the dimensionless quantity k0asinθ.The higher prediction precision designated or the larger k0asinθ concerned,the more sampling points in circumference are required.

    5 Conclusions

    In this paper,spatial sampling on the cylindrical shells for predicting radiated acoustic field has been investigated.The prediction error with respect to the sampling intervals for the simply supported cylindrical shells has been formulated as a mathematical problem,that is,the balance between the number of the integral points and the integral precision for two separable functions.Some conclusions have been drawn as follows.

    (1)Prediction error with respect to the sampling interval in axis is determined by the axial order and the dimensionless quantity k0Lcosθ.There is a dimensionless critical frequency Fafor each mode,which equals the product of the axial order and π.If the observer point and the analyzing frequency satisfy k0Lcosθ≤Fa,the number of the sampling points needed in axis changes slowly with k0Lcosθ.Otherwise,it increases linearly with k0Lcosθ and the sampling interval in axis approximates λ0/2Aerrπcosθ.For the beam aspect,the number of the sampling points in axis is mainly determined by the axial order,the linear slope increasing with the prediction precision.

    (2)Prediction error with respect to the sampling interval in circumference is decided by the circumferential order,the dimensionless quantity k0asinθ and the observer azimuth.When the sampling points are sufficient,the observer azimuth dependence can be neglected.In the cases of finite modes in circumference,the number of the sampling points in circumference is just required to be higher than the highest circumferential order two times.

    [1]Chertock G.Sound radiation from vibrating bodies[J].J Acoust.Soc.Am.,1964,36(7):1305-1313.

    [2]Chen L H,Schweikert D G.Sound radiation from an arbitrary body[J].J Acoustic.Soc.Am.,1963,35(10):1626-1632.

    [3]Schenck H A.Improved integral formulation for acoustic radiation problems[J].J Acoust.Soc.Am.,1968,43:44-51.

    [4]Koopmann G H,Song L,Fahnline J.A method for computing acoustic fields based on the principle of wave superposition[J].J Acoust.Soc.Am.,1989,86(5):2433-2438.

    [5]SYSNOISE Rev 5.5:User manual[K].LMS International,2000.

    [6]Tao J,Ge H,Qiu X.A new rule of vibration sampling for predicting acoustical radiation from rectangular plates[J].Applied Acoustics,2006,67(8):756-770.

    [7]Laulagnet B.Model analysis of a shell’s acoustic radiation in light and heavy fluids[J].J of Sound and Vibration,1989,131(3):397-415.

    [8]Junger M C,Feit D.Sound,Structures,and Their Interaction[M].Cambridge MA:MIT Press,1986.

    [9]Szechenyi E.Modal density and radiation efficiencies of unstiffened cylinders using statistical method[J].J of Sound and Vibration,1971,19(1):65-68.

    [10]Mclean R F,Alsop S H,Fleming J S.Nyquist-overcoming the limitations[J].Journal of Sound and Vibration,2005,280:1-20.

    基于輻射聲場預報的圓柱殼表面空間采樣研究

    王 斌,湯渭霖,范 軍

    (上海交通大學船舶海洋與建筑工程學院,上海200240)

    無限流體介質中振動結構的輻射聲場可以由其表面振速分布唯一地確定,而且表面振速相對于其它物理量而言更容易被可靠測量。然而,必須謹慎選擇表面振速的空間采樣間隔,以確保預報聲場精度較高,同時預報系統負擔較小。文中討論了簡支圓柱殼表面振速的空間采樣問題,將采樣間隔與預報誤差之間的關系簡化為一個數學問題,其中周向采樣問題與軸向采樣問題可以分離、單獨研究。總結了在指定預報精度范圍內表面振速空間采樣的有關規(guī)律:軸向采樣點數取決于軸向模態(tài)階次以及一個無因次量;周向方向采樣點數主要取決于周向模態(tài)階次以及另一個無因次量。對于周向模態(tài)有限的情況,周向采樣點數僅取決于周向模態(tài)的最高階次。

    結構聲輻射;輻射聲場預報;采樣間隔

    O427.5

    A

    王 斌(1981-),男,上海交通大學船舶海洋與建筑工程學院博士研究生;

    范 軍(1973-),男,上海交通大學船舶海洋與建筑工程學院教授,博士生導師。

    O427.5

    A

    1007-7294(2010)06-0690-09

    date:2009-05-08

    湯渭霖(1940-),男,上海交通大學船舶海洋與建筑工程學院教授,博士生導師;

    猜你喜歡
    階次周向上海交通大學
    上海交通大學
    電氣自動化(2022年2期)2023-01-07 03:51:56
    周向拉桿轉子瞬態(tài)應力分析與啟動曲線優(yōu)化
    階次分析在驅動橋異響中的應用
    基于Vold-Kalman濾波的階次分析系統設計與實現*
    上海交通大學參加機器人比賽
    基于齒輪階次密度優(yōu)化的變速器降噪研究
    價值工程(2017年28期)2018-01-23 20:48:29
    周向定位旋轉分度鉆模設計
    一種商用輕型載重汽車輪胎
    永磁同步電主軸用電機定子周向模態(tài)研究
    《疾風圖》
    人民交通(2012年6期)2012-10-26 05:31:10
    亚洲综合精品二区| 午夜免费鲁丝| 毛片女人毛片| 熟妇人妻不卡中文字幕| 在线精品无人区一区二区三 | 在线精品无人区一区二区三 | 激情五月婷婷亚洲| 老司机影院成人| 精品人妻一区二区三区麻豆| 伦理电影大哥的女人| 国产精品无大码| 日韩av免费高清视频| 91精品伊人久久大香线蕉| 久久久久性生活片| 久久久欧美国产精品| 亚洲欧美精品自产自拍| 高清日韩中文字幕在线| 亚洲色图综合在线观看| 成人亚洲精品av一区二区| 国产成人午夜福利电影在线观看| 肉色欧美久久久久久久蜜桃 | 天堂俺去俺来也www色官网| 男人添女人高潮全过程视频| 亚洲av欧美aⅴ国产| 亚州av有码| 亚洲国产最新在线播放| 久久精品国产鲁丝片午夜精品| 久久精品国产亚洲av涩爱| 午夜日本视频在线| 成人漫画全彩无遮挡| 水蜜桃什么品种好| 午夜免费男女啪啪视频观看| 神马国产精品三级电影在线观看| 18禁在线播放成人免费| 美女视频免费永久观看网站| 黄色一级大片看看| 国产一区二区在线观看日韩| 91精品伊人久久大香线蕉| 在线亚洲精品国产二区图片欧美 | 亚洲精品国产av成人精品| 别揉我奶头 嗯啊视频| 九草在线视频观看| 国产真实伦视频高清在线观看| 听说在线观看完整版免费高清| 亚洲欧美一区二区三区国产| 在线播放无遮挡| 亚洲精品亚洲一区二区| 内地一区二区视频在线| 成人亚洲欧美一区二区av| 久久久久精品久久久久真实原创| 精品久久久久久久末码| av在线老鸭窝| 成人毛片a级毛片在线播放| 大码成人一级视频| 黄色视频在线播放观看不卡| 成人欧美大片| 国产乱人视频| 国产精品女同一区二区软件| 国产欧美日韩一区二区三区在线 | 亚洲最大成人手机在线| 波多野结衣巨乳人妻| 国内少妇人妻偷人精品xxx网站| 九色成人免费人妻av| 日韩亚洲欧美综合| 人妻 亚洲 视频| 久久久久久九九精品二区国产| 精品久久国产蜜桃| 成人漫画全彩无遮挡| 美女高潮的动态| 人人妻人人爽人人添夜夜欢视频 | 久久亚洲国产成人精品v| 2021天堂中文幕一二区在线观| 嫩草影院精品99| 麻豆乱淫一区二区| 免费看光身美女| 97人妻精品一区二区三区麻豆| 视频中文字幕在线观看| 高清毛片免费看| 亚洲色图av天堂| 精品国产三级普通话版| 久久午夜福利片| 直男gayav资源| 国产男女超爽视频在线观看| 午夜激情久久久久久久| 日韩 亚洲 欧美在线| 小蜜桃在线观看免费完整版高清| 少妇人妻一区二区三区视频| 一区二区三区四区激情视频| 熟妇人妻不卡中文字幕| 国产熟女欧美一区二区| 久久久久久久午夜电影| 国产一级毛片在线| 国产精品.久久久| 亚洲av成人精品一二三区| 美女内射精品一级片tv| 亚洲天堂国产精品一区在线| 中文天堂在线官网| 久久综合国产亚洲精品| 日本三级黄在线观看| 插逼视频在线观看| a级毛片免费高清观看在线播放| 韩国av在线不卡| 日韩在线高清观看一区二区三区| 亚洲成人精品中文字幕电影| 国模一区二区三区四区视频| 秋霞伦理黄片| 免费观看a级毛片全部| 亚洲aⅴ乱码一区二区在线播放| 内地一区二区视频在线| 一级毛片黄色毛片免费观看视频| 少妇的逼好多水| 少妇 在线观看| 欧美老熟妇乱子伦牲交| 国产精品av视频在线免费观看| 午夜福利视频精品| 精品视频人人做人人爽| 国产黄色免费在线视频| 69人妻影院| 亚洲不卡免费看| 免费av不卡在线播放| 亚洲综合色惰| 韩国av在线不卡| 成人高潮视频无遮挡免费网站| 搡女人真爽免费视频火全软件| 国产免费一区二区三区四区乱码| 秋霞伦理黄片| 精品国产三级普通话版| 丝袜脚勾引网站| 免费av观看视频| 日韩欧美精品v在线| 免费观看无遮挡的男女| 久久精品国产鲁丝片午夜精品| 国产成人精品久久久久久| 欧美另类一区| 内地一区二区视频在线| 日韩人妻高清精品专区| 国产成人免费无遮挡视频| 欧美高清性xxxxhd video| 精品国产一区二区三区久久久樱花 | 国产色婷婷99| 神马国产精品三级电影在线观看| 欧美成人a在线观看| 日本一本二区三区精品| 亚洲熟女精品中文字幕| 亚洲最大成人手机在线| 欧美老熟妇乱子伦牲交| 丰满人妻一区二区三区视频av| 国产淫片久久久久久久久| 欧美一级a爱片免费观看看| 久久精品人妻少妇| av卡一久久| 日韩视频在线欧美| 精华霜和精华液先用哪个| 午夜老司机福利剧场| 男女无遮挡免费网站观看| 国产亚洲5aaaaa淫片| 国产综合精华液| 国产久久久一区二区三区| 亚洲第一区二区三区不卡| 国产精品爽爽va在线观看网站| 亚洲精品国产av蜜桃| 免费观看av网站的网址| 深爱激情五月婷婷| 一级爰片在线观看| 97人妻精品一区二区三区麻豆| 国语对白做爰xxxⅹ性视频网站| 久久精品熟女亚洲av麻豆精品| 只有这里有精品99| 日本一二三区视频观看| 麻豆成人av视频| 99久久精品热视频| 在线免费观看不下载黄p国产| 精品少妇黑人巨大在线播放| 欧美精品国产亚洲| a级毛色黄片| 看十八女毛片水多多多| 亚洲最大成人av| 成年av动漫网址| 日本黄大片高清| av在线天堂中文字幕| 高清毛片免费看| 国产高潮美女av| av国产精品久久久久影院| 国产高清三级在线| 少妇丰满av| 精品一区二区三区视频在线| 中文字幕制服av| 免费观看在线日韩| 亚洲av一区综合| 极品少妇高潮喷水抽搐| 成人黄色视频免费在线看| 性色avwww在线观看| 小蜜桃在线观看免费完整版高清| 日韩大片免费观看网站| 狂野欧美白嫩少妇大欣赏| 日日摸夜夜添夜夜添av毛片| 中文精品一卡2卡3卡4更新| 99热全是精品| 两个人的视频大全免费| 国产精品久久久久久av不卡| 少妇的逼水好多| 精品国产三级普通话版| 亚洲成人久久爱视频| 黄色一级大片看看| 一级二级三级毛片免费看| 中文在线观看免费www的网站| 日韩av在线免费看完整版不卡| 男男h啪啪无遮挡| 秋霞伦理黄片| 最近最新中文字幕免费大全7| 亚洲精品成人av观看孕妇| 欧美激情久久久久久爽电影| 国产黄a三级三级三级人| 国产v大片淫在线免费观看| 身体一侧抽搐| 国产av国产精品国产| 午夜精品一区二区三区免费看| 黄片无遮挡物在线观看| 亚洲国产最新在线播放| 一个人看视频在线观看www免费| 国产精品人妻久久久影院| 国产69精品久久久久777片| 插逼视频在线观看| 在线观看免费高清a一片| 成年女人在线观看亚洲视频 | 青春草视频在线免费观看| 日本午夜av视频| 热99国产精品久久久久久7| 伦精品一区二区三区| 一本色道久久久久久精品综合| 免费看av在线观看网站| 人妻夜夜爽99麻豆av| av在线播放精品| 国产淫语在线视频| 七月丁香在线播放| 99热这里只有精品一区| 亚洲精品视频女| 精品久久久久久久末码| 在线精品无人区一区二区三 | 亚洲欧美一区二区三区国产| av.在线天堂| 观看美女的网站| 黄色欧美视频在线观看| 国产精品久久久久久精品电影| 国产精品国产三级国产专区5o| 插逼视频在线观看| 男男h啪啪无遮挡| 91精品一卡2卡3卡4卡| 99热网站在线观看| 国产欧美日韩一区二区三区在线 | 99热这里只有精品一区| 精品人妻视频免费看| 国产老妇伦熟女老妇高清| 看免费成人av毛片| 一级二级三级毛片免费看| 欧美一级a爱片免费观看看| 又大又黄又爽视频免费| 久热久热在线精品观看| 国产极品天堂在线| 日韩 亚洲 欧美在线| 日韩国内少妇激情av| 99久久中文字幕三级久久日本| 亚洲欧美清纯卡通| 国产精品久久久久久精品电影小说 | 日韩电影二区| 精品人妻偷拍中文字幕| 精品人妻偷拍中文字幕| av在线播放精品| 国产日韩欧美在线精品| 亚洲成人精品中文字幕电影| 成人无遮挡网站| 国产午夜精品一二区理论片| www.色视频.com| 亚洲av免费高清在线观看| 人妻一区二区av| 91aial.com中文字幕在线观看| 嫩草影院入口| 青春草视频在线免费观看| 五月伊人婷婷丁香| 国产免费一区二区三区四区乱码| 九色成人免费人妻av| 狠狠精品人妻久久久久久综合| 欧美精品一区二区大全| 午夜亚洲福利在线播放| 男女那种视频在线观看| 免费高清在线观看视频在线观看| 久久韩国三级中文字幕| 亚洲精品乱码久久久v下载方式| 欧美最新免费一区二区三区| 一级毛片电影观看| 青春草国产在线视频| 亚洲国产精品999| 日本午夜av视频| 国产免费一区二区三区四区乱码| 免费少妇av软件| 久久精品人妻少妇| 久久精品久久精品一区二区三区| 天堂网av新在线| 国产爱豆传媒在线观看| 欧美一区二区亚洲| 亚洲精品乱码久久久v下载方式| h日本视频在线播放| 亚洲美女视频黄频| 大香蕉97超碰在线| 久久久欧美国产精品| 精品国产乱码久久久久久小说| 成人无遮挡网站| 日韩电影二区| 蜜臀久久99精品久久宅男| 午夜免费鲁丝| 国产久久久一区二区三区| 边亲边吃奶的免费视频| 国产成人福利小说| 久久99热6这里只有精品| 伦精品一区二区三区| 男女下面进入的视频免费午夜| 一区二区三区免费毛片| 老师上课跳d突然被开到最大视频| 日本黄大片高清| 欧美一区二区亚洲| 免费看日本二区| 国产成人freesex在线| 高清日韩中文字幕在线| 国产精品99久久99久久久不卡 | 免费av不卡在线播放| 亚洲国产欧美人成| 久久精品国产鲁丝片午夜精品| 老司机影院成人| 久久久久网色| 日本三级黄在线观看| 在线看a的网站| 激情五月婷婷亚洲| 亚洲不卡免费看| 亚洲真实伦在线观看| 国产精品熟女久久久久浪| 内射极品少妇av片p| 亚洲av福利一区| 亚洲国产成人一精品久久久| 你懂的网址亚洲精品在线观看| 2018国产大陆天天弄谢| 一级黄片播放器| 九草在线视频观看| 国产一区二区在线观看日韩| 欧美+日韩+精品| 国产毛片a区久久久久| 又大又黄又爽视频免费| 在现免费观看毛片| 欧美高清成人免费视频www| 美女主播在线视频| 欧美zozozo另类| 男人添女人高潮全过程视频| 国产一区二区在线观看日韩| 狂野欧美白嫩少妇大欣赏| 欧美最新免费一区二区三区| 激情五月婷婷亚洲| 精品人妻一区二区三区麻豆| 亚洲av中文av极速乱| 国产高清有码在线观看视频| 国产一区有黄有色的免费视频| 午夜福利在线在线| 91精品伊人久久大香线蕉| 青春草视频在线免费观看| 少妇人妻一区二区三区视频| 最后的刺客免费高清国语| 欧美潮喷喷水| 亚洲精品,欧美精品| 免费观看无遮挡的男女| 午夜精品一区二区三区免费看| 国产亚洲5aaaaa淫片| 最后的刺客免费高清国语| 欧美高清成人免费视频www| 国内揄拍国产精品人妻在线| 少妇人妻精品综合一区二区| 天天一区二区日本电影三级| 有码 亚洲区| 99热这里只有精品一区| 日韩不卡一区二区三区视频在线| 又爽又黄a免费视频| 日日撸夜夜添| 黄色欧美视频在线观看| 欧美另类一区| 欧美+日韩+精品| 日本av手机在线免费观看| 日本熟妇午夜| 好男人视频免费观看在线| 精品国产一区二区三区久久久樱花 | 国产 一区精品| 欧美成人精品欧美一级黄| 亚洲精品日韩av片在线观看| 内地一区二区视频在线| 日韩大片免费观看网站| 日韩电影二区| 中国国产av一级| 高清视频免费观看一区二区| 91在线精品国自产拍蜜月| 国产精品一区二区三区四区免费观看| 欧美xxxx黑人xx丫x性爽| .国产精品久久| 国产免费一区二区三区四区乱码| 熟女av电影| 各种免费的搞黄视频| 免费看日本二区| 交换朋友夫妻互换小说| 校园人妻丝袜中文字幕| 婷婷色av中文字幕| 成人毛片a级毛片在线播放| 色播亚洲综合网| 成年女人在线观看亚洲视频 | 香蕉精品网在线| av天堂中文字幕网| 欧美少妇被猛烈插入视频| 国产v大片淫在线免费观看| 中文天堂在线官网| 18禁在线无遮挡免费观看视频| 国产日韩欧美亚洲二区| 日本与韩国留学比较| 久久国内精品自在自线图片| 尾随美女入室| av免费在线看不卡| 久久久久性生活片| 欧美日韩一区二区视频在线观看视频在线 | 美女xxoo啪啪120秒动态图| 亚洲在线观看片| 一个人看的www免费观看视频| 听说在线观看完整版免费高清| 国产大屁股一区二区在线视频| 少妇丰满av| 97在线人人人人妻| 中文精品一卡2卡3卡4更新| 成人一区二区视频在线观看| 亚洲最大成人av| 十八禁网站网址无遮挡 | av在线天堂中文字幕| 天天一区二区日本电影三级| 能在线免费看毛片的网站| 亚洲电影在线观看av| 久久久色成人| 亚洲精品久久久久久婷婷小说| 婷婷色av中文字幕| 免费av毛片视频| 一级爰片在线观看| 成人特级av手机在线观看| 色5月婷婷丁香| 欧美激情在线99| 免费av不卡在线播放| 热99国产精品久久久久久7| 日韩av不卡免费在线播放| 三级国产精品片| 成人黄色视频免费在线看| 中文字幕免费在线视频6| 日韩大片免费观看网站| 欧美变态另类bdsm刘玥| 亚洲,一卡二卡三卡| 伦理电影大哥的女人| 亚洲欧美清纯卡通| 国产黄色免费在线视频| 99热这里只有精品一区| 国产男人的电影天堂91| 18+在线观看网站| 日本av手机在线免费观看| 国产黄频视频在线观看| 97精品久久久久久久久久精品| 国产一区二区三区av在线| 在线亚洲精品国产二区图片欧美 | 国产精品不卡视频一区二区| 精品少妇久久久久久888优播| 一个人看的www免费观看视频| 99久国产av精品国产电影| 亚洲av国产av综合av卡| 内地一区二区视频在线| 一边亲一边摸免费视频| 一个人看视频在线观看www免费| 91在线精品国自产拍蜜月| 插逼视频在线观看| 最近的中文字幕免费完整| 深夜a级毛片| 新久久久久国产一级毛片| 欧美精品国产亚洲| 中国美白少妇内射xxxbb| 久久97久久精品| 九九在线视频观看精品| 秋霞在线观看毛片| 一区二区av电影网| 中文字幕久久专区| 久久99热这里只频精品6学生| 最近中文字幕2019免费版| 水蜜桃什么品种好| 日韩欧美精品v在线| 国产日韩欧美亚洲二区| 国产精品爽爽va在线观看网站| 少妇高潮的动态图| 美女内射精品一级片tv| 两个人的视频大全免费| 91精品国产九色| 18禁裸乳无遮挡动漫免费视频 | av卡一久久| 成人毛片60女人毛片免费| 韩国高清视频一区二区三区| 亚洲av男天堂| 看黄色毛片网站| 在线观看免费高清a一片| 麻豆久久精品国产亚洲av| 成人鲁丝片一二三区免费| 七月丁香在线播放| 久久亚洲国产成人精品v| 美女内射精品一级片tv| 男女啪啪激烈高潮av片| 午夜精品国产一区二区电影 | 极品少妇高潮喷水抽搐| 国产视频首页在线观看| 亚洲色图av天堂| 国产人妻一区二区三区在| 亚洲精品日韩av片在线观看| 国产成人精品一,二区| 久久影院123| 国产精品.久久久| 亚洲欧美中文字幕日韩二区| 日韩伦理黄色片| 精品一区二区三卡| 精品少妇久久久久久888优播| 肉色欧美久久久久久久蜜桃 | 久久久久久伊人网av| 成人午夜精彩视频在线观看| 欧美zozozo另类| 91久久精品电影网| 成年av动漫网址| 一边亲一边摸免费视频| 精品酒店卫生间| 亚洲精品日本国产第一区| 亚洲自拍偷在线| 在线观看人妻少妇| 在线观看美女被高潮喷水网站| 99精国产麻豆久久婷婷| 久久99热6这里只有精品| 一级毛片 在线播放| 国产精品人妻久久久久久| 成人无遮挡网站| 国产极品天堂在线| 日日啪夜夜爽| 搡老乐熟女国产| 成年版毛片免费区| 国产片特级美女逼逼视频| 成人黄色视频免费在线看| 精品久久久噜噜| 国产综合精华液| 亚洲国产高清在线一区二区三| 欧美丝袜亚洲另类| 精品一区二区免费观看| 80岁老熟妇乱子伦牲交| 国产精品久久久久久av不卡| 欧美精品人与动牲交sv欧美| 国产精品蜜桃在线观看| 日韩三级伦理在线观看| 日日摸夜夜添夜夜添av毛片| 久久久久九九精品影院| 欧美日韩视频精品一区| 中文字幕久久专区| 一个人观看的视频www高清免费观看| 日韩人妻高清精品专区| 欧美成人午夜免费资源| 久久久精品94久久精品| 美女脱内裤让男人舔精品视频| 国产亚洲一区二区精品| 在线观看三级黄色| 亚洲欧美日韩东京热| 乱系列少妇在线播放| 久久99热这里只有精品18| 免费看不卡的av| 男插女下体视频免费在线播放| freevideosex欧美| 男女那种视频在线观看| 亚洲精品久久午夜乱码| 我的老师免费观看完整版| 欧美日韩亚洲高清精品| 欧美另类一区| 熟女电影av网| 欧美成人精品欧美一级黄| 国产一区二区亚洲精品在线观看| 亚洲成人av在线免费| 久久人人爽人人片av| 爱豆传媒免费全集在线观看| 伊人久久精品亚洲午夜| 国产成人aa在线观看| 高清日韩中文字幕在线| 免费看光身美女| 日韩 亚洲 欧美在线| 高清日韩中文字幕在线| 亚洲欧美日韩东京热| 51国产日韩欧美| 久久久久久伊人网av| 欧美激情国产日韩精品一区| 老司机影院成人| 最新中文字幕久久久久| 少妇的逼水好多| 亚洲精品国产av成人精品| 亚洲精品成人久久久久久| 久久这里有精品视频免费| 王馨瑶露胸无遮挡在线观看| 亚洲精品,欧美精品| 联通29元200g的流量卡| 亚洲婷婷狠狠爱综合网| 欧美日韩在线观看h| 日韩一区二区视频免费看| 一级毛片我不卡| 日本午夜av视频| 美女被艹到高潮喷水动态| 性色avwww在线观看| 国产真实伦视频高清在线观看| 黄色欧美视频在线观看| av国产精品久久久久影院| 午夜福利高清视频| videos熟女内射| 久久99热这里只频精品6学生| 中文天堂在线官网| 国产综合懂色|